समिष्ट अवस्था (भौतिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
भौतिकी में, समिष्ट अवस्था एक अमूर्त समिष्ट है जिसमें विभिन्न स्थितियाँ शाब्दिक समिष्टों का नहीं, किंतु कुछ भौतिक प्रणालियों की अवस्था का प्रतिनिधित्व करती हैं। यह इसे एक प्रकार का [[चरण स्थान|चरण समिष्ट]] बनाता है।
भौतिकी में, '''समिष्ट अवस्था''' एक अमूर्त समिष्ट है जिसमें विभिन्न स्थितियाँ शाब्दिक समिष्टों का नहीं, किंतु कुछ भौतिक प्रणालियों की अवस्था का प्रतिनिधित्व करती हैं। यह इसे एक प्रकार का [[चरण स्थान|चरण समिष्ट]] बनाता है।
== [[क्वांटम यांत्रिकी]] ==
== [[क्वांटम यांत्रिकी]] ==
विशेष रूप से, क्वांटम यांत्रिकी में समिष्ट अवस्था [[जटिल संख्या]] [[हिल्बर्ट स्थान|हिल्बर्ट समिष्ट]] है जिसमें प्रत्येक [[इकाई वेक्टर]] अलग अवस्था का प्रतिनिधित्व करता है जो माप से बाहर आ सकता है। प्रत्येक इकाई वेक्टर अलग आयाम निर्दिष्ट करता है, इसलिए इस हिल्बर्ट समिष्ट में आयामों की संख्या उस प्रणाली पर निर्भर करती है जिसे हम वर्णन करना चुनते हैं।<ref>{{Cite book |last=McIntyre |first=David |title=Quantum Mechanics: A Paradigms Approach |publisher=Pearson |year=2012 |isbn=978-0321765796 |edition=1st}}</ref> इस समिष्ट में किसी भी अवस्था वेक्टर को यूनिट वैक्टर के [[रैखिक संयोजन]] के रूप में लिखा जा सकता है। कई आयामों के साथ गैर-शून्य घटक होने को [[ क्वांटम सुपरइम्पोज़िशन |क्वांटम सुपरइम्पोज़िशन]] कहा जाता है। पॉल डिराक के ब्रा-केट नोटेशन का उपयोग करते हुए इन [[कितना राज्य|कॉर्डिनेट वैक्टर]] को अधिकांशतः समन्वय वैक्टर की तरह माना जा सकता है और रैखिक बीजगणित के नियमों का उपयोग करके संचालित किया जा सकता है। क्वांटम यांत्रिकी का यह ब्रा-केट नोटेशन गणितीय सूत्रीकरण सरल वेक्टर संचालन के साथ जटिल [[ अभिन्न |इंटीग्रल्स]] की गणना को प्रतिस्थापित कर सकता है।
विशेष रूप से, क्वांटम यांत्रिकी में समिष्ट अवस्था [[जटिल संख्या]] [[हिल्बर्ट स्थान|हिल्बर्ट समिष्ट]] है जिसमें प्रत्येक [[इकाई वेक्टर]] अलग अवस्था का प्रतिनिधित्व करता है जो माप से बाहर आ सकता है। प्रत्येक इकाई वेक्टर अलग आयाम निर्दिष्ट करता है, इसलिए इस हिल्बर्ट समिष्ट में आयामों की संख्या उस प्रणाली पर निर्भर करती है जिसे हम वर्णन करना चुनते हैं।<ref>{{Cite book |last=McIntyre |first=David |title=Quantum Mechanics: A Paradigms Approach |publisher=Pearson |year=2012 |isbn=978-0321765796 |edition=1st}}</ref> इस समिष्ट में किसी भी अवस्था वेक्टर को यूनिट वैक्टर के [[रैखिक संयोजन]] के रूप में लिखा जा सकता है। कई आयामों के साथ गैर-शून्य घटक होने को [[ क्वांटम सुपरइम्पोज़िशन |क्वांटम सुपरइम्पोज़िशन]] कहा जाता है। पॉल डिराक के ब्रा-केट नोटेशन का उपयोग करते हुए इन [[कितना राज्य|कॉर्डिनेट वैक्टर]] को अधिकांशतः समन्वय वैक्टर की तरह माना जा सकता है और रैखिक बीजगणित के नियमों का उपयोग करके संचालित किया जा सकता है। क्वांटम यांत्रिकी का यह ब्रा-केट नोटेशन गणितीय सूत्रीकरण सरल वेक्टर संचालन के साथ जटिल [[ अभिन्न |इंटीग्रल्स]] की गणना को प्रतिस्थापित कर सकता है।

Revision as of 11:17, 18 July 2023

भौतिकी में, समिष्ट अवस्था एक अमूर्त समिष्ट है जिसमें विभिन्न स्थितियाँ शाब्दिक समिष्टों का नहीं, किंतु कुछ भौतिक प्रणालियों की अवस्था का प्रतिनिधित्व करती हैं। यह इसे एक प्रकार का चरण समिष्ट बनाता है।

क्वांटम यांत्रिकी

विशेष रूप से, क्वांटम यांत्रिकी में समिष्ट अवस्था जटिल संख्या हिल्बर्ट समिष्ट है जिसमें प्रत्येक इकाई वेक्टर अलग अवस्था का प्रतिनिधित्व करता है जो माप से बाहर आ सकता है। प्रत्येक इकाई वेक्टर अलग आयाम निर्दिष्ट करता है, इसलिए इस हिल्बर्ट समिष्ट में आयामों की संख्या उस प्रणाली पर निर्भर करती है जिसे हम वर्णन करना चुनते हैं।[1] इस समिष्ट में किसी भी अवस्था वेक्टर को यूनिट वैक्टर के रैखिक संयोजन के रूप में लिखा जा सकता है। कई आयामों के साथ गैर-शून्य घटक होने को क्वांटम सुपरइम्पोज़िशन कहा जाता है। पॉल डिराक के ब्रा-केट नोटेशन का उपयोग करते हुए इन कॉर्डिनेट वैक्टर को अधिकांशतः समन्वय वैक्टर की तरह माना जा सकता है और रैखिक बीजगणित के नियमों का उपयोग करके संचालित किया जा सकता है। क्वांटम यांत्रिकी का यह ब्रा-केट नोटेशन गणितीय सूत्रीकरण सरल वेक्टर संचालन के साथ जटिल इंटीग्रल्स की गणना को प्रतिस्थापित कर सकता है।

यह भी देखें

टिप्पणियाँ

  1. McIntyre, David (2012). Quantum Mechanics: A Paradigms Approach (1st ed.). Pearson. ISBN 978-0321765796.

संदर्भ