श्रृंखला जटिल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
गणित में, श्रृंखला [[संकेतन]] [[बीजगणितीय संरचना]] है जिसमें [[एबेलियन समूह|एबेलियन समूहो]]  (या [[मॉड्यूल (गणित)]]) का अनुक्रम होता है और लगातार समूहों के बीच [[समूह समरूपता]] का अनुक्रम होता है जैसे कि प्रत्येक समरूपता की [[छवि (गणित)]] कर्नेल में सम्मिलित  होती है ( बीजगणित)या अगले की समूह समरूपताएँ। श्रृंखला परिसर से संबद्ध इसकी [[[[सह-समरूपता]] (गणित)]] है, जो बताती है कि छवियों को कर्नेल में कैसे सम्मिलित  किया जाता है।
गणित में, श्रृंखला [[संकेतन]] [[बीजगणितीय संरचना]] है जिसमें [[एबेलियन समूह|एबेलियन समूहो]]  (या [[मॉड्यूल (गणित)]]) का अनुक्रम होता है और लगातार समूहों के बीच [[समूह समरूपता]] का अनुक्रम होता है जैसे कि प्रत्येक समरूपता की [[छवि (गणित)]] कर्नेल में सम्मिलित  होती है ( बीजगणित)या अगले की समूह समरूपताएँ। श्रृंखला परिसर से संबद्ध इसकी [[[[सह-समरूपता]] (गणित)]] है, जो बताती है कि छवियों को कर्नेल में कैसे सम्मिलित  किया जाता है।


गणित में, एक श्रृंखला परिसर एक बीजगणितीय संरचना है जिसमें एबेलियन समूहों (या मॉड्यूल) का अनुक्रम और लगातार समूहों के बीच समरूपता का अनुक्रम होता है जैसे कि प्रत्येक समरूपता की छवि अगले के कर्नेल में सम्मिलित  होती है। एक श्रृंखला परिसर से जुड़ी इसकी होमोलॉजी है, जो बताती है कि छवियों को कर्नेल में कैसे सम्मिलित  किया जाता है।
'''गणित में, एक श्रृंखला परिसर एक बीजगणितीय संरचना है जिसमें एबेलियन समूहों (या मॉड्यूल) का अनुक्रम और लगातार समूहों के बीच समरूपता का अनुक्रम होता है जैसे कि प्रत्येक समरूपता की छवि अगले के कर्नेल में सम्मिलित  होती है। एक श्रृंखला परिसर से जुड़ी इसकी होमोलॉजी है, जो बताती है कि छवियों को कर्नेल में कैसे सम्मिलित  किया जाता है।'''


एक कोचेन कॉम्प्लेक्स चेन कॉम्प्लेक्स के समान है, सिवाय इसके कि इसकी समरूपताएं विपरीत दिशा में हैं। कोचेन कॉम्प्लेक्स की समरूपता को इसकी सहसंयोजकता कहा जाता है।
एक कोचेन कॉम्प्लेक्स चेन कॉम्प्लेक्स के समान है, सिवाय इसके कि इसकी समरूपताएं विपरीत दिशा में हैं। कोचेन कॉम्प्लेक्स की समरूपता को इसकी सहसंयोजकता कहा जाता है।
Line 11: Line 11:


==परिभाषाएँ==
==परिभाषाएँ==
एक शृंखला परिसर <math>(A_\bullet, d_\bullet)</math> एबेलियन समूहों या मॉड्यूल का क्रम है ..., <sub>0</sub>, <sub>1</sub>, <sub>2</sub>, <sub>3</sub>, <sub>4</sub>, ... समरूपताओं से जुड़ा हुआ (सीमा ऑपरेटर या अंतर कहा जाता है) {{nowrap|''d''<sub>''n''</sub> : ''A''<sub>''n''</sub> → ''A''<sub>''n''−1</sub>}}, इस प्रकार कि किन्हीं दो लगातार मानचित्रों की संरचना शून्य मानचित्र है। स्पष्ट रूप से, अंतर संतुष्ट करते हैं {{nowrap|1=''d''<sub>''n''</sub> ∘ ''d''<sub>''n''+1</sub> = 0}}, या दबाए गए सूचकांकों के साथ, {{nowrap|1=''d''<sup>2</sup> = 0}}. कॉम्प्लेक्स को इस प्रकार लिखा जा सकता है।
एक शृंखला परिसर <math>(A_\bullet, d_\bullet)</math> एबेलियन समूहों या मॉड्यूल का क्रम है ..., ''A''<sub>0</sub>, ''A''<sub>1</sub>, ''A''<sub>2</sub>, ''A''<sub>3</sub>, ''A''<sub>4</sub>, ... समरूपताओं से जुड़ा हुआ (सीमा ऑपरेटर या अंतर कहा जाता है) {{nowrap|''d''<sub>''n''</sub> : ''A''<sub>''n''</sub> → ''A''<sub>''n''−1</sub>}}, इस प्रकार कि किन्हीं दो लगातार मानचित्रों की संरचना शून्य मानचित्र है। स्पष्ट रूप से, अंतर संतुष्ट करते हैं {{nowrap|1=''d''<sub>''n''</sub> ∘ ''d''<sub>''n''+1</sub> = 0}}, या दबाए गए सूचकांकों के साथ, {{nowrap|1=''d''<sup>2</sup> = 0}}. कॉम्प्लेक्स को इस प्रकार लिखा जा सकता है।


::<math>
::<math>
Line 23: Line 23:
\cdots
\cdots
</math>
</math>
कोचेन कॉम्प्लेक्स <math>(A^\bullet, d^\bullet)</math> श्रृंखला परिसर के लिए [[दोहरी (श्रेणी सिद्धांत)]] धारणा है। इसमें एबेलियन समूहों या मॉड्यूल का अनुक्रम सम्मिलित  है ..., <sup>0</sup>, <sup>1</sup>, <sup>2</sup>, <sup>3</sup>, <sup>4</sup>, ... समरूपता से जुड़ा हुआ {{nowrap|''d''<sup>''n''</sup> : ''A''<sup>''n''</sup> → ''A''<sup>''n''+1</sup>}} संतुष्टि देने वाला {{nowrap|1=''d''<sup>''n''+1</sup> ∘ ''d''<sup>''n''</sup> = 0}}. कोचेन कॉम्प्लेक्स को चेन कॉम्प्लेक्स के समान तरीके से लिखा जा सकता है।
कोचेन कॉम्प्लेक्स <math>(A^\bullet, d^\bullet)</math> श्रृंखला परिसर के लिए [[दोहरी (श्रेणी सिद्धांत)]] धारणा है। इसमें एबेलियन समूहों या मॉड्यूल का अनुक्रम सम्मिलित  है ..., ''A''<sup>0</sup>, ''A''<sup>1</sup>, ''A''<sup>2</sup>, ''A''<sup>3</sup>, ''A''<sup>4</sup>,... समरूपता से जुड़ा हुआ {{nowrap|''d''<sup>''n''</sup> : ''A''<sup>''n''</sup> → ''A''<sup>''n''+1</sup>}} संतुष्टि देने वाला {{nowrap|1=''d''<sup>''n''+1</sup> ∘ ''d''<sup>''n''</sup> = 0}}. कोचेन कॉम्प्लेक्स को चेन कॉम्प्लेक्स के समान तरीके से लिखा जा सकता है।


::<math>
::<math>
Line 35: Line 35:
\cdots
\cdots
</math>
</math>
किसी भी में सूचकांक एन<sub>''n''</sub> या <sup>n</sup> को 'डिग्री' (या 'आयाम') कहा जाता है। चेन और कोचेन कॉम्प्लेक्स के बीच अंतर यह है कि, चेन कॉम्प्लेक्स में, अंतर आयाम को कम करते हैं, जबकि कोचेन कॉम्प्लेक्स में वे आयाम बढ़ाते हैं। चेन कॉम्प्लेक्स के लिए सभी अवधारणाएं और परिभाषाएं कोचेन कॉम्प्लेक्स पर प्रयुक्त होती हैं, सिवाय इसके कि वे आयाम के लिए इस अलग सम्मेलन का पालन करेंगे, और  अधिकांशतः  शब्दों को [[उपसर्ग]] सह- दिया जाएगा। इस लेख में, श्रृंखला परिसरों के लिए परिभाषाएँ दी जाएंगी जब भेद की आवश्यकता नहीं होगी।
किसी भी n में सूचकांक ''A<sub>n</sub>'' या ''A<sup>n</sup>'' को 'डिग्री' (या 'आयाम') कहा जाता है। चेन और कोचेन कॉम्प्लेक्स के बीच अंतर यह है कि, चेन कॉम्प्लेक्स में, अंतर आयाम को कम करते हैं, जबकि कोचेन कॉम्प्लेक्स में वे आयाम बढ़ाते हैं। चेन कॉम्प्लेक्स के लिए सभी अवधारणाएं और परिभाषाएं कोचेन कॉम्प्लेक्स पर प्रयुक्त होती हैं, सिवाय इसके कि वे आयाम के लिए इस अलग सम्मेलन का पालन करेंगे, और  अधिकांशतः  शब्दों को [[उपसर्ग]] सह- दिया जाएगा। इस लेख में, श्रृंखला परिसरों के लिए परिभाषाएँ दी जाएंगी जब भेद की आवश्यकता नहीं होगी।


एक 'बाउंडेड चेन कॉम्प्लेक्स' वह है जिसमें लगभग सभीयाकार्डिनैलिटी ए होती है<sub>''n''</sub> 0 हैं; अर्थात्, परिमित संकुल को बायीं और दायीं ओर 0 से बढ़ाया गया है। उदाहरण श्रृंखला संकुल है जो परिमित सरल संकुल की सरल समरूपता को परिभाषित करता है। यदि किसी निश्चित डिग्री ''एन'' से ऊपर के सभी मॉड्यूल 0 हैं, तो चेन कॉम्प्लेक्स ऊपर से घिरा हुआ है, और यदि कुछ निश्चित डिग्री से नीचे के सभी मॉड्यूल 0 हैं, तो नीचे से घिरा हुआ है। स्पष्ट रूप से, कॉम्प्लेक्स ऊपर और नीचे दोनों से घिरा हुआ है यदि और केवल यदि जटिल घिरा हुआ है.
एक 'परिबद्ध श्रृंखला कॉम्प्लेक्स' वह है जिसमें लगभग सभी याकार्डिनैलिटी A<sub>''n''</sub> 0 होती है '''0 हैं'''; अर्थात्, परिमित संकुल को बायीं और दायीं ओर 0 से बढ़ाया गया है। उदाहरण श्रृंखला संकुल है जो परिमित सरल संकुल की सरल समरूपता को परिभाषित करता है। यदि किसी निश्चित डिग्री ''N'' से ऊपर के सभी मॉड्यूल 0 हैं, तो चेन कॉम्प्लेक्स ऊपर से घिरा हुआ है, और यदि कुछ निश्चित डिग्री से नीचे के सभी मॉड्यूल 0 हैं, तो नीचे से घिरा हुआ है। स्पष्ट रूप से, कॉम्प्लेक्स ऊपर और नीचे दोनों से घिरा हुआ है यदि और केवल यदि जटिल घिरा हुआ है.


(सह)श्रृंखला परिसर के व्यक्तिगत समूहों के तत्वों को (सह)श्रृंखला कहा जाता है। ''d'' के कर्नेल में तत्वों को (co)चक्र (या बंद तत्व) कहा जाता है, और ''d'' की छवि में तत्वों को (co)सीमाएँ (या स्पष्ट  तत्व) कहा जाता है। अंतर की परिभाषा से ही, सभी सीमाएँ चक्र हैं। ''एन''-वें (सह)होमोलॉजी समूह ''एच''<sub>''n''</sub> (एच<sup>n</sup>) डिग्री n में (co)चक्र मॉड्यूलो (शब्दजाल)यासंरचनाओं (co)सीमाओं का समूह है, अर्थात,
(सह)श्रृंखला परिसर के व्यक्तिगत समूहों के तत्वों को (सह)श्रृंखला कहा जाता है। ''d'' के कर्नेल में तत्वों को (सह)चक्र (या बंद तत्व) कहा जाता है, और ''d'' की छवि में तत्वों को (सह)सीमाएँ (या स्पष्ट  तत्व) कहा जाता है। अंतर की परिभाषा से ही, सभी सीमाएँ चक्र हैं। n-वें (सह) होमोलॉजी समूह ''H<sub>n</sub>'' (''H<sup>n</sup>'') डिग्री n में (सह)चक्र मॉड्यूलो (शब्दजाल)या संरचनाओं (सह) सीमाओं का समूह है, अर्थात,


::<math>H_n = \ker d_{n}/\mbox{im } d_{n+1} \quad \left(H^n = \ker d^{n}/\mbox{im } d^{n-1} \right)</math>
::<math>H_n = \ker d_{n}/\mbox{im } d_{n+1} \quad \left(H^n = \ker d^{n}/\mbox{im } d^{n-1} \right)</math>
===स्पष्ट  अनुक्रम===
{{main|सटीक क्रम}}


एक स्पष्ट  अनुक्रम (या स्पष्ट  कॉम्प्लेक्स) श्रृंखला कॉम्प्लेक्स है जिसके सभी समरूप समूह शून्य हैं। इसका कारणहै कि कॉम्प्लेक्स में सभी बंद तत्व स्पष्ट  हैं। संक्षिप्त स्पष्ट  अनुक्रम परिबद्ध स्पष्ट  अनुक्रम है जिसमें केवल समूह''A<sub>k</sub>'', ''A<sub>k</sub>''<sub>+1</sub>, ''A<sub>k</sub>''<sub>+2</sub> शून्येतर हो सकता है. उदाहरण के लिए, निम्नलिखित श्रृंखला परिसर संक्षिप्त स्पष्ट  अनुक्रम है।


===स्पष्ट  अनुक्रम===
{{main|Exact sequence}}
एक स्पष्ट  अनुक्रम (या स्पष्ट  कॉम्प्लेक्स) श्रृंखला कॉम्प्लेक्स है जिसके सभी समरूप समूह शून्य हैं। इसका कारणहै कि कॉम्प्लेक्स में सभी बंद तत्व स्पष्ट  हैं। संक्षिप्त स्पष्ट  अनुक्रम परिबद्ध स्पष्ट  अनुक्रम है जिसमें केवल समूह ''ए''<sub>''k''</sub>, ए<sub>''k''+1</sub>, ए<sub>''k''+2</sub> शून्येतर हो सकता है. उदाहरण के लिए, निम्नलिखित श्रृंखला परिसर संक्षिप्त स्पष्ट  अनुक्रम है।
:<math>
:<math>
\cdots
\cdots
Line 60: Line 60:


===श्रृंखला मानचित्र===
===श्रृंखला मानचित्र===
दो श्रृंखला परिसरों के बीच श्रृंखला मानचित्र ''एफ'' <math>(A_\bullet, d_{A,\bullet})</math> और <math>(B_\bullet, d_{B,\bullet})</math> क्रम है <math>f_\bullet</math> समरूपता का <math>f_n : A_n \rightarrow B_n</math> प्रत्येक n के लिए जो दो श्रृंखला परिसरों पर सीमा ऑपरेटरों के साथ आवागमन करता है, इसलिए <math> d_{B,n} \circ f_n = f_{n-1} \circ d_{A,n}</math>. इसे निम्नलिखित क्रमविनिमेय चित्र में लिखा गया है।
दो श्रृंखला परिसरों के बीच श्रृंखला मानचित्र ''f'' <math>(A_\bullet, d_{A,\bullet})</math> और <math>(B_\bullet, d_{B,\bullet})</math> क्रम है <math>f_\bullet</math> समरूपता का <math>f_n : A_n \rightarrow B_n</math> प्रत्येक n के लिए जो दो श्रृंखला परिसरों पर सीमा ऑपरेटरों के साथ आवागमन करता है, इसलिए <math> d_{B,n} \circ f_n = f_{n-1} \circ d_{A,n}</math>. इसे निम्नलिखित क्रमविनिमेय चित्र में लिखा गया है।
:[[Image:Chain map.svg|650 पीएक्स]]एक श्रृंखला मानचित्र चक्रों को चक्रों और सीमाओं को सीमाओं पर भेजता है, और इस प्रकार समरूपता पर मानचित्र उत्पन्न करता है <math>(f_\bullet)_*:H_\bullet(A_\bullet, d_{A,\bullet}) \rightarrow H_\bullet(B_\bullet, d_{B,\bullet})</math>.
:[[Image:Chain map.svg|650 पीएक्स]]
:एक श्रृंखला मानचित्र चक्रों को चक्रों और सीमाओं को सीमाओं पर भेजता है, और इस प्रकार समरूपता पर मानचित्र उत्पन्न करता है <math>(f_\bullet)_*:H_\bullet(A_\bullet, d_{A,\bullet}) \rightarrow H_\bullet(B_\bullet, d_{B,\bullet})</math>.


टोपोलॉजिकल स्पेस X और Y के बीच सतत मानचित्र f, X और Y के एकल श्रृंखला परिसरों के बीच श्रृंखला मानचित्र उत्पन्न करता है, और इसलिए मानचित्र f प्रेरित करता है<sub>*</sub> एक्स और वाई की एकवचन समरूपता के बीच भी। जब X और Y दोनों n-स्फीयर|n-स्फीयर के बराबर होते हैं, तो होमोलॉजी पर प्रेरित मानचित्र निरंतर मैपिंग की डिग्री को परिभाषित करता हैयामानचित्र f के Sn से Sn तक।
टोपोलॉजिकल स्पेस X और Y के बीच सतत मानचित्र f, X और Y के एकल श्रृंखला परिसरों के बीच श्रृंखला मानचित्र उत्पन्न करता है, और इसलिए मानचित्र f प्रेरित करता है<sub>*</sub> ''X''  और   ''Y'' की एकवचन समरूपता के बीच भी। जब X और Y दोनों n-स्फीयर |'''n-स्फीयर''' के बराबर होते हैं, तो होमोलॉजी पर प्रेरित मानचित्र निरंतर मैपिंग की डिग्री को परिभाषित करता है या मानचित्र f के '''Sn से Sn तक'''।


श्रृंखला मानचित्र की अवधारणा श्रृंखला मानचित्र के [[मानचित्रण शंकु (होमोलॉजिकल बीजगणित)]] के निर्माण के माध्यम से सीमा तक कम हो जाती है।
'''श्रृंखला मानचित्र की अवधारणा श्रृंखला मानचित्र के [[मानचित्रण शंकु (होमोलॉजिकल बीजगणित)]] के निर्माण के माध्यम से सीमा तक कम हो जाती है।'''


===श्रृंखला समरूपता===
===श्रृंखला समरूपता===

Revision as of 17:14, 9 July 2023

गणित में, श्रृंखला संकेतन बीजगणितीय संरचना है जिसमें एबेलियन समूहो (या मॉड्यूल (गणित)) का अनुक्रम होता है और लगातार समूहों के बीच समूह समरूपता का अनुक्रम होता है जैसे कि प्रत्येक समरूपता की छवि (गणित) कर्नेल में सम्मिलित होती है ( बीजगणित)या अगले की समूह समरूपताएँ। श्रृंखला परिसर से संबद्ध इसकी [[सह-समरूपता (गणित)]] है, जो बताती है कि छवियों को कर्नेल में कैसे सम्मिलित किया जाता है।

गणित में, एक श्रृंखला परिसर एक बीजगणितीय संरचना है जिसमें एबेलियन समूहों (या मॉड्यूल) का अनुक्रम और लगातार समूहों के बीच समरूपता का अनुक्रम होता है जैसे कि प्रत्येक समरूपता की छवि अगले के कर्नेल में सम्मिलित होती है। एक श्रृंखला परिसर से जुड़ी इसकी होमोलॉजी है, जो बताती है कि छवियों को कर्नेल में कैसे सम्मिलित किया जाता है।

एक कोचेन कॉम्प्लेक्स चेन कॉम्प्लेक्स के समान है, सिवाय इसके कि इसकी समरूपताएं विपरीत दिशा में हैं। कोचेन कॉम्प्लेक्स की समरूपता को इसकी सहसंयोजकता कहा जाता है।

बीजगणितीय टोपोलॉजी में, टोपोलॉजिकल स्पेस इस श्रृंखला परिसर की समरूपता को एक्स की एकवचन समरूपता कहा जाता है, और यह टोपोलॉजिकल स्पेस का सामान्यतः उपयोग किया जाने वाला टोपोलॉजिकल अपरिवर्तनीय है।

श्रृंखला परिसरों का अध्ययन होमोलॉजिकल बीजगणित में किया जाता है, किन्तुगणित के कई क्षेत्रों में उपयोग किया जाता है, जिसमें अमूर्त बीजगणित, गैलोइस सिद्धांत, अंतर ज्यामिति और बीजगणितीय ज्यामिति सम्मिलित हैं। इन्हें सामान्यतः एबेलियन श्रेणियों में परिभाषित किया जा सकता है।

परिभाषाएँ

एक शृंखला परिसर एबेलियन समूहों या मॉड्यूल का क्रम है ..., A0, A1, A2, A3, A4, ... समरूपताओं से जुड़ा हुआ (सीमा ऑपरेटर या अंतर कहा जाता है) dn : AnAn−1, इस प्रकार कि किन्हीं दो लगातार मानचित्रों की संरचना शून्य मानचित्र है। स्पष्ट रूप से, अंतर संतुष्ट करते हैं dndn+1 = 0, या दबाए गए सूचकांकों के साथ, d2 = 0. कॉम्प्लेक्स को इस प्रकार लिखा जा सकता है।

कोचेन कॉम्प्लेक्स श्रृंखला परिसर के लिए दोहरी (श्रेणी सिद्धांत) धारणा है। इसमें एबेलियन समूहों या मॉड्यूल का अनुक्रम सम्मिलित है ..., A0, A1, A2, A3, A4,... समरूपता से जुड़ा हुआ dn : AnAn+1 संतुष्टि देने वाला dn+1dn = 0. कोचेन कॉम्प्लेक्स को चेन कॉम्प्लेक्स के समान तरीके से लिखा जा सकता है।

किसी भी n में सूचकांक An या An को 'डिग्री' (या 'आयाम') कहा जाता है। चेन और कोचेन कॉम्प्लेक्स के बीच अंतर यह है कि, चेन कॉम्प्लेक्स में, अंतर आयाम को कम करते हैं, जबकि कोचेन कॉम्प्लेक्स में वे आयाम बढ़ाते हैं। चेन कॉम्प्लेक्स के लिए सभी अवधारणाएं और परिभाषाएं कोचेन कॉम्प्लेक्स पर प्रयुक्त होती हैं, सिवाय इसके कि वे आयाम के लिए इस अलग सम्मेलन का पालन करेंगे, और अधिकांशतः शब्दों को उपसर्ग सह- दिया जाएगा। इस लेख में, श्रृंखला परिसरों के लिए परिभाषाएँ दी जाएंगी जब भेद की आवश्यकता नहीं होगी।

एक 'परिबद्ध श्रृंखला कॉम्प्लेक्स' वह है जिसमें लगभग सभी याकार्डिनैलिटी An 0 होती है 0 हैं; अर्थात्, परिमित संकुल को बायीं और दायीं ओर 0 से बढ़ाया गया है। उदाहरण श्रृंखला संकुल है जो परिमित सरल संकुल की सरल समरूपता को परिभाषित करता है। यदि किसी निश्चित डिग्री N से ऊपर के सभी मॉड्यूल 0 हैं, तो चेन कॉम्प्लेक्स ऊपर से घिरा हुआ है, और यदि कुछ निश्चित डिग्री N से नीचे के सभी मॉड्यूल 0 हैं, तो नीचे से घिरा हुआ है। स्पष्ट रूप से, कॉम्प्लेक्स ऊपर और नीचे दोनों से घिरा हुआ है यदि और केवल यदि जटिल घिरा हुआ है.

(सह)श्रृंखला परिसर के व्यक्तिगत समूहों के तत्वों को (सह)श्रृंखला कहा जाता है। d के कर्नेल में तत्वों को (सह)चक्र (या बंद तत्व) कहा जाता है, और d की छवि में तत्वों को (सह)सीमाएँ (या स्पष्ट तत्व) कहा जाता है। अंतर की परिभाषा से ही, सभी सीमाएँ चक्र हैं। n-वें (सह) होमोलॉजी समूह Hn (Hn) डिग्री n में (सह)चक्र मॉड्यूलो (शब्दजाल)या संरचनाओं (सह) सीमाओं का समूह है, अर्थात,

स्पष्ट अनुक्रम

एक स्पष्ट अनुक्रम (या स्पष्ट कॉम्प्लेक्स) श्रृंखला कॉम्प्लेक्स है जिसके सभी समरूप समूह शून्य हैं। इसका कारणहै कि कॉम्प्लेक्स में सभी बंद तत्व स्पष्ट हैं। संक्षिप्त स्पष्ट अनुक्रम परिबद्ध स्पष्ट अनुक्रम है जिसमें केवल समूहAk, Ak+1, Ak+2 शून्येतर हो सकता है. उदाहरण के लिए, निम्नलिखित श्रृंखला परिसर संक्षिप्त स्पष्ट अनुक्रम है।

मध्य समूह में, बंद तत्व तत्व pZ हैं; ये स्पष्ट रूप से इस समूह के स्पष्ट तत्व हैं।

श्रृंखला मानचित्र

दो श्रृंखला परिसरों के बीच श्रृंखला मानचित्र f और क्रम है समरूपता का प्रत्येक n के लिए जो दो श्रृंखला परिसरों पर सीमा ऑपरेटरों के साथ आवागमन करता है, इसलिए . इसे निम्नलिखित क्रमविनिमेय चित्र में लिखा गया है।

650 पीएक्स
एक श्रृंखला मानचित्र चक्रों को चक्रों और सीमाओं को सीमाओं पर भेजता है, और इस प्रकार समरूपता पर मानचित्र उत्पन्न करता है .

टोपोलॉजिकल स्पेस X और Y के बीच सतत मानचित्र f, X और Y के एकल श्रृंखला परिसरों के बीच श्रृंखला मानचित्र उत्पन्न करता है, और इसलिए मानचित्र f प्रेरित करता है* X और Y की एकवचन समरूपता के बीच भी। जब X और Y दोनों n-स्फीयर |n-स्फीयर के बराबर होते हैं, तो होमोलॉजी पर प्रेरित मानचित्र निरंतर मैपिंग की डिग्री को परिभाषित करता है या मानचित्र f के Sn से Sn तक

श्रृंखला मानचित्र की अवधारणा श्रृंखला मानचित्र के मानचित्रण शंकु (होमोलॉजिकल बीजगणित) के निर्माण के माध्यम से सीमा तक कम हो जाती है।

श्रृंखला समरूपता

एक श्रृंखला समरूपता दो श्रृंखला मानचित्रों को जोड़ने का विधि प्रदान करती है जो समरूपता समूहों पर ही मानचित्र को प्रेरित करती है, तथापि मानचित्र भिन्न हो सकते हैं। दो श्रृंखला परिसर ए और बी, और दो श्रृंखला मानचित्र दिए गए हैं f, g : AB, श्रृंखला समरूपता समरूपता का क्रम है hn : AnBn+1 ऐसा है कि hdA + dBh = fg. मानचित्रों को इस प्रकार आरेख में लिखा जा सकता है, किन्तुयह आरेख क्रमविनिमेय नहीं है।

650 पीएक्समानचित्र एच.डीA + डीBकिसी भी एच के लिए होमोटॉपी पर शून्य मानचित्र को प्रेरित करने के लिए एच को आसानी से सत्यापित किया जाता है। यह तुरंत इस प्रकार है कि एफ और जी होमोलॉजी पर ही मानचित्र उत्पन्न करते हैं। का कहना है कि एफ और जी 'श्रृंखला होमोटोपिक' (या बस 'होमोटोपिक') हैं, और यह संपत्ति श्रृंखला मानचित्रों के बीच तुल्यता संबंध को परिभाषित करती है।

मान लीजिए कि X और Y टोपोलॉजिकल स्पेस हैं। एकवचन समरूपता के स्थितियोंमें, निरंतर मानचित्रों के बीच समरूपता f, g : XY f और g के अनुरूप श्रृंखला मानचित्रों के बीच श्रृंखला समरूपता उत्पन्न करता है। इससे पता चलता है कि दो समस्थानिक मानचित्र एकवचन समरूपता पर ही मानचित्र को प्रेरित करते हैं। नाम श्रृंखला होमोटॉपी इस उदाहरण से प्रेरित है।

उदाहरण

एकवचन समरूपता

एक्स को टपॉलजी का मूल्य रहने दें। सी को परिभाषित करेंn(एक्स) प्राकृतिक संख्या एन के लिए स्वतंत्र एबेलियन समूह औपचारिक रूप से एकवचन होमोलॉजी द्वारा उत्पन्न होता है | एक्स में एकवचन एन-सिम्प्लिसेस, और सीमा मानचित्र को परिभाषित करें होना

जहां टोपी शीर्ष (ज्यामिति) के लोप को दर्शाती है। अर्थात्, विलक्षण सिम्प्लेक्स की सीमा उसके चेहरों पर प्रतिबंधों का वैकल्पिक योग है। यह दिखाया जा सकता है कि ∂2=0, अतः श्रृंखला जटिल है; एकवचन समरूपता इस परिसर की समरूपता है।

सिंगुलर होमोलॉजी होमोटॉपीयाहोमोटॉपी समकक्ष तक टोपोलॉजिकल स्पेस का उपयोगी अपरिवर्तनीय है। डिग्री शून्य होमोलॉजी समूह एक्स के कनेक्टेड स्पेसयापथ कनेक्टिविटी|पथ-घटकों पर मुक्त एबेलियन समूह है।

मेमने जैसा गर्भ

किसी भी चिकनी कई गुना M पर डिफरेंशियल फॉर्म|डिफरेंशियल k-फॉर्म वास्तविक संख्या सदिश स्थल बनाते हैं जिसे Ω कहा जाता है(M) जोड़ के अंतर्गत। बाहरी व्युत्पन्न d मानचित्र Ω(M) से Ωk+1(M), और d2 = 0 अनिवार्य रूप से दूसरे डेरिवेटिव की समरूपता से आता है, इसलिए बाहरी डेरिवेटिव के साथ के-फॉर्म के वेक्टर रिक्त स्थान कोचेन कॉम्प्लेक्स हैं।

इस परिसर के सह-समरूपता को एम का डी राम सह-समरूपता कहा जाता है। आयाम शून्य में समरूपता समूह एम से आर तक स्थानीय रूप से स्थिर कार्यों के वेक्टर स्थान के लिए आइसोमोर्फिक है। इस प्रकार कॉम्पैक्ट मैनिफोल्ड के लिए, यह वास्तविक वेक्टर स्थान है जिसका आयाम एम से जुड़े घटकों की संख्या है '.

स्मूथनेसयामैनिफोल्ड्स के बीच सुचारू कार्य श्रृंखला मानचित्रों को प्रेरित करते हैं, और मानचित्रों के बीच सुचारू होमोटोपियां श्रृंखला होमोटोपियों को प्रेरित करती हैं।

श्रृंखला परिसरों की श्रेणी

श्रृंखला मानचित्रों के साथ K-मॉड्यूल के श्रृंखला परिसर श्रेणी (गणित) Ch बनाते हैंK, जहां K क्रमविनिमेय वलय है।

यदि वी = वी और डब्ल्यू = डब्ल्यू चेन कॉम्प्लेक्स हैं, उनके टेंसर उत्पाद द्वारा दी गई डिग्री n तत्वों वाला श्रृंखला परिसर है

और अंतर द्वारा दिया गया

जहाँ a और b क्रमशः V और W में कोई दो सजातीय सदिश हैं, और a की डिग्री को दर्शाता है।

यह टेंसर उत्पाद श्रेणी Ch बनाता हैK सममित मोनोइडल श्रेणी में। इस मोनोइडल उत्पाद के संबंध में पहचान वस्तु बेस रिंग K है जिसे डिग्री 0 में श्रृंखला परिसर के रूप में देखा जाता है। ब्रेडेड मोनोइडल श्रेणी सजातीय तत्वों के सरल टेंसर पर दी गई है

ब्रेडिंग के लिए चेन मैप होना आवश्यक है।

इसके अतिरिक्त, के-मॉड्यूल के चेन कॉम्प्लेक्स की श्रेणी में भी मोनोइडल श्रेणी बंद है: दिए गए चेन कॉम्प्लेक्स वी और डब्ल्यू, वी और डब्ल्यू का आंतरिक होम, जिसे होम (वी, डब्ल्यू) दर्शाया गया है, डिग्री एन तत्वों के साथ चेन कॉम्प्लेक्स है। और अंतर द्वारा दिया गया

.

हमारे पास प्राकृतिक समरूपता है


आगे के उदाहरण

यह भी देखें

संदर्भ

  1. "Graph complex".