'''मल्टी-[[ सूचकांक संकेतन | सूचकांक संकेतन]]''' गणितीय नोटेशन है जो सूचकांकों के क्रमबद्ध टुपल के लिए पूर्णांक सूचकांक नोटेशन की अवधारणा को सामान्यीकृत करके, बहुपरिवर्तनीय कैलकुलस, आंशिक अंतर समीकरणों और [[वितरण (गणित)]] के सिद्धांत में उपयोग किए जाने वाले सूत्रों को सरल बनाता है।
'''मल्टी-[[ सूचकांक संकेतन | सूचकांक संकेतन]]''' गणितीय नोटेशन है जो सूचकांकों के क्रमबद्ध टुपल के लिए पूर्णांक सूचकांक नोटेशन की अवधारणा को सामान्यीकृत करके, बहुपरिवर्तनीय कैलकुलस, आंशिक अंतर समीकरणों और [[वितरण (गणित)]] के सिद्धांत में उपयोग किए जाने वाले सूत्रों को सरल बनाता है।
==परिभाषा और बुनियादी गुण==
'''मल्टी-इंडेक्स नोटेशन प्रारंभिक कैलकुलस से संबंधित मल्टी-वेरिएबल केस तक कई सूत्रों के विस्तार की अनुमति देता है। नीचे कुछ उदाहरण हैं. निम्नलिखित सभी में, <math>x,y,h\in\Complex^n</math> (या <math>\R^n</math>), <math>\alpha,\nu\in\N_0^n</math>, और <math>f,g,a_\alpha\colon\Complex^n\to\Complex</math> (या <math>\R^n\to\R</math>).'''
मल्टी- सूचकांक संकेतन गणितीय नोटेशन है जो सूचकांकों के क्रमबद्ध टुपल के लिए पूर्णांक सूचकांक नोटेशन की अवधारणा को सामान्यीकृत करके, बहुपरिवर्तनीय कैलकुलस, आंशिक अंतर समीकरणों और वितरण (गणित) के सिद्धांत में उपयोग किए जाने वाले सूत्रों को सरल बनाता है।
मल्टी-इंडेक्स नोटेशन प्रारंभिक कैलकुलस से संबंधित मल्टी-वेरिएबल केस तक कई सूत्रों के विस्तार की अनुमति देता है। नीचे कुछ उदाहरण हैं. निम्नलिखित सभी में, (या ), , और (या ).
जहाँ (4-ग्रेडिएंट भी देखें)। कभी-कभी संकेतन भी प्रयोग किया जाता है.[1]
कुछ अनुप्रयोग
मल्टी-इंडेक्स नोटेशन प्रारंभिक कैलकुलस से संबंधित मल्टी-वेरिएबल केस तक कई सूत्रों के विस्तार की अनुमति देता है। नीचे कुछ उदाहरण हैं. निम्नलिखित सभी में, (या ), , और (या ).
एक सीमित डोमेन में कॉम्पैक्ट समर्थन के साथ सुचारू कार्यों के लिए है
इस सूत्र का उपयोग वितरण (गणित) और अशक्त व्युत्पन्न की परिभाषा के लिए किया जाता है।
उदाहरण प्रमेय
यदि बहु-सूचकांक हैं और , तब
प्रमाण
प्रमाण अंतर कलन के लिए शक्ति नियम से अनुसरण करता है; यदि α और β {0,1,2,…} में हैं, तो
(1)
मान लीजिए , , और . फिर हमारे पास वह है
{1, …, n} में प्रत्येक i के लिए फलन केवल पर निर्भर करता है। उपरोक्त में प्रत्येक आंशिक विभेदन इसलिए संबंधित सामान्य विभेदन तक कम हो जाता है। इसलिए, समीकरण (1) से, यह इस प्रकार है कि में कम से कम i के लिए αi > βi होने पर आंशिक विलुप्त हो जाता है। यदि यह स्थिति नहीं है अर्थात, यदि α ≤ β बहु-सूचकांक के रूप में है, तो
प्रत्येक के लिए और प्रमेय क्यू.ई.डी का अनुसरण करता है।
↑Reed, M.; Simon, B. (1980). Methods of Modern Mathematical Physics: Functional Analysis I (Revised and enlarged ed.). San Diego: Academic Press. p. 319. ISBN0-12-585050-6.
Saint Raymond, Xavier (1991). Elementary Introduction to the Theory of Pseudodifferential Operators. Chap 1.1 . CRC Press. ISBN0-8493-7158-9