मल्टी-इंडेक्स नोटेशन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
'''मल्टी-[[ सूचकांक संकेतन | सूचकांक संकेतन]]''' गणितीय नोटेशन है जो सूचकांकों के क्रमबद्ध टुपल के लिए पूर्णांक सूचकांक नोटेशन की अवधारणा को सामान्यीकृत करके, बहुपरिवर्तनीय कैलकुलस, आंशिक अंतर समीकरणों और [[वितरण (गणित)]] के सिद्धांत में उपयोग किए जाने वाले सूत्रों को सरल बनाता है।
'''मल्टी-[[ सूचकांक संकेतन | सूचकांक संकेतन]]''' गणितीय नोटेशन है जो सूचकांकों के क्रमबद्ध टुपल के लिए पूर्णांक सूचकांक नोटेशन की अवधारणा को सामान्यीकृत करके, बहुपरिवर्तनीय कैलकुलस, आंशिक अंतर समीकरणों और [[वितरण (गणित)]] के सिद्धांत में उपयोग किए जाने वाले सूत्रों को सरल बनाता है।


==परिभाषा और बुनियादी गुण==
'''मल्टी-इंडेक्स नोटेशन प्रारंभिक कैलकुलस से संबंधित मल्टी-वेरिएबल केस तक कई सूत्रों के विस्तार की अनुमति देता है। नीचे कुछ उदाहरण हैं. निम्नलिखित सभी में, <math>x,y,h\in\Complex^n</math> (या <math>\R^n</math>), <math>\alpha,\nu\in\N_0^n</math>, और <math>f,g,a_\alpha\colon\Complex^n\to\Complex</math> (या <math>\R^n\to\R</math>).'''
 
==परिभाषा और मूलभूत गुण                                                                                                                                                                                                                                                   ==


एक एन-आयामी 'मल्टी-इंडेक्स' एन-ट्यूपल है
एक एन-आयामी 'मल्टी-इंडेक्स' एन-ट्यूपल है

Revision as of 15:48, 9 July 2023

मल्टी- सूचकांक संकेतन गणितीय नोटेशन है जो सूचकांकों के क्रमबद्ध टुपल के लिए पूर्णांक सूचकांक नोटेशन की अवधारणा को सामान्यीकृत करके, बहुपरिवर्तनीय कैलकुलस, आंशिक अंतर समीकरणों और वितरण (गणित) के सिद्धांत में उपयोग किए जाने वाले सूत्रों को सरल बनाता है।

मल्टी-इंडेक्स नोटेशन प्रारंभिक कैलकुलस से संबंधित मल्टी-वेरिएबल केस तक कई सूत्रों के विस्तार की अनुमति देता है। नीचे कुछ उदाहरण हैं. निम्नलिखित सभी में, (या ), , और (या ).

परिभाषा और मूलभूत गुण

एक एन-आयामी 'मल्टी-इंडेक्स' एन-ट्यूपल है

गैर-नकारात्मक पूर्णांक का (अर्थात प्राकृतिक संख्याओं के एन-आयाम सेट (गणित) का तत्व, जिसे द्वारा निरूपित किया गया है).


बहु-सूचकांकों के लिए और परिभाषित करता है:

घटकवार योग और अंतर
आंशिक आदेश
घटकों का योग (पूर्ण मान)
कारख़ाने का
द्विपद गुणांक
बहुपद गुणांक
जहाँ .
शक्ति (गणित)
.
उच्च-क्रम आंशिक व्युत्पन्न
जहाँ (4-ग्रेडिएंट भी देखें)। कभी-कभी संकेतन भी प्रयोग किया जाता है.[1]

कुछ अनुप्रयोग

मल्टी-इंडेक्स नोटेशन प्रारंभिक कैलकुलस से संबंधित मल्टी-वेरिएबल केस तक कई सूत्रों के विस्तार की अनुमति देता है। नीचे कुछ उदाहरण हैं. निम्नलिखित सभी में, (या ), , और (या ).

बहुपद प्रमेय
बहु-द्विपद प्रमेय
ध्यान दें, तब से x + y वेक्टर है और α बहु-सूचकांक है, बाईं ओर की अभिव्यक्ति इसका संक्षिप्त (x1 + y1)α1⋯(xn + yn)αn रूप है .
लीबनिज नियम (सामान्यीकृत उत्पाद नियम)
सुचारु कार्यों के लिए एफ और जी
टेलर श्रृंखला
एक विश्लेषणात्मक फलन के लिए f में n वेरिएबल्स हैं
वास्तव में, पर्याप्त सुचारू कार्य के लिए, हमारे पास समान टेलर विस्तार है
जहां अंतिम पद (शेष) टेलर के सूत्र के स्पष्ट संस्करण पर निर्भर करता है। उदाहरण के लिए, कॉची सूत्र (अभिन्न शेषफल के साथ) के लिए, कोई प्राप्त करता है
सामान्य रैखिक आंशिक अंतर ऑपरेटर
एन चर में औपचारिक रैखिक एन-वें क्रम आंशिक अंतर ऑपरेटर के रूप में लिखा गया है
भागों द्वारा एकीकरण
एक सीमित डोमेन में कॉम्पैक्ट समर्थन के साथ सुचारू कार्यों के लिए है
इस सूत्र का उपयोग वितरण (गणित) और अशक्त व्युत्पन्न की परिभाषा के लिए किया जाता है।

उदाहरण प्रमेय

यदि बहु-सूचकांक हैं और , तब

प्रमाण

प्रमाण अंतर कलन के लिए शक्ति नियम से अनुसरण करता है; यदि α और β {0,1,2,…} में हैं, तो

 

 

 

 

(1)

मान लीजिए , , और . फिर हमारे पास वह है

{1, …, n} में प्रत्येक i के लिए फलन केवल पर निर्भर करता है। उपरोक्त में प्रत्येक आंशिक विभेदन इसलिए संबंधित सामान्य विभेदन तक कम हो जाता है। इसलिए, समीकरण (1) से, यह इस प्रकार है कि में कम से कम i के लिए αi > βi होने पर आंशिक विलुप्त हो जाता है। यदि यह स्थिति नहीं है अर्थात, यदि α ≤ β बहु-सूचकांक के रूप में है, तो

प्रत्येक के लिए और प्रमेय क्यू.ई.डी का अनुसरण करता है।

यह भी देखें

संदर्भ

  1. Reed, M.; Simon, B. (1980). Methods of Modern Mathematical Physics: Functional Analysis I (Revised and enlarged ed.). San Diego: Academic Press. p. 319. ISBN 0-12-585050-6.
  • Saint Raymond, Xavier (1991). Elementary Introduction to the Theory of Pseudodifferential Operators. Chap 1.1 . CRC Press. ISBN 0-8493-7158-9

This article incorporates material from multi-index derivative of a power on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.