स्पष्ट मोलर गुण: Difference between revisions

From Vigyanwiki
No edit summary
Line 3: Line 3:
[[ऊष्मप्रवैगिकी]] में, एक [[मिश्रण]] या विलयन में एक [[Index.php?title=विलयन|विलयन]] घटक की एक आंशिक मोलर गुण  मिश्रण की गैर-आदर्शता में [[आदर्श समाधान|आदर्श]] विलयन के लिए प्रत्येक घटक के योगदान को अलग करने के उद्देश्य से परिभाषित मात्रा है।। यह उस घटक के प्रति मोल (इकाई) के संगत विलयनगुण (उदाहरण के लिए, [[आयतन]]) में परिवर्तन को दर्शाता है, जब उस घटक को विलयन में जोड़ा जाता है। इसे आंशिक के रूप में वर्णित किया गया है क्योंकि ऐसा लगता है कि यह ''विलयन में'' उस घटक के मोलर गुण का प्रतिनिधित्व करता है, परंतु अन्य विलयन घटकों के गुणों को जोड़ने के दौरान स्थिर रहने के लिए माना जाता है। यद्यपि यह धारणा प्रायःउचित नहीं होती है, क्योंकि किसी घटक के आंशिक मोलर गुणों के मान शुद्ध अवस्था में उसके मोलर गुणों से काफी भिन्न हो सकते हैं।
[[ऊष्मप्रवैगिकी]] में, एक [[मिश्रण]] या विलयन में एक [[Index.php?title=विलयन|विलयन]] घटक की एक आंशिक मोलर गुण  मिश्रण की गैर-आदर्शता में [[आदर्श समाधान|आदर्श]] विलयन के लिए प्रत्येक घटक के योगदान को अलग करने के उद्देश्य से परिभाषित मात्रा है।। यह उस घटक के प्रति मोल (इकाई) के संगत विलयनगुण (उदाहरण के लिए, [[आयतन]]) में परिवर्तन को दर्शाता है, जब उस घटक को विलयन में जोड़ा जाता है। इसे आंशिक के रूप में वर्णित किया गया है क्योंकि ऐसा लगता है कि यह ''विलयन में'' उस घटक के मोलर गुण का प्रतिनिधित्व करता है, परंतु अन्य विलयन घटकों के गुणों को जोड़ने के दौरान स्थिर रहने के लिए माना जाता है। यद्यपि यह धारणा प्रायःउचित नहीं होती है, क्योंकि किसी घटक के आंशिक मोलर गुणों के मान शुद्ध अवस्था में उसके मोलर गुणों से काफी भिन्न हो सकते हैं।


 
उदाहरण के लिए,  [[विलायक]] और विलेय के रूप में पहचान किए गए दो घटकों वाले विलयन की मात्रा{{efn|This labelling is arbitrary. For mixtures of two liquids either may be described as solvent. For mixtures of a liquid and a solid, the liquid is usually identified as the solvent and the solid as the solute, but the theory is still valid if the labels are reversed.}} को निम्न द्वारा दिया जाता है:
उदाहरण के लिए,  [[विलायक]] और विलेय के रूप में पहचान किए गए दो घटकों वाले विलयन की मात्रा{{efn|This labelling is arbitrary. For mixtures of two liquids either may be described as solvent. For mixtures of a liquid and a solid, the liquid is usually identified as the solvent and the solid as the solute, but the theory is still valid if the labels are reversed.}} को निम्न द्वारा दिया जाता है
:<math>  V=V_0 + {}^\phi{V}_1 \ =\tilde{V}_{0} n_{0} + {}^\phi\tilde{V}_1 n_1 \,</math>
:<math>  V=V_0 + {}^\phi{V}_1 \ =\tilde{V}_{0} n_{0} + {}^\phi\tilde{V}_1 n_1 \,</math>
जहाँ {{tmath|V_0}} विलेय जोड़ने से पहले शुद्ध विलायक का आयतन है और {{tmath|\tilde{V}_{0} }} इसकी मोल रमात्रा (समान तापमान और विलयनके दबाव पर), {{tmath|n_0}} विलायक के मोल (इकाई) की संख्या है, {{tmath|{}^\phi\tilde{V}_1\,}} विलेय का आंशिक मोलर आयतन है, और {{tmath|n_1}} विलयन में विलेय के मोल की संख्या है। इस संबंध को एक घटक की मोलर मात्रा से विभाजित करके एक घटक के आंशिक  मोलर गुण और घटकों के मिश्रण अनुपात के बीच एक संबंध प्राप्त किया जा सकता है।
जहाँ {{tmath|V_0}} विलेय जोड़ने से पहले शुद्ध विलायक का आयतन है और {{tmath|\tilde{V}_{0} }} इसकी मोल रमात्रा (समान तापमान और विलयनके दबाव पर), {{tmath|n_0}} विलायक के मोल (इकाई) की संख्या है, {{tmath|{}^\phi\tilde{V}_1\,}} विलेय का आंशिक मोलर आयतन है, और {{tmath|n_1}} विलयन में विलेय के मोल की संख्या है। इस संबंध को एक घटक की मोलर मात्रा से विभाजित करके एक घटक के आंशिक  मोलर गुण और घटकों के मिश्रण अनुपात के बीच एक संबंध प्राप्त किया जा सकता है।
Line 42: Line 41:


==स्पष्ट(मोलर) मात्राओं से संबंध==
==स्पष्ट(मोलर) मात्राओं से संबंध==
स्पष्ट मोलरमात्रा और आंशिक मोलरमात्रा के बीच विपरीत परिभाषाओं पर ध्यान दें: स्पष्ट मोलरमात्रा के कारको में <math>\bar{V_0}, \bar{V_1}</math>, स्पष्ट व्युत्पन्न द्वारा परिभाषित
स्पष्ट मोलर मात्रा और आंशिक मोलर मात्रा के बीच विपरीत परिभाषाओं पर ध्यान दें: स्पष्ट मोलर मात्रा के कारको में <math>\bar{V_0}, \bar{V_1}</math>, स्पष्ट व्युत्पन्न द्वारा परिभाषित


:<math>\bar{V_0}=\Big(\frac{\partial V}{\partial n_0}\Big)_{T,p, n_1},\bar{V_1}=\Big(\frac{\partial V}{\partial n_1}\Big)_{T,p, n_0}</math>,
:<math>\bar{V_0}=\Big(\frac{\partial V}{\partial n_0}\Big)_{T,p, n_1},\bar{V_1}=\Big(\frac{\partial V}{\partial n_1}\Big)_{T,p, n_0}</math>,
कोई लिख सकता है <math>dV=\bar{V_0}dn_0+\bar{V_1}dn_1</math>, इसलिए <math>V=\bar{V_0}n_0+\bar{V_1}n_1</math> हमेशा धारण करता है। इसके विपरीत, आंशिक  मोलर आयतन की परिभाषा में, शुद्ध विलायक का मोलर आयतन, <math>\tilde{V}_0</math>,इसके स्थान पर,प्रयोग किया जाता है, जिसे इस रूप में लिखा जा सकता है
कोई लिख सकता है <math>dV=\bar{V_0}dn_0+\bar{V_1}dn_1</math>, इसलिए <math>V=\bar{V_0}n_0+\bar{V_1}n_1</math> हमेशा धारण करता है। इसके विपरीत, आंशिक  मोलर आयतन की परिभाषा में, शुद्ध विलायक का मोलर आयतन, <math>\tilde{V}_0</math>,इसके स्थान पर,प्रयोग किया जाता है, जिसे इस रूप में लिखा जा सकता है:


:<math>\tilde{V_0}=\Big(\frac{\partial V}{\partial n_0}\Big)_{T,p, n_1=0}</math>,
:<math>\tilde{V_0}=\Big(\frac{\partial V}{\partial n_0}\Big)_{T,p, n_1=0}</math>,
Line 57: Line 56:
:<math>\bar{V_1}={}^\phi\tilde{V}_1 + b \frac{\partial {}^\phi\tilde{V}_1}{\partial b}.</math>
:<math>\bar{V_1}={}^\phi\tilde{V}_1 + b \frac{\partial {}^\phi\tilde{V}_1}{\partial b}.</math>


== इलेक्ट्रोलाइट के गतिविधि गुणांक और उसके विलायकन कोश संख्या से संबंध ==
== विद्युत् अपघट्य के गतिविधि गुणांक और उसके विलायकन कोश संख्या से संबंध ==
एक केंद्रित विलयन में विघटित इलेक्ट्रोलाइट की आंशिक मोलरमात्रा और विलायक (पानी) की मोलर मात्रा के बीच का अनुपात ''r''<sub>a</sub>  [[गतिविधि गुणांक]]<math>\gamma_s</math> के सांख्यिकीय घटक से जोड़ा जा सकता है  और उसके [[Index.php?title=विलायकन कोश|विलायकन कोश]] संख्या h का:<ref>{{cite journal |last1=Glueckauf |first1=E. |date=1955 |title= केंद्रित इलेक्ट्रोलाइट समाधानों में गतिविधि गुणांक पर आयनिक हाइड्रेशन का प्रभाव|journal=Transactions of the Faraday Society |volume=51 |pages=1235–1244 |doi= 10.1039/TF9555101235 }}</ref>
एक केंद्रित विलयन में विघटित विद्युत् अपघट्यकी आंशिक मोलरमात्रा और विलायक (पानी) की मोलर मात्रा के बीच का अनुपात ''r''<sub>a</sub>  [[गतिविधि गुणांक]]<math>\gamma_s</math>और उसके [[Index.php?title=विलायकन कोश|विलायकन कोश]] संख्या h<ref>{{cite journal |last1=Glueckauf |first1=E. |date=1955 |title= केंद्रित इलेक्ट्रोलाइट समाधानों में गतिविधि गुणांक पर आयनिक हाइड्रेशन का प्रभाव|journal=Transactions of the Faraday Society |volume=51 |pages=1235–1244 |doi= 10.1039/TF9555101235 }}</ref> के सांख्यिकीय घटक से जोड़ा जा सकता है :
:<math>\ln \gamma_s = \frac{h- \nu}{\nu} \ln (1 + \frac{br_a}{55.5}) - \frac{h}{\nu} \ln (1 - \frac{br_a}{55.5}) + \frac{br_a(r_a + h -\nu)}{55.5 (1 + \frac{br_a}{55.5})}</math>,
:<math>\ln \gamma_s = \frac{h- \nu}{\nu} \ln (1 + \frac{br_a}{55.5}) - \frac{h}{\nu} \ln (1 - \frac{br_a}{55.5}) + \frac{br_a(r_a + h -\nu)}{55.5 (1 + \frac{br_a}{55.5})}</math>,


जहां ν इलेक्ट्रोलाइट के पृथक्करण के कारण आयनों की संख्या है, और b ऊपर की तरह मोललता है।
जहां ν विद्युत् अपघट्यके पृथक्करण के कारण आयनों की संख्या है, और b ऊपर की तरह मोललता है।


== उदाहरण ==
== उदाहरण ==


=== इलेक्ट्रोलाइट्स ===
=== विद्युत् अपघट्य ===
नमक का आंशिक  मोलर आयतन सामान्यतः ठोस नमक के मोलर आयतन से कम होता है। उदाहरण के लिए, ठोस [[NaCl]] का आयतन 27 सेमी है<sup>3</sup> प्रति तिल, लेकिन कम सांद्रता पर आंशिक मोलरकी मात्रा केवल 16.6 cc/तिल है। वास्तव में, कुछ जलीय [[इलेक्ट्रोलाइट]]्स में नकारात्मक आंशिक मोलरमात्रा होती है: [[NaOH]] -6.7, [[LiOH]] -6.0, और सोडियम कार्बोनेट|ना<sub>2</sub>सीओ<sub>3</sub>-6.7 सेंटीमीटर<sup>3</sup>/तिल।<ref>[[Herbert Harned]] and [[Benton Owen]], ''The Physical Chemistry of Electrolytic Solutions'', 1950, p. 253.</ref> इसका मतलब यह है कि पानी की दी गई मात्रा में उनके घोल में शुद्ध पानी की समान मात्रा की तुलना में कम मात्रा होती है। (हालांकि प्रभाव कम है।) भौतिक कारण यह है कि आस-पास के पानी के अणु आयनों की ओर दृढ़ता से आकर्षित होते हैं जिससे वे कम जगह घेरते हैं।
नमक का आंशिक  मोलर आयतन सामान्यतः ठोस नमक के मोलर आयतन से कम होता है। उदाहरण के लिए, ठोस [[NaCl]] का आयतन 27 सेमी<sup>3</sup> है प्रति मोल, लेकिन कम सांद्रता पर आंशिक मोलर की मात्रा केवल 16.6 cc/मोल है। वास्तव में, कुछ जलीय विद्युत् अपघट्यमें नकारात्मक आंशिक मोलर मात्रा होती है: [[NaOH]] -6.7, [[LiOH]] -6.0, और Na<sub>2</sub>CO<sub>3</sub>-6.7 सेंटीमीटर<sup>3</sup>/मोल।<ref>[[Herbert Harned]] and [[Benton Owen]], ''The Physical Chemistry of Electrolytic Solutions'', 1950, p. 253.</ref> इसका मतलब यह है कि जल की दी गई मात्रा में उनके घोल में शुद्ध जल की समान मात्रा की तुलना में कम मात्रा होती है। (यद्यपि प्रभाव कम है।) भौतिक कारण यह है कि आस-पास के जल के अणु आयनों की ओर दृढ़ता से आकर्षित होते हैं जिससे वे कम जगह घेरते हैं।


=== शराब ===
=== अल्कोहल ===
[[File:Excess Volume Mixture of Ethanol and Water.png|thumb|upright=1.3|इथेनॉल और पानी के मिश्रण की अतिरिक्त मात्रा]]दूसरे घटक की आंशिक मोलर मात्रा का एक और उदाहरण इसकी मोलर मात्रा से कम है क्योंकि शुद्ध पदार्थ पानी में [[इथेनॉल]] का मामला है। उदाहरण के लिए, 20 [[द्रव्यमान प्रतिशत]] इथेनॉल पर, इथेनॉल (डेटा पृष्ठ)#20 डिग्री सेल्सियस पर 1.0326 लीटर प्रति किलोग्राम के जलीय इथेनॉल विलयनके गुण, जबकि शुद्ध पानी 1.0018 एल/किग्रा (1.0018 सीसी/जी) है।<ref>Calculated from data in the CRC Handbook of Chemistry and Physics, 49th edition.</ref> जोड़े गए इथेनॉल का आंशिक आयतन 1.0326 L – 0.8 kg x 1.0018 L/kg = 0.2317 L है। इथेनॉल के मोल्स की संख्या 0.2 kg / (0.04607 kg/mol) = 4.341 mol है, ताकि आंशिक  मोलर आयतन 0.2317 हो एल / 4.341 मोल = 0.0532 एल / मोल = 53.2 सीसी/मोल (1.16 सीसी/जी)। यद्यपिशुद्ध इथेनॉल में 58.4 cc/mol (1.27 cc/g) के इस तापमान पर मोलर आयतन होता है।
[[File:Excess Volume Mixture of Ethanol and Water.png|thumb|upright=1.3|इथेनॉल और जलके मिश्रण की अतिरिक्त मात्रा]]दूसरे घटक की आंशिक मोलर मात्रा का एक और उदाहरण शुद्ध पदार्थ के रूप में इसकी मोलर मात्रा से कम है यह जल में [[इथेनॉल]] का कारक है। उदाहरण के लिए, 20 [[द्रव्यमान प्रतिशत]] इथेनॉल पर, घोल की मात्रा 20 डिग्री सेल्सियस पर 1.0326 लीटर प्रति किलोग्राम है,जबकि शुद्ध जल1.0018 एल/किग्रा (1.0018 सीसी/जी) है।<ref>Calculated from data in the CRC Handbook of Chemistry and Physics, 49th edition.</ref> जोड़े गए इथेनॉल का आंशिक आयतन 1.0326 L – 0.8 kg x 1.0018 L/kg = 0.2317 L है। इथेनॉल के मोल की संख्या 0.2 kg / (0.04607 kg/mol) = 4.341 mol है, ताकि आंशिक  मोलर आयतन 0.2317 एल / 4.341 मोल = 0.0532 एल / मोल = 53.2 सीसी/मोल (1.16 सीसी/जी)हो। यद्यपि शुद्ध इथेनॉल का मोलर आयतन 58.4 cc/mol (1.27 cc/g) के इस तापमान पर होता है।


यदि विलयनआदर्श विलयन# आयतन था, तो इसका आयतन अमिश्रित घटकों का योग होगा। 0.2 किग्रा शुद्ध इथेनॉल की मात्रा 0.2 किग्रा x 1.27 एल/किग्रा = 0.254 एल है, और 0.8 किग्रा शुद्ध पानी की मात्रा 0.8 किग्रा x 1.0018 एल/किग्रा = 0.80144 एल है, इसलिए आदर्श विलयनमात्रा 0.254 एल + 0.80144 होगी एल = 1.055 एल। विलयनकी गैर-आदर्शता मिश्रण पर संयुक्त प्रणाली की मात्रा में मामूली कमी (लगभग 2.2%, 1.0326 के बजाय 1.055 एल / किग्रा) से परिलक्षित होती है। जैसे ही प्रतिशत इथेनॉल 100% की ओर बढ़ता है, आंशिक मोलरकी मात्रा शुद्ध इथेनॉल के मोलरकी मात्रा तक बढ़ जाती है।
यदि विलयन आदर्श विलयन था, तो इसका आयतन अमिश्रित घटकों का योग होगा। 0.2 किग्रा शुद्ध इथेनॉल की मात्रा 0.2 किग्रा x 1.27 एल/किग्रा = 0.254 एल है, और 0.8 किग्रा शुद्ध जल की मात्रा 0.8 किग्रा x 1.0018 एल/किग्रा = 0.80144 एल है, इसलिए आदर्श विलयन मात्रा 0.254 एल + 0.80144 एल = 1.055 एल होगी। विलयन की गैर-आदर्शता मिश्रण पर संयुक्त प्रणाली की मात्रा में साधारण कमी (लगभग 2.2%, 1.0326 के बदले 1.055 एल / किग्रा) से परिलक्षित होती है। जैसे ही प्रतिशत इथेनॉल 100% की ओर बढ़ता है, आंशिक मोलर की मात्रा शुद्ध इथेनॉल के मोलर की मात्रा तक बढ़ जाती है।


=== इलेक्ट्रोलाइट - गैर-इलेक्ट्रोलाइट सिस्टम ===
=== विद्युत् अपघट्य- विद्युत् अनपघट्य प्रणाली ===
आंशिक मात्राएं इलेक्ट्रोलाइट - गैर-इलेक्ट्रोलाइट सिस्टम में बातचीत को रेखांकित कर सकती हैं, जो अंदर और बाहर नमकीन बनाने जैसी बातचीत दिखाती हैं, लेकिन आयन-आयन इंटरैक्शन में अंतर्दृष्टि भी देती हैं, विशेष रूप से तापमान पर उनकी निर्भरता से।
आंशिक मात्राएं विद्युत् अपघट्य-विद्युत् अनपघट्य प्रणाली में पारस्परिक क्रिया को रेखांकित कर सकती हैं, जो अंदर और बाहर नमकीन बनाने जैसी पारस्परिक क्रिया दिखाती हैं, लेकिन विशेष रूप से तापमान पर उनकी निर्भरता से आयन-आयन पारस्परिक क्रिया में अंतर्दृष्टि भी देती हैं।


== मल्टीकंपोनेंट मिश्रण या समाधान ==
== बहुघटक मिश्रण या विलयन ==
बहुघटक समाधानों के लिए, आंशिक मोलरगुणों को कई तरीकों से परिभाषित किया जा सकता है। एक उदाहरण के रूप में एक विलायक और दो विलेय के साथ एक त्रिगुट (3-घटक) विलयनकी मात्रा के लिए, अभी भी केवल एक समीकरण होगा <math>(V=\tilde{V}_{0} n_{0} + {}^\phi\tilde{V}_1 n_1+ {}^\phi\tilde{V}_2 n_2)</math>, जो दो आंशिक मात्राओं को निर्धारित करने के लिए अपर्याप्त है। (यह स्पष्टमोलरसंपत्ति के विपरीत है, जो सामग्री के अच्छी तरह से परिभाषित [[गहन और व्यापक गुण]] हैं और इसलिए आंशिक  रूप से बहुघटक प्रणालियों में परिभाषित हैं। उदाहरण के लिए, स्पष्टमोलरमात्रा प्रत्येक घटक i के लिए परिभाषित की गई है <math>\bar{V_i}=(\partial V/\partial n_i)_{T,p, n_{j\neq i}}</math>.)
बहुघटक विलयनों के लिए, आंशिक मोलर गुणों को कई तरीकों से परिभाषित किया जा सकता है। एक उदाहरण के रूप में एक विलायक और दो विलेय के साथ एक त्रिगुट (3-घटक) विलयन की मात्रा के लिए, अभी भी केवल एक समीकरण होगा <math>(V=\tilde{V}_{0} n_{0} + {}^\phi\tilde{V}_1 n_1+ {}^\phi\tilde{V}_2 n_2)</math>, जो दो आंशिक मात्राओं को निर्धारित करने के लिए अपर्याप्त है। (यह स्पष्ट मोलर गुण के विपरीत है, जो पदार्थ के अच्छी तरह से परिभाषित [[गहन और व्यापक गुण]] हैं और इसलिए आंशिक  रूप से बहुघटक प्रणालियों में परिभाषित हैं। उदाहरण के लिए,प्रत्येक घटक ''i'' के आंशिक मोलर आयतन को इस प्रकार परिभाषित किया गया है <math>\bar{V_i}=(\partial V/\partial n_i)_{T,p, n_{j\neq i}}</math>.)


त्रैमासिक जलीय विलयनों का एक विवरण केवल विलेय के भारित माध्य आंशिक मोलर आयतन पर विचार करता है,<ref>[https://books.google.com/books?id=43W1BQAAQBAJ&dq=Apelblat+citric+acid+%22mean+apparent+molar+volume+is+defined%22&pg=PA50 Citric acid] Apelblat, Alexander (Springer 2014) p.50 {{ISBN|978-3-319-11233-6}}</ref> के रूप में परिभाषित
त्रिगुट जलीय विलयनों का एक विवरण केवल विलेय के भारित माध्य आंशिक मोलर आयतन पर विचार करता है,<ref>[https://books.google.com/books?id=43W1BQAAQBAJ&dq=Apelblat+citric+acid+%22mean+apparent+molar+volume+is+defined%22&pg=PA50 Citric acid] Apelblat, Alexander (Springer 2014) p.50 {{ISBN|978-3-319-11233-6}}</ref> के रूप में परिभाषित किया गया है
:<math>{}^\phi\tilde{V}(n_1, n_2) = {}^\phi\tilde{V}_{12} = \frac{V-V_0}{n_1+n_2}</math>,
:<math>{}^\phi\tilde{V}(n_1, n_2) = {}^\phi\tilde{V}_{12} = \frac{V-V_0}{n_1+n_2}</math>,


कहाँ <math>V</math> विलयनमात्रा है और <math>V_0</math> शुद्ध पानी की मात्रा।
जहाँ <math>V</math> विलयन मात्रा है और <math>V_0</math> शुद्ध जलकी मात्रा।इस विधि को 3 से अधिक घटकों वाले मिश्रण के लिए बढ़ाया जा सकता है।<ref>Harned, Owen,
इस विधि को 3 से अधिक घटकों वाले मिश्रण के लिए बढ़ाया जा सकता है।<ref>Harned, Owen,
op. cit. third edition 1958, p. 398-399</ref>
op. cit. third edition 1958, p. 398-399</ref>
:<math>{}^\phi\tilde{V}(n_1, n_2, n_3,.. ) = {}^\phi\tilde{V}_{123..} = \frac{V-V_0}{n_1+n_2+n_3+...}</math>,
:<math>{}^\phi\tilde{V}(n_1, n_2, n_3,.. ) = {}^\phi\tilde{V}_{123..} = \frac{V-V_0}{n_1+n_2+n_3+...}</math>,


उत्पादों की मात्रा का योग - उनके द्विआधारी विलयनमें विलेय की आंशिक मोलरमात्रा, विलेय की मात्रा के योग और ऊपर उल्लिखित बहुघटक विलयनके टर्नरी में आंशिक मोलरमात्रा के बीच के उत्पाद के बराबर होती है।
उत्पादों की मात्रा का योग - उनके द्विआधारी विलयन में विलेय की आंशिक मोलर मात्रा, ऊपर उल्लिखित बहुघटक विलयन के त्रिगुट में विलेय की मात्रा के योग और आंशिक मोलर मात्रा के बीच के उत्पाद के बराबर होती है।


:<math> {}^\phi\tilde{V}_{123..} (b_1 + b_2 + b_3 + ...) = b_1 {}^\phi\tilde{V}_{1} + b_2 {}^\phi\tilde{V}_{2} + b_3 {}^\phi\tilde{V}_{3}+...</math>,
:<math> {}^\phi\tilde{V}_{123..} (b_1 + b_2 + b_3 + ...) = b_1 {}^\phi\tilde{V}_{1} + b_2 {}^\phi\tilde{V}_{2} + b_3 {}^\phi\tilde{V}_{3}+...</math>,


एक अन्य विधि त्रिगुट प्रणाली को स्यूडोबाइनरी के रूप में व्यवहार करना है और प्रत्येक विलेय की आंशिक मोलरमात्रा को एक द्विआधारी प्रणाली के संदर्भ में परिभाषित करना है जिसमें दोनों अन्य घटक शामिल हैं: पानी और अन्य विलेय।<ref>[https://books.google.com/books?id=43W1BQAAQBAJ&dq=apparent+molar+volume+ternary+definition&pg=PA320 Citric acid] Apelblat p.320</ref> दो विलेय में से प्रत्येक के आंशिक मोलरकी मात्रा तब होती है
एक अन्य विधि यह है कि त्रिगुट प्रणाली को स्यूडोबाइनरी के रूप में व्यवहार करना है और प्रत्येक विलेय की आंशिक मोलर मात्रा को एक द्विआधारी प्रणाली के संदर्भ में परिभाषित करना है जिसमें दोनों अन्य घटक सम्मिलित हैं: जल और अन्य विलेय।<ref>[https://books.google.com/books?id=43W1BQAAQBAJ&dq=apparent+molar+volume+ternary+definition&pg=PA320 Citric acid] Apelblat p.320</ref> दो विलेय में से प्रत्येक के आंशिक मोलर की मात्रा तब यह होती है:


:<math>{}^\phi\tilde{V}_1 = \frac{V-V(solvent + solute\ 2)}{n_1}</math> और <math>{}^\phi\tilde{V}_2 = \frac{V-V(solvent + solute\ 1)}{n_2}</math>
:<math>{}^\phi\tilde{V}_1 = \frac{V-V(solvent + solute\ 2)}{n_1}</math> और <math>{}^\phi\tilde{V}_2 = \frac{V-V(solvent + solute\ 1)}{n_2}</math>
विलायक की आंशिक मोलरमात्रा है:
विलायक की आंशिक मोलर मात्रा है:


:<math>{}^\phi\tilde{V}_0 = \frac{V-V(solute\ 1 + solute\ 2)}{n_0}</math>
:<math>{}^\phi\tilde{V}_0 = \frac{V-V(solute\ 1 + solute\ 2)}{n_0}</math>
हालाँकि, यह वॉल्यूमेट्रिक गुणों का असंतोषजनक वर्णन है।<ref> Apelblat p.320</ref>
यद्यपि, यह आयतनमितीय गुणों का असंतोषजनक वर्णन है।<ref> Apelblat p.320</ref>
दो घटकों या विलेय की आंशिक मोलरमात्रा को एक स्यूडोकोम्पोनेंट माना जाता है <math>{}^\phi\tilde{V}_{12}</math> या <math>{}^\phi\tilde{V}_{ij}</math> एक सामान्य घटक V के साथ स्पष्टबाइनरी मिश्रण की मात्रा के साथ भ्रमित नहीं होना है<sub>ij</sub>, में<sub>jk</sub>जो एक निश्चित मिश्रण अनुपात में मिश्रित होता है, एक निश्चित टर्नरी मिश्रण V या V बनाता है<sub>ijk</sub>.{{Clarify|date=November 2017}}<!-- This entire section requires much more careful definition of the quantities involved, including things like V_0+V_2, V_{12}, and V_{ijk}.  In particular, how is the subtracted volume of the pseudobinary system defined? -->
 
दो घटकों या विलेय की आंशिक मोलर मात्रा को एक स्यूडोकोम्पोनेंट माना जाता है <math>{}^\phi\tilde{V}_{12}</math> या <math>{}^\phi\tilde{V}_{ij}</math> एक सामान्य घटक V<sub>ij</sub> ,V<sub>jk</sub> के साथ आंशिक बाइनरी मिश्रण की मात्रा के साथ भ्रमित नहीं होना है, जो एक निश्चित मिश्रण अनुपात में मिश्रित होता है, एक निश्चित टर्नरी मिश्रण V या V<sub>ijk</sub> बनाता है।{{Clarify|date=November 2017}}
 
निश्चित रूप से मिश्रण के अन्य घटकों के संबंध में एक घटक की पूरक मात्रा को मिश्रण की मात्रा और किसी दिए गए रचना के द्विआधारी उपमिश्रण की मात्रा के बीच अंतर के रूप में परिभाषित किया जा सकता है:
निश्चित रूप से मिश्रण के अन्य घटकों के संबंध में एक घटक की पूरक मात्रा को मिश्रण की मात्रा और किसी दिए गए रचना के द्विआधारी उपमिश्रण की मात्रा के बीच अंतर के रूप में परिभाषित किया जा सकता है:


:<math>{}^c\tilde{V}_2 = \frac{V-V_{01}}{n_2}</math>
:<math>{}^c\tilde{V}_2 = \frac{V-V_{01}}{n_2}</math>
ऐसी स्थितियाँ होती हैं जब यह परिभाषित करने का कोई कठोर तरीका नहीं होता है कि कौन सा विलायक है और कौन सा विलेय है जैसे तरल मिश्रण (जैसे पानी और इथेनॉल) के मामले में जो चीनी या नमक जैसे ठोस को भंग कर सकता है या नहीं। इन मामलों में आंशिक मोलरगुणों को मिश्रण के सभी घटकों के लिए निर्दिष्ट किया जा सकता है और होना चाहिए।
ऐसी स्थितियाँ होती हैं जब यह परिभाषित करने का कोई परिशुद्ध तरीका नहीं होता है कि कौन सा विलायक है और कौन सा विलेय है जैसे तरल मिश्रण (जैसे जलऔर इथेनॉल) के कारक में जो चीनी या नमक जैसे ठोस को घोल सकता है या नहीं। इन कारको में आंशिक मोलर गुणों को मिश्रण के सभी घटकों के लिए निर्दिष्ट किया जा सकता है और होने भी चाहिए।


== यह भी देखें ==
== यह भी देखें ==
*[[वॉल्यूम फ़्रैक्शन]]
*[[वॉल्यूम फ़्रैक्शन]]
*आदर्श समाधान
*आदर्श विलयन
* नियमित समाधान
* नियमित विलयन
* [[विलयन का एन्थैल्पी परिवर्तन]]
* [[विलयन का एन्थैल्पी परिवर्तन]]
*मिश्रण की उत्साह
*मिश्रण की उत्साह

Revision as of 16:52, 1 July 2023

ऊष्मप्रवैगिकी में, एक मिश्रण या विलयन में एक विलयन घटक की एक आंशिक मोलर गुण मिश्रण की गैर-आदर्शता में आदर्श विलयन के लिए प्रत्येक घटक के योगदान को अलग करने के उद्देश्य से परिभाषित मात्रा है।। यह उस घटक के प्रति मोल (इकाई) के संगत विलयनगुण (उदाहरण के लिए, आयतन) में परिवर्तन को दर्शाता है, जब उस घटक को विलयन में जोड़ा जाता है। इसे आंशिक के रूप में वर्णित किया गया है क्योंकि ऐसा लगता है कि यह विलयन में उस घटक के मोलर गुण का प्रतिनिधित्व करता है, परंतु अन्य विलयन घटकों के गुणों को जोड़ने के दौरान स्थिर रहने के लिए माना जाता है। यद्यपि यह धारणा प्रायःउचित नहीं होती है, क्योंकि किसी घटक के आंशिक मोलर गुणों के मान शुद्ध अवस्था में उसके मोलर गुणों से काफी भिन्न हो सकते हैं।

उदाहरण के लिए, विलायक और विलेय के रूप में पहचान किए गए दो घटकों वाले विलयन की मात्रा[lower-alpha 1] को निम्न द्वारा दिया जाता है:

जहाँ विलेय जोड़ने से पहले शुद्ध विलायक का आयतन है और इसकी मोल रमात्रा (समान तापमान और विलयनके दबाव पर), विलायक के मोल (इकाई) की संख्या है, विलेय का आंशिक मोलर आयतन है, और विलयन में विलेय के मोल की संख्या है। इस संबंध को एक घटक की मोलर मात्रा से विभाजित करके एक घटक के आंशिक मोलर गुण और घटकों के मिश्रण अनुपात के बीच एक संबंध प्राप्त किया जा सकता है।

यह समीकरण की परिभाषा के रूप में कार्य करता है।पहला पद बिना विलेय वाले विलायक की समान मात्रा के आयतन के बराबर है, और दूसरा पद विलेय के योग पर आयतन में परिवर्तन है। को तब विलेय का मोलर आयतन माना जा सकता है यदि यह मान लिया जाए कि विलायक का मोलर आयतन विलेय के योग से अपरिवर्तित है। यद्यपि इस धारणा को प्रायःअवास्तविक माना जाना चाहिए जैसा कि नीचे दिए गए उदाहरणों में दिखाया गया है, ताकि को केवल एक आंशिक मान के रूप में वर्णित किया गया है।

विलायक के रूप में पहचाने गए घटक के लिए एक आंशिक मोलर मात्रा को समान रूप से परिभाषित किया जा सकता है।कुछ लेखकों ने एक ही विलयन के दोनों (तरल) घटकों के आंशिक मोलरकी मात्रा की सूचना दी है।[1][2] इस प्रक्रिया को त्रिगुट और बहुघटक मिश्रणों तक बढ़ाया जा सकता है।

मोल की संख्या के स्थान में द्रव्यमान का उपयोग करके आंशिक मात्रा भी व्यक्त की जा सकती है। यह अभिव्यक्ति आंशिक विशिष्ट मात्रा उत्पन्न करती है, जैसे आंशिक विशिष्ट आयतन।

जहाँ विशिष्ट मात्राओं को छोटे अक्षरों से दर्शाया जाता है।

आंशिक (मोलर) गुण स्थिरांक नहीं हैं (दिए गए तापमान पर भी), लेकिन रचना के कार्य हैं। अनंत पर तनुकरण पर, एक आंशिक मोलर गुण और संबंधित आंशिक मोलर गुण बराबर हो जाते है।

कुछ आंशिक मोलरगुण जो सामान्यतः उपयोग किए जाते हैं वे आंशिक मोलरतापीय धारिता, आंशिक मोलरताप क्षमता और आंशिक मोलरआयतन हैं।

मोललता से संबंध

किसी विलेय का आंशिक (मोलल) आयतन उस विलेय (और विलयन और विलायक के घनत्व) के मोललता b के फलन के रूप में व्यक्त किया जा सकता है। विलेय के प्रति मोल विलयन का आयतन है

विलेय के प्रति मोल शुद्ध विलायक के आयतन को घटाने पर आंशिक मोलल आयतन प्राप्त होता है:

अधिक विलेय के लिए उपरोक्त समानता को विलेय के औसत मोलर द्रव्यमान के साथ संशोधित किया जाता है जैसे कि वे मोललता bT के साथ एकल विलेय थे:

,

उत्पादों की मात्रा का योग - उनके द्विआधारी विलयन में विलेय की आंशिक मोलरमात्रा, विलेय की मात्रा के योग और ऊपर उल्लिखित बहुघटक विलयन के टर्नरी में आंशिक मोलर मात्रा के बीच के उत्पाद के बराबर होती है।

,

मिश्रण अनुपात से संबंध

परिभाषा संबंध को विभाजित करके एक मिश्रण और मोलर मिश्रण अनुपात के एक घटक के आंशिक मोलर के बीच एक संबंध प्राप्त किया जा सकता है

एक घटक के मोल की संख्या के लिए यह निम्नलिखित संबंध देता है:


स्पष्ट(मोलर) मात्राओं से संबंध

स्पष्ट मोलर मात्रा और आंशिक मोलर मात्रा के बीच विपरीत परिभाषाओं पर ध्यान दें: स्पष्ट मोलर मात्रा के कारको में , स्पष्ट व्युत्पन्न द्वारा परिभाषित

,

कोई लिख सकता है , इसलिए हमेशा धारण करता है। इसके विपरीत, आंशिक मोलर आयतन की परिभाषा में, शुद्ध विलायक का मोलर आयतन, ,इसके स्थान पर,प्रयोग किया जाता है, जिसे इस रूप में लिखा जा सकता है:

,

तुलना के लिए। दूसरे शब्दों में, हम मानते हैं कि विलायक का आयतन नहीं बदलता है, और हम स्पष्ट मोलर आयतन का उपयोग करते हैं जहाँ विलेय के मोल की संख्या बिल्कुल शून्य (मोलर आयतन) होती है। इस प्रकार, आंशिक मोलर मात्रा के लिए परिभाषित अभिव्यक्ति में ,

,

शब्द शुद्ध विलायक के लिए उत्तरदायी ठहराया जाता है, जबकि शेष अतिरिक्त मात्रा, , विलेय से उत्पन्न माना जाता है। उच्च तनुकरण पर , हमारे पास है , और इसलिए आंशिक मोलर आयतन और विलेय का स्पष्ट मोलर आयतन भी अभिसरित होता है: .

मात्रात्मक रूप से, स्पष्ट मोलर गुणों और आंशिक गुणों के बीच के संबंध को आंशिक मात्रा और मोललता की परिभाषा से प्राप्त किया जा सकता है। मात्रा के लिए,

विद्युत् अपघट्य के गतिविधि गुणांक और उसके विलायकन कोश संख्या से संबंध

एक केंद्रित विलयन में विघटित विद्युत् अपघट्यकी आंशिक मोलरमात्रा और विलायक (पानी) की मोलर मात्रा के बीच का अनुपात ra गतिविधि गुणांकऔर उसके विलायकन कोश संख्या h[3] के सांख्यिकीय घटक से जोड़ा जा सकता है :

,

जहां ν विद्युत् अपघट्यके पृथक्करण के कारण आयनों की संख्या है, और b ऊपर की तरह मोललता है।

उदाहरण

विद्युत् अपघट्य

नमक का आंशिक मोलर आयतन सामान्यतः ठोस नमक के मोलर आयतन से कम होता है। उदाहरण के लिए, ठोस NaCl का आयतन 27 सेमी3 है प्रति मोल, लेकिन कम सांद्रता पर आंशिक मोलर की मात्रा केवल 16.6 cc/मोल है। वास्तव में, कुछ जलीय विद्युत् अपघट्यमें नकारात्मक आंशिक मोलर मात्रा होती है: NaOH -6.7, LiOH -6.0, और Na2CO3-6.7 सेंटीमीटर3/मोल।[4] इसका मतलब यह है कि जल की दी गई मात्रा में उनके घोल में शुद्ध जल की समान मात्रा की तुलना में कम मात्रा होती है। (यद्यपि प्रभाव कम है।) भौतिक कारण यह है कि आस-पास के जल के अणु आयनों की ओर दृढ़ता से आकर्षित होते हैं जिससे वे कम जगह घेरते हैं।

अल्कोहल

इथेनॉल और जलके मिश्रण की अतिरिक्त मात्रा

दूसरे घटक की आंशिक मोलर मात्रा का एक और उदाहरण शुद्ध पदार्थ के रूप में इसकी मोलर मात्रा से कम है यह जल में इथेनॉल का कारक है। उदाहरण के लिए, 20 द्रव्यमान प्रतिशत इथेनॉल पर, घोल की मात्रा 20 डिग्री सेल्सियस पर 1.0326 लीटर प्रति किलोग्राम है,जबकि शुद्ध जल1.0018 एल/किग्रा (1.0018 सीसी/जी) है।[5] जोड़े गए इथेनॉल का आंशिक आयतन 1.0326 L – 0.8 kg x 1.0018 L/kg = 0.2317 L है। इथेनॉल के मोल की संख्या 0.2 kg / (0.04607 kg/mol) = 4.341 mol है, ताकि आंशिक मोलर आयतन 0.2317 एल / 4.341 मोल = 0.0532 एल / मोल = 53.2 सीसी/मोल (1.16 सीसी/जी)हो। यद्यपि शुद्ध इथेनॉल का मोलर आयतन 58.4 cc/mol (1.27 cc/g) के इस तापमान पर होता है।

यदि विलयन आदर्श विलयन था, तो इसका आयतन अमिश्रित घटकों का योग होगा। 0.2 किग्रा शुद्ध इथेनॉल की मात्रा 0.2 किग्रा x 1.27 एल/किग्रा = 0.254 एल है, और 0.8 किग्रा शुद्ध जल की मात्रा 0.8 किग्रा x 1.0018 एल/किग्रा = 0.80144 एल है, इसलिए आदर्श विलयन मात्रा 0.254 एल + 0.80144 एल = 1.055 एल होगी। विलयन की गैर-आदर्शता मिश्रण पर संयुक्त प्रणाली की मात्रा में साधारण कमी (लगभग 2.2%, 1.0326 के बदले 1.055 एल / किग्रा) से परिलक्षित होती है। जैसे ही प्रतिशत इथेनॉल 100% की ओर बढ़ता है, आंशिक मोलर की मात्रा शुद्ध इथेनॉल के मोलर की मात्रा तक बढ़ जाती है।

विद्युत् अपघट्य- विद्युत् अनपघट्य प्रणाली

आंशिक मात्राएं विद्युत् अपघट्य-विद्युत् अनपघट्य प्रणाली में पारस्परिक क्रिया को रेखांकित कर सकती हैं, जो अंदर और बाहर नमकीन बनाने जैसी पारस्परिक क्रिया दिखाती हैं, लेकिन विशेष रूप से तापमान पर उनकी निर्भरता से आयन-आयन पारस्परिक क्रिया में अंतर्दृष्टि भी देती हैं।

बहुघटक मिश्रण या विलयन

बहुघटक विलयनों के लिए, आंशिक मोलर गुणों को कई तरीकों से परिभाषित किया जा सकता है। एक उदाहरण के रूप में एक विलायक और दो विलेय के साथ एक त्रिगुट (3-घटक) विलयन की मात्रा के लिए, अभी भी केवल एक समीकरण होगा , जो दो आंशिक मात्राओं को निर्धारित करने के लिए अपर्याप्त है। (यह स्पष्ट मोलर गुण के विपरीत है, जो पदार्थ के अच्छी तरह से परिभाषित गहन और व्यापक गुण हैं और इसलिए आंशिक रूप से बहुघटक प्रणालियों में परिभाषित हैं। उदाहरण के लिए,प्रत्येक घटक i के आंशिक मोलर आयतन को इस प्रकार परिभाषित किया गया है .)

त्रिगुट जलीय विलयनों का एक विवरण केवल विलेय के भारित माध्य आंशिक मोलर आयतन पर विचार करता है,[6] के रूप में परिभाषित किया गया है

,

जहाँ विलयन मात्रा है और शुद्ध जलकी मात्रा।इस विधि को 3 से अधिक घटकों वाले मिश्रण के लिए बढ़ाया जा सकता है।[7]

,

उत्पादों की मात्रा का योग - उनके द्विआधारी विलयन में विलेय की आंशिक मोलर मात्रा, ऊपर उल्लिखित बहुघटक विलयन के त्रिगुट में विलेय की मात्रा के योग और आंशिक मोलर मात्रा के बीच के उत्पाद के बराबर होती है।

,

एक अन्य विधि यह है कि त्रिगुट प्रणाली को स्यूडोबाइनरी के रूप में व्यवहार करना है और प्रत्येक विलेय की आंशिक मोलर मात्रा को एक द्विआधारी प्रणाली के संदर्भ में परिभाषित करना है जिसमें दोनों अन्य घटक सम्मिलित हैं: जल और अन्य विलेय।[8] दो विलेय में से प्रत्येक के आंशिक मोलर की मात्रा तब यह होती है:

और

विलायक की आंशिक मोलर मात्रा है:

यद्यपि, यह आयतनमितीय गुणों का असंतोषजनक वर्णन है।[9]

दो घटकों या विलेय की आंशिक मोलर मात्रा को एक स्यूडोकोम्पोनेंट माना जाता है या एक सामान्य घटक Vij ,Vjk के साथ आंशिक बाइनरी मिश्रण की मात्रा के साथ भ्रमित नहीं होना है, जो एक निश्चित मिश्रण अनुपात में मिश्रित होता है, एक निश्चित टर्नरी मिश्रण V या Vijk बनाता है।[clarification needed]

निश्चित रूप से मिश्रण के अन्य घटकों के संबंध में एक घटक की पूरक मात्रा को मिश्रण की मात्रा और किसी दिए गए रचना के द्विआधारी उपमिश्रण की मात्रा के बीच अंतर के रूप में परिभाषित किया जा सकता है:

ऐसी स्थितियाँ होती हैं जब यह परिभाषित करने का कोई परिशुद्ध तरीका नहीं होता है कि कौन सा विलायक है और कौन सा विलेय है जैसे तरल मिश्रण (जैसे जलऔर इथेनॉल) के कारक में जो चीनी या नमक जैसे ठोस को घोल सकता है या नहीं। इन कारको में आंशिक मोलर गुणों को मिश्रण के सभी घटकों के लिए निर्दिष्ट किया जा सकता है और होने भी चाहिए।

यह भी देखें

टिप्पणियाँ

  1. This labelling is arbitrary. For mixtures of two liquids either may be described as solvent. For mixtures of a liquid and a solid, the liquid is usually identified as the solvent and the solid as the solute, but the theory is still valid if the labels are reversed.


संदर्भ

  1. Rock, Peter A., Chemical Thermodynamics, MacMillan 1969, p.227-230 for water-ethanol mixtures.
  2. H. H. Ghazoyan and Sh. A. Markarian (2014) DENSITIES, EXCESS MOLAR AND PARTIAL MOLAR VOLUMES FOR DIETHYLSULFOXIDE WITH METHANOL OR ETHANOL BINARY SYSTEMS AT TEMPERATURE RANGE 298.15 – 323.15 K PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY no.2, p.17-25. See Table 4.
  3. Glueckauf, E. (1955). "केंद्रित इलेक्ट्रोलाइट समाधानों में गतिविधि गुणांक पर आयनिक हाइड्रेशन का प्रभाव". Transactions of the Faraday Society. 51: 1235–1244. doi:10.1039/TF9555101235.
  4. Herbert Harned and Benton Owen, The Physical Chemistry of Electrolytic Solutions, 1950, p. 253.
  5. Calculated from data in the CRC Handbook of Chemistry and Physics, 49th edition.
  6. Citric acid Apelblat, Alexander (Springer 2014) p.50 ISBN 978-3-319-11233-6
  7. Harned, Owen, op. cit. third edition 1958, p. 398-399
  8. Citric acid Apelblat p.320
  9. Apelblat p.320


बाहरी संबंध