मूल परीक्षण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
गणित में, '''मूल परीक्षण''' अनंत श्रृंखला की [[अभिसरण श्रृंखला]] (एक [[अभिसरण परीक्षण]]) के लिए मानदंड है। इस प्रकार से यह मात्रा पर निर्भर करता है
गणित में, '''मूल परीक्षण''' अनंत श्रृंखला की [[अभिसरण श्रृंखला]] (एक [[अभिसरण परीक्षण]]) के लिए मानदंड है। इस प्रकार से यह मात्रा पर निर्भर करता है
:<math>\limsup_{n\rightarrow\infty}\sqrt[n]{|a_n|},</math>
:<math>\limsup_{n\rightarrow\infty}\sqrt[n]{|a_n|},</math>
जहाँ <math>a_n</math> श्रृंखला का नियम हैं, और यह दर्शाती हैं कि यदि यह मात्रा से कम है तो श्रृंखला पूर्ण रूप से परिवर्तित हो जाती है, किन्तु यदि एक से अधिक है तो यह भिन्न हो जाती है। यह घात शृंखला के संबंध में विशेष रूप से उपयोगी है।
जहाँ <math>a_n</math> श्रृंखला का नियम हैं, और यह दर्शाती हैं कि यदि यह मात्रा से कम है तो श्रृंखला पूर्ण रूप से परिवर्तित हो जाती है, किन्तु यदि एक से अधिक है तो यह भिन्न हो जाती है। यह घात शृंखला के संबंध में विशेष रूप से उपयोगी है।


== मूल परीक्षण स्पष्टीकरण ==
== मूल परीक्षण स्पष्टीकरण ==
[[File:Decision diagram for the root test.svg|thumb|मूल परीक्षण के लिए निर्णय आरेख]]इस प्रकार से मूल परीक्षण अधिक पूर्व [[ऑगस्टिन-लुई कॉची]] द्वारा विकसित किया गया था जिन्होंने इसे अपनी पाठ्यपुस्तक कौर्स डी'एनालिसिस (1821) में प्रकाशित किया था।<ref>{{citation|title=The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass|first=Umberto|last=Bottazzini|publisher=Springer-Verlag|year=1986|isbn=978-0-387-96302-0|pages=[https://archive.org/details/highercalculushi0000bott/page/116 116–117]|url=https://archive.org/details/highercalculushi0000bott/page/116}}. Translated from the Italian by Warren Van Egmond.</ref> इस प्रकार, इसे कभी-कभी कॉची मूल परीक्षण या कॉची मौलिक परीक्षण के रूप में जाना जाता है। अतः श्रृंखला के लिए जहाँ:
[[File:Decision diagram for the root test.svg|thumb|मूल परीक्षण के लिए निर्णय आरेख]]इस प्रकार से मूल परीक्षण अधिक पूर्व [[ऑगस्टिन-लुई कॉची]] द्वारा विकसित किया गया था जिन्होंने इसे अपनी पाठ्यपुस्तक कौर्स डी'एनालिसिस (1821) में प्रकाशित किया था।<ref>{{citation|title=The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass|first=Umberto|last=Bottazzini|publisher=Springer-Verlag|year=1986|isbn=978-0-387-96302-0|pages=[https://archive.org/details/highercalculushi0000bott/page/116 116–117]|url=https://archive.org/details/highercalculushi0000bott/page/116}}. Translated from the Italian by Warren Van Egmond.</ref> इस प्रकार, इसे कभी-कभी कॉची मूल परीक्षण या कॉची मौलिक परीक्षण के रूप में जाना जाता है। अतः श्रृंखला के लिए जहाँ:


:<math>\sum_{n=1}^\infty a_n</math>
:<math>\sum_{n=1}^\infty a_n</math>
मूल परीक्षण संख्या का उपयोग करता है
मूल परीक्षण संख्या का उपयोग करता है


:<math>C = \limsup_{n\rightarrow\infty}\sqrt[n]{|a_n|},</math>
:<math>C = \limsup_{n\rightarrow\infty}\sqrt[n]{|a_n|},</math>
जहां लिम सुपर, संभवतः +∞ से उत्तम सीमा को दर्शाता है। ध्यान दें कि यदि
जहां लिम सुपर, संभवतः +∞ से उत्तम सीमा को दर्शाता है। ध्यान दें कि यदि


:<math>\lim_{n\rightarrow\infty}\sqrt[n]{|a_n|},</math>
:<math>\lim_{n\rightarrow\infty}\sqrt[n]{|a_n|},</math>
इस प्रकार से अभिसरण होता है तो यह C के समान होता है और इसके अतिरिक्त मूल परीक्षण में इसका उपयोग किया जा सकता है।
इस प्रकार से अभिसरण होता है तो यह C के समान होता है और इसके अतिरिक्त मूल परीक्षण में इसका उपयोग किया जा सकता है।


अतः मूल परीक्षण यह दर्शाता है कि:
अतः मूल परीक्षण यह दर्शाता है कि:
Line 31: Line 31:


:<math>f(z) = \sum_{n=0}^\infty c_n (z-p)^n</math>
:<math>f(z) = \sum_{n=0}^\infty c_n (z-p)^n</math>
जहां गुणांक ''c<sub>n</sub>'', और केंद्र ''p'' सम्मिश्र संख्याएँ हैं और तर्क ''z'' सम्मिश्र वेरिएबल है।  
जहां गुणांक ''c<sub>n</sub>'', और केंद्र ''p'' सम्मिश्र संख्याएँ हैं और तर्क ''z'' सम्मिश्र वेरिएबल है।  


इस प्रकार से इस श्रृंखला का नियम तब ''a<sub>n</sub>'' = ''c<sub>n</sub>''(''z'' − ''p'')<sup>''n''</sup> द्वारा दी दर्शायी गयी है। इसके पश्चात् ऊपर दर्शाए गए मूल परीक्षण को ''a<sub>n</sub>'' पर प्रयुक्त किया जाता है। ध्यान दें कि कभी-कभी इस प्रकार की श्रृंखला को "''p'' के निकट" घात श्रृंखला कहा जाता है, क्योंकि [[अभिसरण की त्रिज्या]] अचिक उच्च अंतराल या ''p'' पर केंद्रित डिस्क की त्रिज्या ''R'' है, जैसे कि श्रृंखला दृढ़ता से आंतरिक रूप से सभी बिंदुओं z के लिए अभिसरण करेगी (अंतराल या डिस्क की सीमा पर अभिसरण को सामान्यतः अलग से जांचना पड़ता है)। अतः घात श्रृंखला पर प्रयुक्त मूल परीक्षण का एक [[परिणाम]] [[परिणाम|कॉची-हैडामर्ड]] प्रमेय है: अभिसरण की त्रिज्या मान लीजिए जहाँ <math>1/\limsup_{n \rightarrow \infty}{\sqrt[n]{|c_n|}},</math> है, इस तथ्य का ध्यान रखते हुए कि यदि हर 0 है तो हमारा वास्तव में कारण ∞ है।
इस प्रकार से इस श्रृंखला का नियम तब ''a<sub>n</sub>'' = ''c<sub>n</sub>''(''z'' − ''p'')<sup>''n''</sup> द्वारा दी दर्शायी गयी है। इसके पश्चात् ऊपर दर्शाए गए मूल परीक्षण को ''a<sub>n</sub>'' पर प्रयुक्त किया जाता है। ध्यान दें कि कभी-कभी इस प्रकार की श्रृंखला को "''p'' के निकट" घात श्रृंखला कहा जाता है, क्योंकि [[अभिसरण की त्रिज्या]] अचिक उच्च अंतराल या ''p'' पर केंद्रित डिस्क की त्रिज्या ''R'' है, जैसे कि श्रृंखला दृढ़ता से आंतरिक रूप से सभी बिंदुओं z के लिए अभिसरण करेगी (अंतराल या डिस्क की सीमा पर अभिसरण को सामान्यतः अलग से जांचना पड़ता है)। अतः घात श्रृंखला पर प्रयुक्त मूल परीक्षण का एक [[परिणाम]] [[परिणाम|कॉची-हैडामर्ड]] प्रमेय है: अभिसरण की त्रिज्या मान लीजिए जहाँ <math>1/\limsup_{n \rightarrow \infty}{\sqrt[n]{|c_n|}},</math> है, इस तथ्य का ध्यान रखते हुए कि यदि हर 0 है तो हमारा वास्तव में कारण ∞ है।


== प्रमाण ==
== प्रमाण ==
श्रृंखला Σ''a<sub>n</sub>'' के अभिसरण का प्रमाण [[प्रत्यक्ष तुलना परीक्षण]] का अनुप्रयोग है। यदि सभी ''n'' ≥ ''N'' (''N'' कुछ निश्चित [[प्राकृतिक संख्या]]) के लिए हमारे पास <math>\sqrt[n]{|a_n|} \le k < 1</math> है , तब <math>|a_n| \le k^n < 1</math>. क्योंकि ज्यामितीय श्रृंखला के पश्चात् से <math>\sum_{n=N}^\infty k^n                                                                                                                                                                                </math> अभिसरण करती है इसलिए ऐसा होता है  
श्रृंखला Σ''a<sub>n</sub>'' के अभिसरण का प्रमाण [[प्रत्यक्ष तुलना परीक्षण]] का अनुप्रयोग है। यदि सभी ''n'' ≥ ''N'' (''N'' कुछ निश्चित [[प्राकृतिक संख्या]]) के लिए हमारे पास <math>\sqrt[n]{|a_n|} \le k < 1</math> है , तब <math>|a_n| \le k^n < 1</math>. क्योंकि ज्यामितीय श्रृंखला के पश्चात् से <math>\sum_{n=N}^\infty k^n                                                                                                                                                                                </math> अभिसरण करती है इसलिए ऐसा होता है  


तुलना परीक्षण द्वारा <math>\sum_{n=N}^\infty |a_n|                                                                                                                                                                            </math>. अतः Σa<sub>''n''</sub> पूर्णतः अभिसरित होता है।  
तुलना परीक्षण द्वारा <math>\sum_{n=N}^\infty |a_n|                                                                                                                                                                            </math>. अतः Σa<sub>''n''</sub> पूर्णतः अभिसरित होता है।  
Line 44: Line 44:
'''परिणाम का प्रमाण''':
'''परिणाम का प्रमाण''':


परिणाम का प्रमाण: एक घात श्रृंखला Σ''a<sub>n</sub>'' = Σ''c<sub>n</sub>''(''z'' − ''p'')<sup>''n''</sup>, के लिए, हम ऊपर देखते हैं कि श्रृंखला अभिसरण करती है यदि कोई N उपस्तिथ है जैसे कि सभी n ≥ N के लिए हमारे पास है
परिणाम का प्रमाण: एक घात श्रृंखला Σ''a<sub>n</sub>'' = Σ''c<sub>n</sub>''(''z'' − ''p'')<sup>''n''</sup>, के लिए, हम ऊपर देखते हैं कि श्रृंखला अभिसरण करती है यदि कोई N उपस्तिथ है जैसे कि सभी n ≥ N के लिए हमारे पास है


:<math>\sqrt[n]{|a_n|} = \sqrt[n]{|c_n(z - p)^n|} < 1,</math>
:<math>\sqrt[n]{|a_n|} = \sqrt[n]{|c_n(z - p)^n|} < 1,</math>
Line 50: Line 50:


:<math>\sqrt[n]{|c_n|}\cdot|z - p| < 1</math>  
:<math>\sqrt[n]{|c_n|}\cdot|z - p| < 1</math>  
सभी ''n ≥ N'' के लिए, जिसका अर्थ है कि श्रृंखला को अभिसरण करने के लिए हमारे पास सभी पर्याप्त उच्च n के लिए <math>|z - p| < 1/\sqrt[n]{|c_n|}</math> होना चाहिए। ये कहने के लिए समान्य है
सभी ''n ≥ N'' के लिए, जिसका अर्थ है कि श्रृंखला को अभिसरण करने के लिए हमारे पास सभी पर्याप्त उच्च n के लिए <math>|z - p| < 1/\sqrt[n]{|c_n|}</math> होना चाहिए। ये कहने के लिए समान्य है


:<math>|z - p| < 1/\limsup_{n \rightarrow \infty}{\sqrt[n]{|c_n|}},</math>
:<math>|z - p| < 1/\limsup_{n \rightarrow \infty}{\sqrt[n]{|c_n|}},</math>
Line 64: Line 64:
इस प्रकार से उदाहरण के लिए 1:
इस प्रकार से उदाहरण के लिए 1:
:<math> \sum_{i=1}^\infty \frac{2^i}{i^9} </math>
:<math> \sum_{i=1}^\infty \frac{2^i}{i^9} </math>
मूल परीक्षण प्रयुक्त करना और उस तथ्य का उपयोग करना <math> \lim_{n \rightarrow \infty} n^{1/n}=1,</math>
मूल परीक्षण प्रयुक्त करना और उस तथ्य का उपयोग करना <math> \lim_{n \rightarrow \infty} n^{1/n}=1,</math>
::<math> C = \sqrt[n]{|\frac{2^n}{n^9}|}= \frac{ \sqrt[n]{2^n} } { \sqrt[n]{n^9} } = \frac{ 2 }  {(n^{1/n})^9 }  = 2 </math> तब से <math> C=2>1,</math> श्रृंखला भिन्न हो जाती है।<ref>{{cite book
::<math> C = \sqrt[n]{|\frac{2^n}{n^9}|}= \frac{ \sqrt[n]{2^n} } { \sqrt[n]{n^9} } = \frac{ 2 }  {(n^{1/n})^9 }  = 2 </math> तब से <math> C=2>1,</math> श्रृंखला भिन्न हो जाती है।<ref>{{cite book
  | first1= William |last1= Briggs|first2= Lyle|last2 = Cochrane
  | first1= William |last1= Briggs|first2= Lyle|last2 = Cochrane
Line 79: Line 79:
यह उदाहरण दिखाता है कि मूल परीक्षण अनुपात परीक्षण से कैसे अधिक शसक्त है। इस श्रृंखला के लिए अनुपात परीक्षण अनिर्णीत है यदि <math>n</math> विषम है तो <math>a_n=a_{n+1} = .5^n                                                                  </math> (चूंकि यदि <math>n</math> सम है तो नहीं), क्योंकि
यह उदाहरण दिखाता है कि मूल परीक्षण अनुपात परीक्षण से कैसे अधिक शसक्त है। इस श्रृंखला के लिए अनुपात परीक्षण अनिर्णीत है यदि <math>n</math> विषम है तो <math>a_n=a_{n+1} = .5^n                                                                  </math> (चूंकि यदि <math>n</math> सम है तो नहीं), क्योंकि
:: <math>r=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{ 2  \cdot.5^{n}}{2 \cdot.5^{n}}\right| =1. </math>
:: <math>r=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{ 2  \cdot.5^{n}}{2 \cdot.5^{n}}\right| =1. </math>
== मूल परीक्षण पदानुक्रम ==
== मूल परीक्षण पदानुक्रम ==


इस प्रकार से मूल परीक्षण पदानुक्रम<ref>{{cite journal|url=http://files.ele-math.com/articles/jca-19-09.pdf |last1=Abramov |first1=Vyacheslav M. |date=2022 |title=सकारात्मक श्रृंखला के अभिसरण के लिए आवश्यक एवं पर्याप्त स्थितियाँ|journal=Journal of Classical Analysis |volume=19 |issue=2 |pages=117--125 |doi=10.7153/jca-2022-19-09 |arxiv=2104.01702 }}</ref><ref>{{cite journal|url=http://www.m-hikari.com/ijma/ijma-2012/ijma-37-40-2012/bourchteinIJMA37-40-2012.pdf |last1=Bourchtein |first1=Ludmila |last2=Bourchtein |first2=Andrei |last3=Nornberg |first3=Gabrielle |last4=Venzke |first4=Cristiane |date=2012 |title=कॉची परीक्षण से संबंधित अभिसरण परीक्षणों का एक पदानुक्रम|journal=International Journal of Mathematical Analysis |volume=6 |issue=37--40 |pages=1847--1869 }}</ref> अनुपात परीक्षण पदानुक्रम के समान ही बनाया गया है (अनुपात परीक्षण की धारा 4.1 और विशेष रूप से उपधारा 4.1.4 देखें)।
इस प्रकार से मूल परीक्षण पदानुक्रम<ref>{{cite journal|url=http://files.ele-math.com/articles/jca-19-09.pdf |last1=Abramov |first1=Vyacheslav M. |date=2022 |title=सकारात्मक श्रृंखला के अभिसरण के लिए आवश्यक एवं पर्याप्त स्थितियाँ|journal=Journal of Classical Analysis |volume=19 |issue=2 |pages=117--125 |doi=10.7153/jca-2022-19-09 |arxiv=2104.01702 }}</ref><ref>{{cite journal|url=http://www.m-hikari.com/ijma/ijma-2012/ijma-37-40-2012/bourchteinIJMA37-40-2012.pdf |last1=Bourchtein |first1=Ludmila |last2=Bourchtein |first2=Andrei |last3=Nornberg |first3=Gabrielle |last4=Venzke |first4=Cristiane |date=2012 |title=कॉची परीक्षण से संबंधित अभिसरण परीक्षणों का एक पदानुक्रम|journal=International Journal of Mathematical Analysis |volume=6 |issue=37--40 |pages=1847--1869 }}</ref> अनुपात परीक्षण पदानुक्रम के समान ही बनाया गया है (अनुपात परीक्षण की धारा 4.1 और विशेष रूप से उपधारा 4.1.4 देखें)।


धनात्मक पदों वाली श्रृंखला <math>\sum_{n=1}^\infty a_n</math> के लिए हमारे पास अभिसरण/विचलन के लिए निम्नलिखित परीक्षण हैं।
धनात्मक पदों वाली श्रृंखला <math>\sum_{n=1}^\infty a_n</math> के लिए हमारे पास अभिसरण/विचलन के लिए निम्नलिखित परीक्षण हैं।


मान लीजिये <math>K\geq1</math> एक पूर्णांक है, और <math>\ln_{(K)}(x)</math> [[प्राकृतिक]] लघुगणक के <math>K</math>th पुनरावृत्त को निरूपित करता है, अर्थात <math>\ln_{(1)}(x)=\ln (x)</math> और <math>2\leq k\leq K</math>किसी के लिए,
मान लीजिये <math>K\geq1</math> एक पूर्णांक है, और <math>\ln_{(K)}(x)</math> [[प्राकृतिक]] लघुगणक के <math>K</math>th पुनरावृत्त को निरूपित करता है, अर्थात <math>\ln_{(1)}(x)=\ln (x)</math> और <math>2\leq k\leq K</math>किसी के लिए,
  <math>\ln_{(k)}(x)=\ln_{(k-1)}(\ln (x))</math>.
  <math>\ln_{(k)}(x)=\ln_{(k-1)}(\ln (x))</math>.



Revision as of 14:27, 25 July 2023

गणित में, मूल परीक्षण अनंत श्रृंखला की अभिसरण श्रृंखला (एक अभिसरण परीक्षण) के लिए मानदंड है। इस प्रकार से यह मात्रा पर निर्भर करता है

जहाँ श्रृंखला का नियम हैं, और यह दर्शाती हैं कि यदि यह मात्रा से कम है तो श्रृंखला पूर्ण रूप से परिवर्तित हो जाती है, किन्तु यदि एक से अधिक है तो यह भिन्न हो जाती है। यह घात शृंखला के संबंध में विशेष रूप से उपयोगी है।

मूल परीक्षण स्पष्टीकरण

मूल परीक्षण के लिए निर्णय आरेख

इस प्रकार से मूल परीक्षण अधिक पूर्व ऑगस्टिन-लुई कॉची द्वारा विकसित किया गया था जिन्होंने इसे अपनी पाठ्यपुस्तक कौर्स डी'एनालिसिस (1821) में प्रकाशित किया था।[1] इस प्रकार, इसे कभी-कभी कॉची मूल परीक्षण या कॉची मौलिक परीक्षण के रूप में जाना जाता है। अतः श्रृंखला के लिए जहाँ:

मूल परीक्षण संख्या का उपयोग करता है

जहां लिम सुपर, संभवतः +∞ से उत्तम सीमा को दर्शाता है। ध्यान दें कि यदि

इस प्रकार से अभिसरण होता है तो यह C के समान होता है और इसके अतिरिक्त मूल परीक्षण में इसका उपयोग किया जा सकता है।

अतः मूल परीक्षण यह दर्शाता है कि:

  • यदि C <1 है तो श्रृंखला पूर्ण रूप से अभिसरित होती है,
  • यदि C > 1 है तो श्रृंखला विचलन करती है,
  • यदि C = 1 है और सीमा ऊपर से दृढ़ता से पहुंचती है तो श्रृंखला भिन्न हो जाती है,
  • अन्यथा परीक्षण अनिर्णीत है (श्रृंखला भिन्न हो सकती है, पूर्ण रूप से परिवर्तित हो सकती है या सशर्त रूप से परिवर्तित हो सकती है)।

इस प्रकार से कुछ श्रृंखलाएं हैं जिनके लिए C = 1 है और श्रृंखला अभिसरण करती है, उदाहरण के लिए , और कुछ अन्य भी हैं जिनके लिए C = 1 है और श्रृंखला भिन्न हो जाती है, उदाहरण के लिए .

घात श्रृंखला के लिए आवेदन

इस परीक्षण का उपयोग घात श्रृंखला के साथ किया जा सकता है

जहां गुणांक cn, और केंद्र p सम्मिश्र संख्याएँ हैं और तर्क z सम्मिश्र वेरिएबल है।

इस प्रकार से इस श्रृंखला का नियम तब an = cn(zp)n द्वारा दी दर्शायी गयी है। इसके पश्चात् ऊपर दर्शाए गए मूल परीक्षण को an पर प्रयुक्त किया जाता है। ध्यान दें कि कभी-कभी इस प्रकार की श्रृंखला को "p के निकट" घात श्रृंखला कहा जाता है, क्योंकि अभिसरण की त्रिज्या अचिक उच्च अंतराल या p पर केंद्रित डिस्क की त्रिज्या R है, जैसे कि श्रृंखला दृढ़ता से आंतरिक रूप से सभी बिंदुओं z के लिए अभिसरण करेगी (अंतराल या डिस्क की सीमा पर अभिसरण को सामान्यतः अलग से जांचना पड़ता है)। अतः घात श्रृंखला पर प्रयुक्त मूल परीक्षण का एक परिणाम कॉची-हैडामर्ड प्रमेय है: अभिसरण की त्रिज्या मान लीजिए जहाँ है, इस तथ्य का ध्यान रखते हुए कि यदि हर 0 है तो हमारा वास्तव में कारण ∞ है।

प्रमाण

श्रृंखला Σan के अभिसरण का प्रमाण प्रत्यक्ष तुलना परीक्षण का अनुप्रयोग है। यदि सभी nN (N कुछ निश्चित प्राकृतिक संख्या) के लिए हमारे पास है , तब . क्योंकि ज्यामितीय श्रृंखला के पश्चात् से अभिसरण करती है इसलिए ऐसा होता है

तुलना परीक्षण द्वारा . अतः Σan पूर्णतः अभिसरित होता है।

अपरिमित रूप से अनेक n के लिए , तब an 0, पर अभिसरण करने में विफल रहता है, इसलिए श्रृंखला अपसारी है।

परिणाम का प्रमाण:

परिणाम का प्रमाण: एक घात श्रृंखला Σan = Σcn(zp)n, के लिए, हम ऊपर देखते हैं कि श्रृंखला अभिसरण करती है यदि कोई N उपस्तिथ है जैसे कि सभी n ≥ N के लिए हमारे पास है

के समतुल्य:

सभी n ≥ N के लिए, जिसका अर्थ है कि श्रृंखला को अभिसरण करने के लिए हमारे पास सभी पर्याप्त उच्च n के लिए होना चाहिए। ये कहने के लिए समान्य है

इसलिए अब एकमात्र अन्य स्थान जहां अभिसरण संभव है वह है जब

(चूंकि बिंदु> 1 भिन्न हो जाएंगे) और इससे अभिसरण की त्रिज्या परिवर्तित नहीं होगी, क्योंकि ये केवल अंतराल या डिस्क की सीमा पर स्थित बिंदु हैं, इसलिए

उदाहरण

इस प्रकार से उदाहरण के लिए 1:

मूल परीक्षण प्रयुक्त करना और उस तथ्य का उपयोग करना

तब से श्रृंखला भिन्न हो जाती है।[2]

इस प्रकार उदाहरण 2:

मूल परीक्षण अभिसरण दर्शाता है क्योंकि

यह उदाहरण दिखाता है कि मूल परीक्षण अनुपात परीक्षण से कैसे अधिक शसक्त है। इस श्रृंखला के लिए अनुपात परीक्षण अनिर्णीत है यदि विषम है तो (चूंकि यदि सम है तो नहीं), क्योंकि

मूल परीक्षण पदानुक्रम

इस प्रकार से मूल परीक्षण पदानुक्रम[3][4] अनुपात परीक्षण पदानुक्रम के समान ही बनाया गया है (अनुपात परीक्षण की धारा 4.1 और विशेष रूप से उपधारा 4.1.4 देखें)।

धनात्मक पदों वाली श्रृंखला के लिए हमारे पास अभिसरण/विचलन के लिए निम्नलिखित परीक्षण हैं।

मान लीजिये एक पूर्णांक है, और प्राकृतिक लघुगणक के th पुनरावृत्त को निरूपित करता है, अर्थात और किसी के लिए,

.

मान लीजिये कि , जहाँ उच्च है, रूप में प्रस्तुत किया जा सकता है

(रिक्त योग 0 माना गया है।)

  • यदि हो तो श्रृंखला अभिसरित हो जाती है
  • यदि हो तो श्रृंखला अलग हो जाती है,
  • अन्यथा, परीक्षण अनिर्णायक है.

प्रमाण

के पश्चात से हमारे पास है:

इस से,

इस प्रकार से दाहिनी ओर प्रयुक्त टेलर के विस्तार से, हम प्राप्त करते हैं:

इस प्रकार,

(रिक्त उत्पाद 1 पर समुच्चय है।)

अंतिम परिणाम अभिसरण के लिए अभिन्न परीक्षण से आता है।

यह भी देखें

  • अनुपात परीक्षण
  • अभिसरण श्रृंखला

संदर्भ

  1. Bottazzini, Umberto (1986), The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, pp. 116–117, ISBN 978-0-387-96302-0. Translated from the Italian by Warren Van Egmond.
  2. Briggs, William; Cochrane, Lyle (2011). Calculus: Early Transcendentals. Addison Wesley. p. 571.
  3. Abramov, Vyacheslav M. (2022). "सकारात्मक श्रृंखला के अभिसरण के लिए आवश्यक एवं पर्याप्त स्थितियाँ" (PDF). Journal of Classical Analysis. 19 (2): 117--125. arXiv:2104.01702. doi:10.7153/jca-2022-19-09.
  4. Bourchtein, Ludmila; Bourchtein, Andrei; Nornberg, Gabrielle; Venzke, Cristiane (2012). "कॉची परीक्षण से संबंधित अभिसरण परीक्षणों का एक पदानुक्रम" (PDF). International Journal of Mathematical Analysis. 6 (37--40): 1847--1869.

This article incorporates material from Proof of Cauchy's root test on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.