क्वांटम छद्म टेलीपैथी: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
}} | }} | ||
{{Quantum mechanics|cTopic=Fundamental concepts}} | {{Quantum mechanics|cTopic=Fundamental concepts}} | ||
'''क्वांटम छद्म-टेलीपैथी''' तथ्य यह है कि | '''क्वांटम छद्म-टेलीपैथी''' का तथ्य यह है कि कुछ [[बायेसियन खेल|बायेसियन खेलों]] में असममित जानकारी वाले खिलाड़ियों के पास एक जटिल क्वांटम स्थिति में एक साझा भौतिक प्रणाली होती है, जो जटिल भौतिक प्रणाली पर किए गए मापों पर निर्भर योजनाओ को निष्पादित करने में सक्षम होती है। जटिल क्वांटम प्रणाली तक अभिगम्य के अतिरिक्त खिलाड़ियों द्वारा एक ही खेल के किसी भी मिश्रित नैश संतुलन योजना में प्राप्त की जाने वाली तुलना में संतुलन से उच्च अपेक्षित भुगतान प्राप्त किया जा सकता है। | ||
अपने 1999 के पेपर में,<ref name="Brassard 1999">{{Cite journal |arxiv = quant-ph/9901035|doi = 10.1103/PhysRevLett.83.1874|title = शास्त्रीय संचार के साथ क्वांटम उलझाव का सटीक अनुकरण करने की लागत|journal = Physical Review Letters|volume = 83|issue = 9|pages = 1874–1877|year = 1999|last1 = Brassard|first1 = Gilles|last2 = Cleve|first2 = Richard|last3 = Tapp|first3 = Alain|bibcode = 1999PhRvL..83.1874B|s2cid = 5837965}}</ref> | अपने 1999 के पेपर में [[गाइल्स ब्रासार्ड]], [[रिचर्ड क्लेव]] और एलेन टैप ने प्रदर्शित किया कि क्वांटम छद्म-टेलीपैथी कुछ खेलों में खिलाड़ियों को ऐसे परिणाम प्राप्त करने की स्वीकृति देती है जो केवल तभी संभव होते हैं जब प्रतिभागियों को खेल के समय वार्तालाप करने की स्वीकृति दी जाती है।<ref name="Brassard 1999">{{Cite journal |arxiv = quant-ph/9901035|doi = 10.1103/PhysRevLett.83.1874|title = शास्त्रीय संचार के साथ क्वांटम उलझाव का सटीक अनुकरण करने की लागत|journal = Physical Review Letters|volume = 83|issue = 9|pages = 1874–1877|year = 1999|last1 = Brassard|first1 = Gilles|last2 = Cleve|first2 = Richard|last3 = Tapp|first3 = Alain|bibcode = 1999PhRvL..83.1874B|s2cid = 5837965}}</ref> | ||
इस घटना को क्वांटम छद्म-टेलीपैथी के रूप में संदर्भित किया | इस घटना को क्वांटम छद्म-टेलीपैथी के रूप में संदर्भित किया जाता है।<ref name="Brassard 2003">{{Cite book |arxiv = quant-ph/0306042|doi = 10.1007/978-3-540-45078-8_1|chapter = Multi-party Pseudo-Telepathy|title = एल्गोरिदम और डेटा संरचनाएं|volume = 2748|pages = 1–11|series = Lecture Notes in Computer Science|year = 2003|last1 = Brassard|first1 = Gilles|last2 = Broadbent|first2 = Anne|last3 = Tapp|first3 = Alain|isbn = 978-3-540-40545-0|s2cid = 14390319}}</ref> उपसर्ग छद्म के साथ इस तथ्य का अर्थ है कि क्वांटम छद्म-टेलीपैथी में किसी भी पक्ष के बीच सूचना का आदान-प्रदान सम्मिलित नहीं है। इसके अतिरिक्त क्वांटम छद्म टेलीपैथी कुछ परिस्थितियों में प्रतिभागियों के लिए सूचनाओं के आदान-प्रदान की आवश्यकता को दूर कर देती है। | ||
कुछ परिस्थितियों में पारस्परिक रूप से लाभप्रद परिणाम प्राप्त करने के लिए संचार में संलग्न होने की आवश्यकता को हटाकर, क्वांटम छद्म-टेलीपैथी उपयोगी हो सकती | कुछ परिस्थितियों में पारस्परिक रूप से लाभप्रद परिणाम प्राप्त करने के लिए संचार में संलग्न होने की आवश्यकता को हटाकर, क्वांटम छद्म-टेलीपैथी उपयोगी हो सकती है। यदि किसी खेल में कुछ प्रतिभागियों को कई प्रकाश वर्ष से अलग किया गया हो, जिसका अर्थ है कि उनके बीच संचार में कई वर्ष लग सकते है। यह क्वांटम गैर-स्थानीयता के सूक्ष्म निहितार्थ का एक उदाहरण है। | ||
क्वांटम छद्म टेलीपैथी का उपयोग | क्वांटम छद्म टेलीपैथी का उपयोग सामान्यतः [[क्वांटम यांत्रिकी]] की गैर-स्थानीय विशेषताओं को प्रदर्शित करने के लिए एक विचार प्रयोग के रूप में किया जाता है। हालाँकि, क्वांटम छद्म टेलीपैथी एक वास्तविक घटना है, जिसे प्रयोगात्मक रूप से सत्यापित किया जा सकता है। इस प्रकार यह बेल असमानता उल्लंघनों की प्रायोगिक पुष्टि का एक विशेष रूप से उल्लेखनीय उदाहरण है। | ||
== असममित जानकारी का खेल == | == असममित जानकारी का खेल == | ||
बायेसियन | बायेसियन खेल एक ऐसा खेल है जिसमें दोनों खिलाड़ियों के पास कुछ मापदंडों के मान के संबंध में अपूर्ण जानकारी होती है। बायेसियन खेल में कभी-कभी ऐसा होता है कि कम से कम कुछ खिलाड़ियों के लिए नैश संतुलन में प्राप्त होने वाले उच्चतम अपेक्षित परिणाम उससे कम होते है जिसे सामान्यतः प्राप्त किया जा सकता है। यदि अपूर्ण जानकारी नही होती है। असममित जानकारी अपूर्ण जानकारी की एक विशेष स्थिति है, जिसमें विभिन्न खिलाड़ी कुछ मापदंडों के मान के संबंध में अपनी जानकारी के कारण भिन्न होते हैं। | ||
असममित जानकारी के | असममित जानकारी के प्राचीन बायेसियन खेलों में एक सामान्य धारणा यह है कि खेल प्रारम्भ होने से पहले सभी खिलाड़ी कुछ महत्वपूर्ण मापदंडों के मान से अज्ञात होते हैं। एक बार खेल प्रारम्भ होने पर विभिन्न खिलाड़ियों को विभिन्न मापदंडों के मान के विषय में जानकारी प्राप्त होती है। हालाँकि खेल प्रारम्भ होने के बाद खिलाड़ियों को वार्तालाप करने से मना किया जाता है। जिसके परिणामस्वरूप वे खेल के मापदंडों के संबंध में सामूहिक रूप से सम्मिलित जानकारी का आदान-प्रदान करने में असमर्थ होते हैं। | ||
इस धारणा का एक महत्वपूर्ण निहितार्थ है | इस धारणा का एक महत्वपूर्ण निहितार्थ यह है कि यदि खिलाड़ी खेल प्रारम्भ होने से पहले योजनायों पर वार्तालाप करने और चर्चा करने में सक्षम हों, इससे किसी भी खिलाड़ी के अपेक्षित लाभ में वृद्धि नहीं होगी, क्योंकि अज्ञात मापदंडों के विषय में महत्वपूर्ण जानकारी अभी तक खेल के प्रतिभागियों को स्पष्ट नहीं होती है। हालाँकि यदि खेल को संशोधित किया जा सकता है। ताकि खिलाड़ियों को खेल प्रारम्भ होने के बाद वार्तालाप करने की स्वीकृति दी जाए, एक बार प्रत्येक खिलाड़ी को कुछ अज्ञात मापदंडों के मान के विषय में कुछ जानकारी प्राप्त हो जाए, तो यह खेल के प्रतिभागियों के लिए संभव हो सकता है। एक नैश संतुलन जो संचार के अभाव में प्राप्त होने वाले किसी भी नैश संतुलन के लिए [[पेरेटो इष्टतम|पेरेटो ऑप्टिमल]] (इष्टतम) है। | ||
क्वांटम टेलीपैथी का महत्वपूर्ण निहितार्थ यह है कि यद्यपि असममित जानकारी के बायेसियन | क्वांटम टेलीपैथी का महत्वपूर्ण निहितार्थ यह भी है कि यद्यपि असममित जानकारी के बायेसियन खेल प्रारम्भ होने से पहले संचार के संतुलन में सुधार नहीं होता है तब यह सिद्ध किया जा सकता है कि कुछ बायेसियन खेल में खेल के प्रारम्भ होने से पहले खिलाड़ियों को जटिल क्वैबिट का आदान-प्रदान करने की स्वीकृति प्राप्त हो सकती है। जिससे एक नैश संतुलन केवल तभी प्राप्त किया जा सकता है जब खेल संचार की स्वीकृति प्राप्त हो सकती है। | ||
==मैजिक स्क्वायर | ==मैजिक-स्क्वायर खेल== | ||
[[Image:Mermin-Peres magic square.svg|thumb|जब +1 और -1 संख्याओं से भरी 3×3 तालिका बनाने का प्रयास किया जाता है, जैसे कि प्रत्येक पंक्ति में सम संख्या में नकारात्मक प्रविष्टियाँ हों और प्रत्येक कॉलम में विषम संख्या में नकारात्मक प्रविष्टियाँ हों, तो एक संघर्ष उभरना तय है।]]क्वांटम छद्म-टेलीपैथी का एक उदाहरण [[जादू वर्ग]] | [[Image:Mermin-Peres magic square.svg|thumb|जब +1 और -1 संख्याओं से भरी 3×3 तालिका बनाने का प्रयास किया जाता है, जैसे कि प्रत्येक पंक्ति में सम संख्या में नकारात्मक प्रविष्टियाँ हों और प्रत्येक कॉलम में विषम संख्या में नकारात्मक प्रविष्टियाँ हों, तो एक संघर्ष उभरना तय है।]]क्वांटम छद्म-टेलीपैथी का एक उदाहरण [[जादू वर्ग|मैजिक-स्क्वायर]] खेल में देखा जा सकता है, जिसे एडन कैबेलो और पी.के द्वारा प्रस्तुत किया गया था। यह खेल अरविंद एन. डेविड मर्मिन और एशर पेरेज़ के पिछले कार्य पर आधारित है।<ref name="Cabello 2001a">{{cite journal |last1=Cabello |first1=A. |title=बेल का प्रमेय दो पर्यवेक्षकों के लिए असमानताओं और संभावनाओं के बिना|journal=Physical Review Letters |date=2001 |volume=86 |issue=10 |pages=1911–1914 |doi=10.1103/PhysRevLett.86.1911 |pmid=11289818 |arxiv=quant-ph/0008085|bibcode=2001PhRvL..86.1911C |s2cid=119472501 |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.86.1911 }}</ref><ref name="Cabello 2001b">{{cite journal |last1=Cabello |first1=A. |title=दो पर्यवेक्षकों के लिए सब बनाम कुछ भी नहीं की अविभाज्यता|journal=Physical Review Letters |date=2001 |volume=87 |issue=1 |pages=010403 |doi=10.1103/PhysRevLett.87.010403 |pmid=11461451 |arxiv=quant-ph/0101108 |bibcode=2001PhRvL..87a0403C |s2cid=18748483 |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.010403 }}</ref><ref name="Aravind 2004">{{cite journal |last1=Aravind |first1=P.K. |title=क्वांटम रहस्यों पर फिर से गौर किया गया|journal=American Journal of Physics |date=2004 |volume=72 |issue=10 |pages=1303–1307 |doi=10.1119/1.1773173|arxiv=quant-ph/0206070|url=https://www.physics.wisc.edu/undergrads/courses/spring2015/407/experiments/bell/Bell's%20Theorem%20Background%20Papers/Aravind_mysteries_Am.J.P.72.1303.pdf|bibcode=2004AmJPh..72.1303A |citeseerx=10.1.1.121.9157 }}</ref> | ||
इस | इस खेल में दो खिलाड़ी [[ऐलिस और बॉब]] हैं। खेल के प्रारम्भ में ही ऐलिस और बॉब अलग हो जाते हैं। अलग होने के बाद उनके बीच वार्तालाप संभव नहीं होती है। खेल के लिए आवश्यक है कि ऐलिस प्लस और माइनस चिह्नों के साथ 3×3 तालिका की एक पंक्ति और बॉब एक स्तम्भ (कॉलम) भरें। खेल प्रारम्भ होने से पहले ऐलिस को नहीं पता था कि उसे तालिका की कौन सी पंक्ति भरनी होगी। इसी प्रकार बॉब को भी नहीं पता था कि उसे कौन सा स्तम्भ भरना होगा। दोनों खिलाड़ियों के अलग होने के बाद ऐलिस को अपेक्षाकृत रूप से तालिका की एक पंक्ति दी गई और उसे (+) और (-) चिह्नों से भरने के लिए कहा गया। इसी प्रकार बॉब को यादृच्छिक रूप से तालिका का एक स्तम्भ दिया गया और इसे भी (+) और (-) चिह्नों से भरने के लिए कहा गया था। | ||
खिलाड़ी निम्नलिखित आवश्यकता के अधीन हैं: ऐलिस को अपनी पंक्ति इस प्रकार भरनी होगी कि उस पंक्ति में ऋण चिह्नों की संख्या सम हो। इसके अतिरिक्त बॉब को अपना स्तम्भ इस प्रकार भरना होगा कि उस स्तम्भ में विषम संख्या में ऋण चिह्न हों। | |||
सामान्यतः ऐलिस को नहीं पता था कि बॉब को कौन सा स्तम्भ भरने के लिए कहा गया है। इसी प्रकार बॉब को भी नहीं पता था कि ऐलिस को कौन सी पंक्ति भरने के लिए कहा गया है। इस प्रकार यह खेल असममित अपूर्ण जानकारी वाला एक बायेसियन खेल है क्योंकि किसी भी खिलाड़ी के पास पूर्ण जानकारी नहीं है खेल के विषय में जानकारी (अपूर्ण जानकारी) और दोनों खिलाड़ियों के पास सम्मिलित जानकारी (असममित जानकारी) के संदर्भ में भिन्नता है। | |||
प्रतिभागियों द्वारा किए गए कार्यों के आधार पर इस खेल में दो में से एक परिणाम हो सकता है। या तो दोनों खिलाड़ी जीतते हैं या दोनों खिलाड़ी हारते हैं। | |||
यदि ऐलिस और बॉब अपनी पंक्ति और स्तंभ द्वारा साझा किए गए सेल (कोश) में समान चिह्न लगाते हैं, तो वे खेल जीत जाते हैं। यदि वे विपरीत चिह्न लगाते हैं, तो वे खेल हार जाते हैं। | |||
ध्यान दें कि दोनों खिलाड़ी अपने सभी (+) और (-) चिन्ह एक साथ लगाते हैं और खेल समाप्त होने तक कोई भी खिलाड़ी यह नहीं देख सकता है कि दूसरे खिलाड़ी ने अपने चिन्ह कहाँ लगाए हैं। | |||
यदि ऐलिस और बॉब | यह सिद्ध किया जा सकता है कि इस खेल के प्रारम्भिक सूत्र में ऐसी कोई योजना (नैश संतुलन या अन्य) नहीं है जो खिलाड़ियों को 8/9 से अधिक संभावना के साथ खेल जीतने की स्वीकृति देती है। 8/9 इसलिए होता है क्योंकि वे इस विषय पर सहमत हो सकते हैं कि 9 में से 8 वर्गों में क्या मान रखा जाए, लेकिन 9वां वर्ग नहीं है जो संभावना 1/9 के साथ साझा वर्ग हो सकता है। यदि ऐलिस और बॉब खेल प्रारम्भ होने से पहले सूचनाओं का आदान-प्रदान करते हैं, तो इससे खेल पर '''किसी भी तरह का प्रभाव नहीं पड़ेगा और खिलाड़ी भी 8/9 संभावना के सा'''थ जीत को सर्वश्रेष्ठ कर सकते हैं। | ||
खेल केवल 8/9 संभावना के साथ ही जीता जा सकता है इसका कारण यह है कि एक पूरी तरह से सुसंगत तालिका सम्मिलित नहीं है: यह स्व-विरोधाभासी होगी, तालिका में ऋण चिह्नों का योग पंक्ति योग के आधार पर भी होगा, और होगा स्तम्भ योगों का उपयोग करते समय अजीब, या इसके विपरीत। एक और उदाहरण के रूप में, यदि वे आरेख में दिखाए गए आंशिक तालिका का उपयोग करते हैं (ऐलिस के लिए -1 और लापता वर्ग में बॉब के लिए +1 द्वारा पूरक) और चुनौती पंक्तियों और स्तंभों को यादृच्छिक रूप से चुना जाता है तो वे 8/9 जीतेंगे समय का। ऐसी कोई शास्त्रीय योजना सम्मिलित नहीं है जो इस जीत दर को हरा सके (यादृच्छिक पंक्ति और स्तंभ चयन के साथ)। | |||
यदि खेल को ऐलिस और बॉब को यह पता लगाने के बाद वार्तालाप करने की स्वीकृति देने के लिए संशोधित किया गया था कि उन्हें कौन सी पंक्ति/स्तंभ सौंपा गया है, तो योजनायों का एक सेट सम्मिलित होगा जो दोनों खिलाड़ियों को संभावना 1 के साथ खेल जीतने की स्वीकृति देगा। हालांकि, यदि क्वांटम छद्म-टेलीपैथी का उपयोग किया गया, तो ऐलिस और बॉब दोनों बिना वार्तालाप किए खेल जीत सकते थे। | |||
===छद्म-टेलीपैथिक योजनायाँ=== | ===छद्म-टेलीपैथिक योजनायाँ=== | ||
क्वांटम छद्म-टेलीपैथी के उपयोग से ऐलिस और बॉब खेल प्रारम्भ होने के बाद बिना किसी संचार के 100% | क्वांटम छद्म-टेलीपैथी के उपयोग से ऐलिस और बॉब खेल प्रारम्भ होने के बाद बिना किसी संचार के 100% खेल जीतने में सक्षम होंगे। | ||
इसके लिए ऐलिस और बॉब के पास | इसके लिए ऐलिस और बॉब के पास जटिल अवस्था वाले कणों के दो जोड़े होने की आवश्यकता है। ये कण खेल प्रारम्भ होने से पहले ही तैयार किये गये होंगे. प्रत्येक जोड़ी का एक कण ऐलिस द्वारा और दूसरा बॉब द्वारा धारण किया जाता है, इसलिए उनमें से प्रत्येक में दो कण होते हैं। जब ऐलिस और बॉब सीखते हैं कि उन्हें कौन सा स्तम्भ और पंक्ति भरनी है, तो प्रत्येक उस जानकारी का उपयोग यह चुनने के लिए करता है कि उन्हें अपने कणों के लिए कौन सा माप करना चाहिए। माप का परिणाम उनमें से प्रत्येक को यादृच्छिक प्रतीत होगा (और किसी भी कण का मनाया गया आंशिक संभाव्यता वितरण दूसरे पक्ष द्वारा किए गए माप से स्वतंत्र होगा), इसलिए कोई वास्तविक "संचार" नहीं होता है। | ||
हालाँकि, कणों को मापने की प्रक्रिया माप के परिणामों के [[संयुक्त संभाव्यता वितरण]] पर पर्याप्त संरचना लगाती है जैसे कि यदि ऐलिस और बॉब अपने माप के परिणामों के आधार पर अपने कार्यों को चुनते हैं, तो योजनायों और मापों का एक सेट सम्मिलित होगा जो खेल को संभाव्यता 1 के साथ जीतने की स्वीकृति देगा। | हालाँकि, कणों को मापने की प्रक्रिया माप के परिणामों के [[संयुक्त संभाव्यता वितरण]] पर पर्याप्त संरचना लगाती है जैसे कि यदि ऐलिस और बॉब अपने माप के परिणामों के आधार पर अपने कार्यों को चुनते हैं, तो योजनायों और मापों का एक सेट सम्मिलित होगा जो खेल को संभाव्यता 1 के साथ जीतने की स्वीकृति देगा। | ||
ध्यान दें कि ऐलिस और बॉब एक-दूसरे से प्रकाश वर्ष दूर हो सकते हैं, और | ध्यान दें कि ऐलिस और बॉब एक-दूसरे से प्रकाश वर्ष दूर हो सकते हैं, और जटिल कण अभी भी उन्हें निश्चितता के साथ खेल जीतने के लिए अपने कार्यों को पर्याप्त रूप से समन्वयित करने में सक्षम बनाएंगे। | ||
इस खेल के प्रत्येक दौर में एक | इस खेल के प्रत्येक दौर में एक जटिल स्थिति का उपयोग होता है। एन राउंड खेलने के लिए आवश्यक है कि एन जटिल अवस्थाएं (2एन स्वतंत्र बेल जोड़े, नीचे देखें) पहले से साझा की जाएं। ऐसा इसलिए है क्योंकि प्रत्येक दौर को मापने के लिए 2-बिट जानकारी की आवश्यकता होती है (तीसरी प्रविष्टि पहले दो द्वारा निर्धारित की जाती है, इसलिए इसे मापना आवश्यक नहीं है), जो उलझाव को नष्ट कर देता है। पहले के खेलों के पुराने मापों का पुन: उपयोग करने का कोई तरीका नहीं है। | ||
यह चाल ऐलिस और बॉब के लिए एक | यह चाल ऐलिस और बॉब के लिए एक जटिल क्वांटम स्थिति को साझा करने और तालिका प्रविष्टियों को प्राप्त करने के लिए जटिल अवस्था के उनके घटकों पर विशिष्ट माप का उपयोग करने के लिए है। एक उपयुक्त सहसंबद्ध अवस्था में जटिल [[बेल अवस्था]]ओं की एक जोड़ी होती है: | ||
:<math>\left|\varphi\right\rang | :<math>\left|\varphi\right\rang | ||
Line 76: | Line 72: | ||
, S_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} | , S_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} | ||
, S_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} </math> | , S_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} </math> | ||
इन पाउली स्पिन ऑपरेटरों के उत्पादों का उपयोग 3×3 तालिका को भरने के लिए किया जा सकता है, जैसे कि प्रत्येक पंक्ति और प्रत्येक | इन पाउली स्पिन ऑपरेटरों के उत्पादों का उपयोग 3×3 तालिका को भरने के लिए किया जा सकता है, जैसे कि प्रत्येक पंक्ति और प्रत्येक स्तम्भ में आइगेनवैल्यू +1 और -1 के साथ वेधशालाओं का पारस्परिक रूप से [[ क्रमपरिवर्तनशीलता ]] सेट होता है, और प्रत्येक पंक्ति में वेधशालाओं का उत्पाद पहचान ऑपरेटर होता है, और प्रत्येक स्तम्भ में वेधशालाओं का उत्पाद पहचान ऑपरेटर को घटाकर बराबर होता है। यह एक तथाकथित मर्मिन-पेरेज़ जादुई वर्ग है। इसे नीचे तालिका में दिखाया गया है। | ||
{| class="wikitable" style="text-align:center; border;1px" | {| class="wikitable" style="text-align:center; border;1px" | ||
Line 87: | Line 83: | ||
|- | |- | ||
|} | |} | ||
प्रभावी रूप से, जबकि प्रविष्टियों +1 और −1 के साथ 3×3 तालिका बनाना संभव नहीं है, जैसे कि प्रत्येक पंक्ति में तत्वों का उत्पाद +1 के बराबर हो और प्रत्येक | प्रभावी रूप से, जबकि प्रविष्टियों +1 और −1 के साथ 3×3 तालिका बनाना संभव नहीं है, जैसे कि प्रत्येक पंक्ति में तत्वों का उत्पाद +1 के बराबर हो और प्रत्येक स्तम्भ में तत्वों का उत्पाद −1 के बराबर हो, यह संभव है स्पिन मैट्रिक्स पर आधारित क्षेत्र में समृद्ध बीजगणित के साथ ऐसा करें। | ||
प्रत्येक खिलाड़ी द्वारा खेल के प्रत्येक दौर में | प्रत्येक खिलाड़ी द्वारा खेल के प्रत्येक दौर में जटिल स्थिति के अपने हिस्से का एक माप करके खेल आगे बढ़ता है। ऐलिस का प्रत्येक माप उसे एक पंक्ति के लिए मान देगा, और बॉब का प्रत्येक माप उसे एक स्तम्भ के लिए मान देगा। ऐसा करना संभव है क्योंकि किसी दी गई पंक्ति या स्तंभ में सभी अवलोकन योग्य वस्तुएँ घूमती हैं, इसलिए एक आधार सम्मिलित है जिसमें उन्हें एक साथ मापा जा सकता है। ऐलिस की पहली पंक्ति के लिए उसे अपने दोनों कणों को <math>S_z</math> आधार पर मापने की आवश्यकता है, दूसरी पंक्ति के लिए उसे उन्हें <math>S_x</math> आधार पर मापने की आवश्यकता है, और तीसरी पंक्ति के लिए उसे उन्हें जटिल आधार पर मापने की आवश्यकता है . बॉब के पहले स्तम्भ के लिए उसे अपने पहले कण को <math>S_z</math> आधार पर और दूसरे को <math>S_z</math> आधार पर मापने की जरूरत है, दूसरे स्तम्भ के लिए उसे अपने पहले कण को <math>S_z</math> आधार पर और दूसरे को <math>S_z</math> आधार पर मापने की जरूरत है <math>S_x</math> आधार, और अपने तीसरे स्तंभ के लिए उसे अपने दोनों कणों को एक अलग जटिल आधार, बेल आधार में मापने की आवश्यकता है। जब तक ऊपर दी गई तालिका का उपयोग किया जाता है, तब तक माप परिणाम हमेशा ऐलिस के लिए उसकी पंक्ति के साथ +1 और बॉब के लिए उसके स्तम्भ के नीचे -1 से गुणा होने की गारंटी है। बेशक, प्रत्येक पूरी तरह से नए दौर के लिए एक नई जटिल स्थिति की आवश्यकता होती है, क्योंकि विभिन्न पंक्तियाँ और स्तंभ एक-दूसरे के साथ संगत नहीं होते हैं। | ||
===[[समन्वय खेल]]=== | ===[[समन्वय खेल]]=== | ||
शास्त्रीय गैर-सहकारी खेल सिद्धांत में एक समन्वय खेल एकाधिक नैश संतुलन वाला कोई भी खेल है। छद्म-टेलीपैथी से संबंधित साहित्य कभी-कभी मर्मिन-पेरेज़ | शास्त्रीय गैर-सहकारी खेल सिद्धांत में एक समन्वय खेल एकाधिक नैश संतुलन वाला कोई भी खेल है। छद्म-टेलीपैथी से संबंधित साहित्य कभी-कभी मर्मिन-पेरेज़ खेल जैसे खेल को समन्वय खेल के रूप में संदर्भित करता है। एक ओर, यह तकनीकी रूप से सही है, क्योंकि मर्मिन-पेरेज़ खेल के क्लासिक संस्करण में एकाधिक नैश संतुलन की सुविधा है। | ||
हालाँकि, क्वांटम छद्म-टेलीपैथी समन्वय समस्याओं का कोई समाधान प्रदान नहीं करती है जो समन्वय खेलों की विशेषता है। क्वांटम स्यूडो-टेलीपैथी की उपयोगिता बायेसियन खेलों में असममित जानकारी के साथ समस्याओं को हल करने में निहित है जहां संचार निषिद्ध है। | हालाँकि, क्वांटम छद्म-टेलीपैथी समन्वय समस्याओं का कोई समाधान प्रदान नहीं करती है जो समन्वय खेलों की विशेषता है। क्वांटम स्यूडो-टेलीपैथी की उपयोगिता बायेसियन खेलों में असममित जानकारी के साथ समस्याओं को हल करने में निहित है जहां संचार निषिद्ध है। | ||
उदाहरण के लिए, मर्मिन-पेरेज़ | उदाहरण के लिए, मर्मिन-पेरेज़ खेल में छद्म-टेलीपैथिक योजनायों को लागू करने से सूचनाओं के आदान-प्रदान के लिए बॉब और ऐलिस की आवश्यकता को दूर किया जा सकता है। हालाँकि, छद्म-टेलीपैथिक योजनायाँ समन्वय समस्याओं का समाधान नहीं करती हैं। विशेष रूप से, छद्म-टेलीपैथिक योजनायों को लागू करने के बाद भी, बॉब और ऐलिस केवल संभाव्यता के साथ खेल जीतेंगे यदि वे दोनों अपनी छद्म-टेलीपैथिक योजनायों को ऊपर वर्णित तरीके से समरूप तरीके से समन्वयित करते हैं। | ||
==वर्तमान शोध== | ==वर्तमान शोध== | ||
यह प्रदर्शित किया गया है कि ऊपर वर्णित | यह प्रदर्शित किया गया है कि ऊपर वर्णित खेल अपने प्रकार का सबसे सरल दो-खिलाड़ियों का खेल है जिसमें क्वांटम छद्म टेलीपैथी संभाव्यता के साथ जीत की स्वीकृति देता है।<ref name="Gisin 2006">{{Cite journal|arxiv = quant-ph/0610175|last1 = Gisin|first1 = N.|title = Pseudo-telepathy: Input cardinality and Bell-type inequalities|last2 = Methot|first2 = A. A.|last3 = Scarani|first3 = V.|year = 2007|journal=International Journal of Quantum Information |volume=5 |issue = 4|pages=525–534|doi = 10.1142/S021974990700289X|s2cid = 11386567}}</ref> अन्य खेल जिनमें क्वांटम स्यूडो-टेलीपैथी होती है, का अध्ययन किया गया है, जिसमें बड़े मैजिक स्क्वायर खेल भी शामिल हैं,<ref name="Kunkri 2006">{{Cite arXiv |eprint = quant-ph/0602064|last1 = Kunkri|first1 = Samir|title= एकल गैर-स्थानीय बॉक्स का उपयोग करके छद्म टेलीपैथी गेम के लिए जीतने की रणनीतियाँ|last2 = Kar|first2 = Guruprasad|last3 = Ghosh|first3 = Sibasish|last4 = Roy|first4 = Anirban|year = 2006}}</ref> [[ग्राफ़ रंग खेल]]<ref name="Avis 2005">{{Cite journal |arxiv = quant-ph/0509047|doi = 10.1093/ietfec/e89-a.5.1378|title = सभी हैडामर्ड ग्राफ़ पर ग्राफ़ कलरिंग गेम जीतने के लिए एक क्वांटम प्रोटोकॉल|journal = IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences|volume = 89|issue = 5|pages = 1378–1381|year = 2006|last1 = Avis|first1 = D.|last2 = Hasegawa|first2 = Jun|last3 = Kikuchi|first3 = Yosuke|last4 = Sasaki|first4 = Yuuya|bibcode = 2006IEITF..89.1378A}}</ref> क्वांटम [[रंगीन संख्या]] की धारणा को जन्म देते हुए,<ref name="Cameron 2007">{{Cite journal|arxiv = quant-ph/0608016|last1 = Cameron|first1 = Peter J.|title = ग्राफ़ की क्वांटम रंगीन संख्या पर|last2 = Montanaro|first2 = Ashley|last3 = Newman|first3 = Michael W.|last4 = Severini|first4 = Simone|last5 = Winter|first5 = Andreas|year = 2007 |journal=Electronic Journal of Combinatorics |volume=14 |issue=1|doi = 10.37236/999|s2cid = 6320177}}</ref> और मल्टीप्लेयर खेल जिसमें दो से अधिक प्रतिभागी शामिल हों।<ref name="Brassard 2004">{{Cite journal|arxiv = quant-ph/0408052|last1 = Brassard|first1 = Gilles|title = मर्मिन के मल्टी-प्लेयर गेम को छद्म टेलीपैथी के ढांचे में दोबारा ढालना|last2 = Broadbent|first2 = Anne|last3 = Tapp|first3 = Alain|year = 2005 |journal=Quantum Information and Computation |volume=5 |issue=7 |pages=538–550|doi = 10.26421/QIC5.7-2|bibcode = 2004quant.ph..8052B}}</ref>सामान्य तौर पर, दो-खिलाड़ियों वाले गैर-स्थानीय खेल की जीत की संभावना को खिलाड़ियों द्वारा साझा करने की स्वीकृति वाली जटिल क्वैबिट की संख्या में वृद्धि करके सुधार किया जा सकता है। क्वांटम छद्म-टेलीपैथी का उपयोग करके दो-खिलाड़ियों के खेल को जीतने की अधिकतम संभावना की गणना करना असंभव है, लेकिन एक बड़ी, लेकिन सीमित, साझा जटिल क्वैबिट की संख्या मानकर एक निचली सीमा निर्धारित की जा सकती है; एक ऊपरी सीमा को गैर-स्थानीय खेल के समतुल्य ढांचे के संदर्भ में भी सेट किया जा सकता है, जो कि कम्यूटिंग मैट्रिसेस पर आधारित है। अधिकतम जीत की संभावना के लिए ऊपरी और निचली सीमा की गणना एनपी-हार्ड है।<ref>{{cite web |title=क्वांटम गेम्स में, बाधाओं से खेलने का कोई तरीका नहीं है|url=https://www.quantamagazine.org/in-quantum-games-theres-no-way-to-play-the-odds-20190401/ |website=[[Quanta Magazine]] |date=1 April 2019}}</ref> जबकि कुछ खेल अधिकतम जीत की संभावना को मनमाने ढंग से बारीकी से गणना करने की स्वीकृति दे सकते हैं, [[कोन्स एम्बेडिंग समस्या]] का दावा किया गया खंडन<ref>{{cite journal |last1=Ji |first1=Zhengfeng |last2=Natarajan |first2=Anand |last3=Vidick |first3=Thomas |last4=Wright |first4=John |last5=Yuen |first5=Henry |title=MIP* = RE |journal=Communications of the ACM |date=November 2021 |volume=64 |issue=11 |pages=131–138 |doi=10.1145/3485628|s2cid=210165045 |doi-access=free }}</ref> का तात्पर्य है कि ऐसे खेल हैं जहां ये सीमाएं एक अद्वितीय अधिकतम जीत की संभावना में परिवर्तित नहीं होती हैं।<ref>{{cite web |last1=Hartnett |first1=Kevin |title=भौतिकी और गणित के माध्यम से ऐतिहासिक कंप्यूटर विज्ञान प्रमाण कैस्केड|url=https://www.quantamagazine.org/landmark-computer-science-proof-cascades-through-physics-and-math-20200304/ |website=Quanta Magazine |language=en |date=4 March 2020}}</ref> | ||
हाल के अध्ययन सुसंगत क्वांटम स्थिति पर अपूर्ण माप के कारण शोर के खिलाफ प्रभाव की मजबूती के सवाल से निपटते हैं।<ref name="Gawron 2008">{{Cite journal |arxiv = 0801.4848|doi = 10.1142/S0219749908003931|title = क्वांटम मैजिक स्क्वेयर गेम में शोर प्रभाव|journal = International Journal of Quantum Information|volume = 06|pages = 667–673|year = 2008|last1 = Gawron|first1 = Piotr|last2 = Miszczak|first2 = Jarosław|last3 = Sładkowski|first3 = JAN|bibcode = 2008arXiv0801.4848G|s2cid = 14337088}}</ref> हाल के | हाल के अध्ययन सुसंगत क्वांटम स्थिति पर अपूर्ण माप के कारण शोर के खिलाफ प्रभाव की मजबूती के सवाल से निपटते हैं।<ref name="Gawron 2008">{{Cite journal |arxiv = 0801.4848|doi = 10.1142/S0219749908003931|title = क्वांटम मैजिक स्क्वेयर गेम में शोर प्रभाव|journal = International Journal of Quantum Information|volume = 06|pages = 667–673|year = 2008|last1 = Gawron|first1 = Piotr|last2 = Miszczak|first2 = Jarosław|last3 = Sładkowski|first3 = JAN|bibcode = 2008arXiv0801.4848G|s2cid = 14337088}}</ref> हाल के कार्य में उलझाव के कारण गैर-रेखीय वितरित गणना की संचार लागत में तेजी से वृद्धि देखी गई है, जब संचार चैनल स्वयं रैखिक होने तक सीमित है।<ref name="Marblestone 2009">{{Cite journal |arxiv = 0907.3465|doi = 10.1007/s11128-009-0126-9|title = स्थानीय गैर-रैखिकता के साथ वितरित जोड़ के लिए घातीय क्वांटम वृद्धि|journal = Quantum Information Processing|volume = 9|pages = 47–59|year = 2010|last1 = Marblestone|first1 = Adam Henry|last2 = Devoret|first2 = Michel|s2cid = 14744349}}</ref> | ||
जुलाई 2022 में एक अध्ययन में मर्मिन-पेरेज़ मैजिक स्क्वायर | जुलाई 2022 में एक अध्ययन में मर्मिन-पेरेज़ मैजिक स्क्वायर खेल के गैर-स्थानीय संस्करण को खेलकर क्वांटम स्यूडोटेलीपैथी के प्रयोगात्मक प्रदर्शन की सूचना दी गई।<ref>{{Cite journal |last1=Xu |first1=Jia-Min |last2=Zhen |first2=Yi-Zheng |last3=Yang |first3=Yu-Xiang |last4=Cheng |first4=Zi-Mo |last5=Ren |first5=Zhi-Cheng |last6=Chen |first6=Kai |last7=Wang |first7=Xi-Lin |last8=Wang |first8=Hui-Tian |date=2022-07-26 |title=क्वांटम स्यूडोटेलीपैथी का प्रायोगिक प्रदर्शन|url=https://link.aps.org/doi/10.1103/PhysRevLett.129.050402 |journal=Physical Review Letters |volume=129 |issue=5 |pages=050402 |doi=10.1103/PhysRevLett.129.050402|pmid=35960591 |arxiv=2206.12042 |bibcode=2022PhRvL.129e0402X |s2cid=250048711 }}</ref><ref>{{Cite web |title=जब तक आप इसे माप नहीं लेते तब तक वास्तविकता अस्तित्व में नहीं है, क्वांटम पार्लर ट्रिक इसकी पुष्टि करती है|url=https://www.science.org/content/article/reality-doesn-t-exist-until-you-measure-it-quantum-parlor-trick-confirms |access-date=2022-08-27 |website=www.science.org |language=en}}</ref> | ||
==ग्रीनबर्गर-हॉर्न-ज़ीलिंगर | ==ग्रीनबर्गर-हॉर्न-ज़ीलिंगर खेल== | ||
ग्रीनबर्गर-हॉर्न-ज़ीलिंगर (जीएचजेड) | ग्रीनबर्गर-हॉर्न-ज़ीलिंगर (जीएचजेड) खेल क्वांटम छद्म टेलीपैथी का एक और दिलचस्प उदाहरण है। शास्त्रीय रूप से, खेल में जीतने की संभावना 75% है। हालाँकि, क्वांटम योजना के साथ, खिलाड़ी हमेशा 1 के बराबर जीत की संभावना के साथ जीतेंगे। | ||
तीन खिलाड़ी हैं, ऐलिस, बॉब और कैरोल एक रेफरी के खिलाफ खेल रहे हैं। रेफरी प्रत्येक खिलाड़ी से <math>\in \{0,1\}</math> प्रश्न पूछता है। तीनों खिलाड़ियों में से प्रत्येक का उत्तर <math>\in \{0,1\}</math> है। रेफरी 4 विकल्पों में से समान रूप से तीन प्रश्न x, y, z निकालता है <math>\{(0,0,0), (1,1,0),(1,0,1),(0,1,1)\}</math> चुना जाता है, फिर ऐलिस को बिट 0, बॉब को बिट 1 और कैरोल को रेफरी से बिट 1 प्राप्त होता है। प्राप्त प्रश्न के आधार पर, ऐलिस, बॉब और कैरोल प्रत्येक उत्तर ए, बी, सी के साथ 0 या 1 के रूप में देते हैं। खिलाड़ी खेल प्रारम्भ होने से पहले एक साथ योजना बना सकते हैं। हालाँकि, खेल के दौरान किसी भी संचार की स्वीकृति नहीं है। | तीन खिलाड़ी हैं, ऐलिस, बॉब और कैरोल एक रेफरी के खिलाफ खेल रहे हैं। रेफरी प्रत्येक खिलाड़ी से <math>\in \{0,1\}</math> प्रश्न पूछता है। तीनों खिलाड़ियों में से प्रत्येक का उत्तर <math>\in \{0,1\}</math> है। रेफरी 4 विकल्पों में से समान रूप से तीन प्रश्न x, y, z निकालता है <math>\{(0,0,0), (1,1,0),(1,0,1),(0,1,1)\}</math> चुना जाता है, फिर ऐलिस को बिट 0, बॉब को बिट 1 और कैरोल को रेफरी से बिट 1 प्राप्त होता है। प्राप्त प्रश्न के आधार पर, ऐलिस, बॉब और कैरोल प्रत्येक उत्तर ए, बी, सी के साथ 0 या 1 के रूप में देते हैं। खिलाड़ी खेल प्रारम्भ होने से पहले एक साथ योजना बना सकते हैं। हालाँकि, खेल के दौरान किसी भी संचार की स्वीकृति नहीं है। | ||
Line 147: | Line 143: | ||
यदि प्रश्न 0 प्राप्त होता है, तो खिलाड़ी X आधार पर माप करता है <math display="inline">\{|+\rangle,|-\rangle\}</math>. यदि प्रश्न 1 प्राप्त होता है, तो खिलाड़ी Y आधार पर माप करता है <math display="inline">\left\{\frac{1}{\sqrt 2}(|0\rangle+i|1\rangle), \frac{1}{\sqrt 2}(|0\rangle-i|1\rangle)\right\}</math>. दोनों मामलों में, यदि माप का परिणाम जोड़ी की पहली स्थिति है तो खिलाड़ी उत्तर 0 देते हैं, और यदि परिणाम जोड़ी की दूसरी स्थिति है तो उत्तर 1 देते हैं। | यदि प्रश्न 0 प्राप्त होता है, तो खिलाड़ी X आधार पर माप करता है <math display="inline">\{|+\rangle,|-\rangle\}</math>. यदि प्रश्न 1 प्राप्त होता है, तो खिलाड़ी Y आधार पर माप करता है <math display="inline">\left\{\frac{1}{\sqrt 2}(|0\rangle+i|1\rangle), \frac{1}{\sqrt 2}(|0\rangle-i|1\rangle)\right\}</math>. दोनों मामलों में, यदि माप का परिणाम जोड़ी की पहली स्थिति है तो खिलाड़ी उत्तर 0 देते हैं, और यदि परिणाम जोड़ी की दूसरी स्थिति है तो उत्तर 1 देते हैं। | ||
यह जांचना आसान है कि इस योजना से खिलाड़ी प्रायिकता 1 के साथ | यह जांचना आसान है कि इस योजना से खिलाड़ी प्रायिकता 1 के साथ खेल जीतते हैं। | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 09:17, 3 August 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
क्वांटम छद्म-टेलीपैथी का तथ्य यह है कि कुछ बायेसियन खेलों में असममित जानकारी वाले खिलाड़ियों के पास एक जटिल क्वांटम स्थिति में एक साझा भौतिक प्रणाली होती है, जो जटिल भौतिक प्रणाली पर किए गए मापों पर निर्भर योजनाओ को निष्पादित करने में सक्षम होती है। जटिल क्वांटम प्रणाली तक अभिगम्य के अतिरिक्त खिलाड़ियों द्वारा एक ही खेल के किसी भी मिश्रित नैश संतुलन योजना में प्राप्त की जाने वाली तुलना में संतुलन से उच्च अपेक्षित भुगतान प्राप्त किया जा सकता है।
अपने 1999 के पेपर में गाइल्स ब्रासार्ड, रिचर्ड क्लेव और एलेन टैप ने प्रदर्शित किया कि क्वांटम छद्म-टेलीपैथी कुछ खेलों में खिलाड़ियों को ऐसे परिणाम प्राप्त करने की स्वीकृति देती है जो केवल तभी संभव होते हैं जब प्रतिभागियों को खेल के समय वार्तालाप करने की स्वीकृति दी जाती है।[1]
इस घटना को क्वांटम छद्म-टेलीपैथी के रूप में संदर्भित किया जाता है।[2] उपसर्ग छद्म के साथ इस तथ्य का अर्थ है कि क्वांटम छद्म-टेलीपैथी में किसी भी पक्ष के बीच सूचना का आदान-प्रदान सम्मिलित नहीं है। इसके अतिरिक्त क्वांटम छद्म टेलीपैथी कुछ परिस्थितियों में प्रतिभागियों के लिए सूचनाओं के आदान-प्रदान की आवश्यकता को दूर कर देती है।
कुछ परिस्थितियों में पारस्परिक रूप से लाभप्रद परिणाम प्राप्त करने के लिए संचार में संलग्न होने की आवश्यकता को हटाकर, क्वांटम छद्म-टेलीपैथी उपयोगी हो सकती है। यदि किसी खेल में कुछ प्रतिभागियों को कई प्रकाश वर्ष से अलग किया गया हो, जिसका अर्थ है कि उनके बीच संचार में कई वर्ष लग सकते है। यह क्वांटम गैर-स्थानीयता के सूक्ष्म निहितार्थ का एक उदाहरण है।
क्वांटम छद्म टेलीपैथी का उपयोग सामान्यतः क्वांटम यांत्रिकी की गैर-स्थानीय विशेषताओं को प्रदर्शित करने के लिए एक विचार प्रयोग के रूप में किया जाता है। हालाँकि, क्वांटम छद्म टेलीपैथी एक वास्तविक घटना है, जिसे प्रयोगात्मक रूप से सत्यापित किया जा सकता है। इस प्रकार यह बेल असमानता उल्लंघनों की प्रायोगिक पुष्टि का एक विशेष रूप से उल्लेखनीय उदाहरण है।
असममित जानकारी का खेल
बायेसियन खेल एक ऐसा खेल है जिसमें दोनों खिलाड़ियों के पास कुछ मापदंडों के मान के संबंध में अपूर्ण जानकारी होती है। बायेसियन खेल में कभी-कभी ऐसा होता है कि कम से कम कुछ खिलाड़ियों के लिए नैश संतुलन में प्राप्त होने वाले उच्चतम अपेक्षित परिणाम उससे कम होते है जिसे सामान्यतः प्राप्त किया जा सकता है। यदि अपूर्ण जानकारी नही होती है। असममित जानकारी अपूर्ण जानकारी की एक विशेष स्थिति है, जिसमें विभिन्न खिलाड़ी कुछ मापदंडों के मान के संबंध में अपनी जानकारी के कारण भिन्न होते हैं।
असममित जानकारी के प्राचीन बायेसियन खेलों में एक सामान्य धारणा यह है कि खेल प्रारम्भ होने से पहले सभी खिलाड़ी कुछ महत्वपूर्ण मापदंडों के मान से अज्ञात होते हैं। एक बार खेल प्रारम्भ होने पर विभिन्न खिलाड़ियों को विभिन्न मापदंडों के मान के विषय में जानकारी प्राप्त होती है। हालाँकि खेल प्रारम्भ होने के बाद खिलाड़ियों को वार्तालाप करने से मना किया जाता है। जिसके परिणामस्वरूप वे खेल के मापदंडों के संबंध में सामूहिक रूप से सम्मिलित जानकारी का आदान-प्रदान करने में असमर्थ होते हैं।
इस धारणा का एक महत्वपूर्ण निहितार्थ यह है कि यदि खिलाड़ी खेल प्रारम्भ होने से पहले योजनायों पर वार्तालाप करने और चर्चा करने में सक्षम हों, इससे किसी भी खिलाड़ी के अपेक्षित लाभ में वृद्धि नहीं होगी, क्योंकि अज्ञात मापदंडों के विषय में महत्वपूर्ण जानकारी अभी तक खेल के प्रतिभागियों को स्पष्ट नहीं होती है। हालाँकि यदि खेल को संशोधित किया जा सकता है। ताकि खिलाड़ियों को खेल प्रारम्भ होने के बाद वार्तालाप करने की स्वीकृति दी जाए, एक बार प्रत्येक खिलाड़ी को कुछ अज्ञात मापदंडों के मान के विषय में कुछ जानकारी प्राप्त हो जाए, तो यह खेल के प्रतिभागियों के लिए संभव हो सकता है। एक नैश संतुलन जो संचार के अभाव में प्राप्त होने वाले किसी भी नैश संतुलन के लिए पेरेटो ऑप्टिमल (इष्टतम) है।
क्वांटम टेलीपैथी का महत्वपूर्ण निहितार्थ यह भी है कि यद्यपि असममित जानकारी के बायेसियन खेल प्रारम्भ होने से पहले संचार के संतुलन में सुधार नहीं होता है तब यह सिद्ध किया जा सकता है कि कुछ बायेसियन खेल में खेल के प्रारम्भ होने से पहले खिलाड़ियों को जटिल क्वैबिट का आदान-प्रदान करने की स्वीकृति प्राप्त हो सकती है। जिससे एक नैश संतुलन केवल तभी प्राप्त किया जा सकता है जब खेल संचार की स्वीकृति प्राप्त हो सकती है।
मैजिक-स्क्वायर खेल
क्वांटम छद्म-टेलीपैथी का एक उदाहरण मैजिक-स्क्वायर खेल में देखा जा सकता है, जिसे एडन कैबेलो और पी.के द्वारा प्रस्तुत किया गया था। यह खेल अरविंद एन. डेविड मर्मिन और एशर पेरेज़ के पिछले कार्य पर आधारित है।[3][4][5]
इस खेल में दो खिलाड़ी ऐलिस और बॉब हैं। खेल के प्रारम्भ में ही ऐलिस और बॉब अलग हो जाते हैं। अलग होने के बाद उनके बीच वार्तालाप संभव नहीं होती है। खेल के लिए आवश्यक है कि ऐलिस प्लस और माइनस चिह्नों के साथ 3×3 तालिका की एक पंक्ति और बॉब एक स्तम्भ (कॉलम) भरें। खेल प्रारम्भ होने से पहले ऐलिस को नहीं पता था कि उसे तालिका की कौन सी पंक्ति भरनी होगी। इसी प्रकार बॉब को भी नहीं पता था कि उसे कौन सा स्तम्भ भरना होगा। दोनों खिलाड़ियों के अलग होने के बाद ऐलिस को अपेक्षाकृत रूप से तालिका की एक पंक्ति दी गई और उसे (+) और (-) चिह्नों से भरने के लिए कहा गया। इसी प्रकार बॉब को यादृच्छिक रूप से तालिका का एक स्तम्भ दिया गया और इसे भी (+) और (-) चिह्नों से भरने के लिए कहा गया था।
खिलाड़ी निम्नलिखित आवश्यकता के अधीन हैं: ऐलिस को अपनी पंक्ति इस प्रकार भरनी होगी कि उस पंक्ति में ऋण चिह्नों की संख्या सम हो। इसके अतिरिक्त बॉब को अपना स्तम्भ इस प्रकार भरना होगा कि उस स्तम्भ में विषम संख्या में ऋण चिह्न हों।
सामान्यतः ऐलिस को नहीं पता था कि बॉब को कौन सा स्तम्भ भरने के लिए कहा गया है। इसी प्रकार बॉब को भी नहीं पता था कि ऐलिस को कौन सी पंक्ति भरने के लिए कहा गया है। इस प्रकार यह खेल असममित अपूर्ण जानकारी वाला एक बायेसियन खेल है क्योंकि किसी भी खिलाड़ी के पास पूर्ण जानकारी नहीं है खेल के विषय में जानकारी (अपूर्ण जानकारी) और दोनों खिलाड़ियों के पास सम्मिलित जानकारी (असममित जानकारी) के संदर्भ में भिन्नता है।
प्रतिभागियों द्वारा किए गए कार्यों के आधार पर इस खेल में दो में से एक परिणाम हो सकता है। या तो दोनों खिलाड़ी जीतते हैं या दोनों खिलाड़ी हारते हैं।
यदि ऐलिस और बॉब अपनी पंक्ति और स्तंभ द्वारा साझा किए गए सेल (कोश) में समान चिह्न लगाते हैं, तो वे खेल जीत जाते हैं। यदि वे विपरीत चिह्न लगाते हैं, तो वे खेल हार जाते हैं।
ध्यान दें कि दोनों खिलाड़ी अपने सभी (+) और (-) चिन्ह एक साथ लगाते हैं और खेल समाप्त होने तक कोई भी खिलाड़ी यह नहीं देख सकता है कि दूसरे खिलाड़ी ने अपने चिन्ह कहाँ लगाए हैं।
यह सिद्ध किया जा सकता है कि इस खेल के प्रारम्भिक सूत्र में ऐसी कोई योजना (नैश संतुलन या अन्य) नहीं है जो खिलाड़ियों को 8/9 से अधिक संभावना के साथ खेल जीतने की स्वीकृति देती है। 8/9 इसलिए होता है क्योंकि वे इस विषय पर सहमत हो सकते हैं कि 9 में से 8 वर्गों में क्या मान रखा जाए, लेकिन 9वां वर्ग नहीं है जो संभावना 1/9 के साथ साझा वर्ग हो सकता है। यदि ऐलिस और बॉब खेल प्रारम्भ होने से पहले सूचनाओं का आदान-प्रदान करते हैं, तो इससे खेल पर किसी भी तरह का प्रभाव नहीं पड़ेगा और खिलाड़ी भी 8/9 संभावना के साथ जीत को सर्वश्रेष्ठ कर सकते हैं।
खेल केवल 8/9 संभावना के साथ ही जीता जा सकता है इसका कारण यह है कि एक पूरी तरह से सुसंगत तालिका सम्मिलित नहीं है: यह स्व-विरोधाभासी होगी, तालिका में ऋण चिह्नों का योग पंक्ति योग के आधार पर भी होगा, और होगा स्तम्भ योगों का उपयोग करते समय अजीब, या इसके विपरीत। एक और उदाहरण के रूप में, यदि वे आरेख में दिखाए गए आंशिक तालिका का उपयोग करते हैं (ऐलिस के लिए -1 और लापता वर्ग में बॉब के लिए +1 द्वारा पूरक) और चुनौती पंक्तियों और स्तंभों को यादृच्छिक रूप से चुना जाता है तो वे 8/9 जीतेंगे समय का। ऐसी कोई शास्त्रीय योजना सम्मिलित नहीं है जो इस जीत दर को हरा सके (यादृच्छिक पंक्ति और स्तंभ चयन के साथ)।
यदि खेल को ऐलिस और बॉब को यह पता लगाने के बाद वार्तालाप करने की स्वीकृति देने के लिए संशोधित किया गया था कि उन्हें कौन सी पंक्ति/स्तंभ सौंपा गया है, तो योजनायों का एक सेट सम्मिलित होगा जो दोनों खिलाड़ियों को संभावना 1 के साथ खेल जीतने की स्वीकृति देगा। हालांकि, यदि क्वांटम छद्म-टेलीपैथी का उपयोग किया गया, तो ऐलिस और बॉब दोनों बिना वार्तालाप किए खेल जीत सकते थे।
छद्म-टेलीपैथिक योजनायाँ
क्वांटम छद्म-टेलीपैथी के उपयोग से ऐलिस और बॉब खेल प्रारम्भ होने के बाद बिना किसी संचार के 100% खेल जीतने में सक्षम होंगे।
इसके लिए ऐलिस और बॉब के पास जटिल अवस्था वाले कणों के दो जोड़े होने की आवश्यकता है। ये कण खेल प्रारम्भ होने से पहले ही तैयार किये गये होंगे. प्रत्येक जोड़ी का एक कण ऐलिस द्वारा और दूसरा बॉब द्वारा धारण किया जाता है, इसलिए उनमें से प्रत्येक में दो कण होते हैं। जब ऐलिस और बॉब सीखते हैं कि उन्हें कौन सा स्तम्भ और पंक्ति भरनी है, तो प्रत्येक उस जानकारी का उपयोग यह चुनने के लिए करता है कि उन्हें अपने कणों के लिए कौन सा माप करना चाहिए। माप का परिणाम उनमें से प्रत्येक को यादृच्छिक प्रतीत होगा (और किसी भी कण का मनाया गया आंशिक संभाव्यता वितरण दूसरे पक्ष द्वारा किए गए माप से स्वतंत्र होगा), इसलिए कोई वास्तविक "संचार" नहीं होता है।
हालाँकि, कणों को मापने की प्रक्रिया माप के परिणामों के संयुक्त संभाव्यता वितरण पर पर्याप्त संरचना लगाती है जैसे कि यदि ऐलिस और बॉब अपने माप के परिणामों के आधार पर अपने कार्यों को चुनते हैं, तो योजनायों और मापों का एक सेट सम्मिलित होगा जो खेल को संभाव्यता 1 के साथ जीतने की स्वीकृति देगा।
ध्यान दें कि ऐलिस और बॉब एक-दूसरे से प्रकाश वर्ष दूर हो सकते हैं, और जटिल कण अभी भी उन्हें निश्चितता के साथ खेल जीतने के लिए अपने कार्यों को पर्याप्त रूप से समन्वयित करने में सक्षम बनाएंगे।
इस खेल के प्रत्येक दौर में एक जटिल स्थिति का उपयोग होता है। एन राउंड खेलने के लिए आवश्यक है कि एन जटिल अवस्थाएं (2एन स्वतंत्र बेल जोड़े, नीचे देखें) पहले से साझा की जाएं। ऐसा इसलिए है क्योंकि प्रत्येक दौर को मापने के लिए 2-बिट जानकारी की आवश्यकता होती है (तीसरी प्रविष्टि पहले दो द्वारा निर्धारित की जाती है, इसलिए इसे मापना आवश्यक नहीं है), जो उलझाव को नष्ट कर देता है। पहले के खेलों के पुराने मापों का पुन: उपयोग करने का कोई तरीका नहीं है।
यह चाल ऐलिस और बॉब के लिए एक जटिल क्वांटम स्थिति को साझा करने और तालिका प्रविष्टियों को प्राप्त करने के लिए जटिल अवस्था के उनके घटकों पर विशिष्ट माप का उपयोग करने के लिए है। एक उपयुक्त सहसंबद्ध अवस्था में जटिल बेल अवस्थाओं की एक जोड़ी होती है:
यहाँ और पाउली ऑपरेटर एस के स्वदेशी राज्य हैंx क्रमशः eigenvalues +1 और -1 के साथ, जबकि सबस्क्रिप्ट a, b, c, और d प्रत्येक बेल स्थिति के घटकों की पहचान करते हैं, a और c ऐलिस पर जा रहे हैं, और b और d बॉब पर जा रहे हैं। प्रतीक एक टेंसर उत्पाद का प्रतिनिधित्व करता है।
इन घटकों के अवलोकनों को पॉल के मैट्रिक्स के उत्पादों के रूप में लिखा जा सकता है:
इन पाउली स्पिन ऑपरेटरों के उत्पादों का उपयोग 3×3 तालिका को भरने के लिए किया जा सकता है, जैसे कि प्रत्येक पंक्ति और प्रत्येक स्तम्भ में आइगेनवैल्यू +1 और -1 के साथ वेधशालाओं का पारस्परिक रूप से क्रमपरिवर्तनशीलता सेट होता है, और प्रत्येक पंक्ति में वेधशालाओं का उत्पाद पहचान ऑपरेटर होता है, और प्रत्येक स्तम्भ में वेधशालाओं का उत्पाद पहचान ऑपरेटर को घटाकर बराबर होता है। यह एक तथाकथित मर्मिन-पेरेज़ जादुई वर्ग है। इसे नीचे तालिका में दिखाया गया है।
प्रभावी रूप से, जबकि प्रविष्टियों +1 और −1 के साथ 3×3 तालिका बनाना संभव नहीं है, जैसे कि प्रत्येक पंक्ति में तत्वों का उत्पाद +1 के बराबर हो और प्रत्येक स्तम्भ में तत्वों का उत्पाद −1 के बराबर हो, यह संभव है स्पिन मैट्रिक्स पर आधारित क्षेत्र में समृद्ध बीजगणित के साथ ऐसा करें।
प्रत्येक खिलाड़ी द्वारा खेल के प्रत्येक दौर में जटिल स्थिति के अपने हिस्से का एक माप करके खेल आगे बढ़ता है। ऐलिस का प्रत्येक माप उसे एक पंक्ति के लिए मान देगा, और बॉब का प्रत्येक माप उसे एक स्तम्भ के लिए मान देगा। ऐसा करना संभव है क्योंकि किसी दी गई पंक्ति या स्तंभ में सभी अवलोकन योग्य वस्तुएँ घूमती हैं, इसलिए एक आधार सम्मिलित है जिसमें उन्हें एक साथ मापा जा सकता है। ऐलिस की पहली पंक्ति के लिए उसे अपने दोनों कणों को आधार पर मापने की आवश्यकता है, दूसरी पंक्ति के लिए उसे उन्हें आधार पर मापने की आवश्यकता है, और तीसरी पंक्ति के लिए उसे उन्हें जटिल आधार पर मापने की आवश्यकता है . बॉब के पहले स्तम्भ के लिए उसे अपने पहले कण को आधार पर और दूसरे को आधार पर मापने की जरूरत है, दूसरे स्तम्भ के लिए उसे अपने पहले कण को आधार पर और दूसरे को आधार पर मापने की जरूरत है आधार, और अपने तीसरे स्तंभ के लिए उसे अपने दोनों कणों को एक अलग जटिल आधार, बेल आधार में मापने की आवश्यकता है। जब तक ऊपर दी गई तालिका का उपयोग किया जाता है, तब तक माप परिणाम हमेशा ऐलिस के लिए उसकी पंक्ति के साथ +1 और बॉब के लिए उसके स्तम्भ के नीचे -1 से गुणा होने की गारंटी है। बेशक, प्रत्येक पूरी तरह से नए दौर के लिए एक नई जटिल स्थिति की आवश्यकता होती है, क्योंकि विभिन्न पंक्तियाँ और स्तंभ एक-दूसरे के साथ संगत नहीं होते हैं।
समन्वय खेल
शास्त्रीय गैर-सहकारी खेल सिद्धांत में एक समन्वय खेल एकाधिक नैश संतुलन वाला कोई भी खेल है। छद्म-टेलीपैथी से संबंधित साहित्य कभी-कभी मर्मिन-पेरेज़ खेल जैसे खेल को समन्वय खेल के रूप में संदर्भित करता है। एक ओर, यह तकनीकी रूप से सही है, क्योंकि मर्मिन-पेरेज़ खेल के क्लासिक संस्करण में एकाधिक नैश संतुलन की सुविधा है।
हालाँकि, क्वांटम छद्म-टेलीपैथी समन्वय समस्याओं का कोई समाधान प्रदान नहीं करती है जो समन्वय खेलों की विशेषता है। क्वांटम स्यूडो-टेलीपैथी की उपयोगिता बायेसियन खेलों में असममित जानकारी के साथ समस्याओं को हल करने में निहित है जहां संचार निषिद्ध है।
उदाहरण के लिए, मर्मिन-पेरेज़ खेल में छद्म-टेलीपैथिक योजनायों को लागू करने से सूचनाओं के आदान-प्रदान के लिए बॉब और ऐलिस की आवश्यकता को दूर किया जा सकता है। हालाँकि, छद्म-टेलीपैथिक योजनायाँ समन्वय समस्याओं का समाधान नहीं करती हैं। विशेष रूप से, छद्म-टेलीपैथिक योजनायों को लागू करने के बाद भी, बॉब और ऐलिस केवल संभाव्यता के साथ खेल जीतेंगे यदि वे दोनों अपनी छद्म-टेलीपैथिक योजनायों को ऊपर वर्णित तरीके से समरूप तरीके से समन्वयित करते हैं।
वर्तमान शोध
यह प्रदर्शित किया गया है कि ऊपर वर्णित खेल अपने प्रकार का सबसे सरल दो-खिलाड़ियों का खेल है जिसमें क्वांटम छद्म टेलीपैथी संभाव्यता के साथ जीत की स्वीकृति देता है।[6] अन्य खेल जिनमें क्वांटम स्यूडो-टेलीपैथी होती है, का अध्ययन किया गया है, जिसमें बड़े मैजिक स्क्वायर खेल भी शामिल हैं,[7] ग्राफ़ रंग खेल[8] क्वांटम रंगीन संख्या की धारणा को जन्म देते हुए,[9] और मल्टीप्लेयर खेल जिसमें दो से अधिक प्रतिभागी शामिल हों।[10]सामान्य तौर पर, दो-खिलाड़ियों वाले गैर-स्थानीय खेल की जीत की संभावना को खिलाड़ियों द्वारा साझा करने की स्वीकृति वाली जटिल क्वैबिट की संख्या में वृद्धि करके सुधार किया जा सकता है। क्वांटम छद्म-टेलीपैथी का उपयोग करके दो-खिलाड़ियों के खेल को जीतने की अधिकतम संभावना की गणना करना असंभव है, लेकिन एक बड़ी, लेकिन सीमित, साझा जटिल क्वैबिट की संख्या मानकर एक निचली सीमा निर्धारित की जा सकती है; एक ऊपरी सीमा को गैर-स्थानीय खेल के समतुल्य ढांचे के संदर्भ में भी सेट किया जा सकता है, जो कि कम्यूटिंग मैट्रिसेस पर आधारित है। अधिकतम जीत की संभावना के लिए ऊपरी और निचली सीमा की गणना एनपी-हार्ड है।[11] जबकि कुछ खेल अधिकतम जीत की संभावना को मनमाने ढंग से बारीकी से गणना करने की स्वीकृति दे सकते हैं, कोन्स एम्बेडिंग समस्या का दावा किया गया खंडन[12] का तात्पर्य है कि ऐसे खेल हैं जहां ये सीमाएं एक अद्वितीय अधिकतम जीत की संभावना में परिवर्तित नहीं होती हैं।[13]
हाल के अध्ययन सुसंगत क्वांटम स्थिति पर अपूर्ण माप के कारण शोर के खिलाफ प्रभाव की मजबूती के सवाल से निपटते हैं।[14] हाल के कार्य में उलझाव के कारण गैर-रेखीय वितरित गणना की संचार लागत में तेजी से वृद्धि देखी गई है, जब संचार चैनल स्वयं रैखिक होने तक सीमित है।[15]
जुलाई 2022 में एक अध्ययन में मर्मिन-पेरेज़ मैजिक स्क्वायर खेल के गैर-स्थानीय संस्करण को खेलकर क्वांटम स्यूडोटेलीपैथी के प्रयोगात्मक प्रदर्शन की सूचना दी गई।[16][17]
ग्रीनबर्गर-हॉर्न-ज़ीलिंगर खेल
ग्रीनबर्गर-हॉर्न-ज़ीलिंगर (जीएचजेड) खेल क्वांटम छद्म टेलीपैथी का एक और दिलचस्प उदाहरण है। शास्त्रीय रूप से, खेल में जीतने की संभावना 75% है। हालाँकि, क्वांटम योजना के साथ, खिलाड़ी हमेशा 1 के बराबर जीत की संभावना के साथ जीतेंगे।
तीन खिलाड़ी हैं, ऐलिस, बॉब और कैरोल एक रेफरी के खिलाफ खेल रहे हैं। रेफरी प्रत्येक खिलाड़ी से प्रश्न पूछता है। तीनों खिलाड़ियों में से प्रत्येक का उत्तर है। रेफरी 4 विकल्पों में से समान रूप से तीन प्रश्न x, y, z निकालता है चुना जाता है, फिर ऐलिस को बिट 0, बॉब को बिट 1 और कैरोल को रेफरी से बिट 1 प्राप्त होता है। प्राप्त प्रश्न के आधार पर, ऐलिस, बॉब और कैरोल प्रत्येक उत्तर ए, बी, सी के साथ 0 या 1 के रूप में देते हैं। खिलाड़ी खेल प्रारम्भ होने से पहले एक साथ योजना बना सकते हैं। हालाँकि, खेल के दौरान किसी भी संचार की स्वीकृति नहीं है।
खिलाड़ी जीतते हैं यदि , कहाँ OR स्थिति को इंगित करता है और मोडुलो 2 में उत्तरों का योग इंगित करता है। दूसरे शब्दों में, तीन उत्तरों का योग सम होना चाहिए . अन्यथा, उत्तरों का योग विषम होना चाहिए।
0 | 0 | 0 | 0 mod 2 |
1 | 1 | 0 | 1 mod 2 |
1 | 0 | 1 | 1 mod 2 |
0 | 1 | 1 | 1 mod 2 |
शास्त्रीय योजना
शास्त्रीय रूप से, ऐलिस, बॉब और कैरोल एक नियतात्मक योजना अपना सकते हैं जो हमेशा विषम योग के साथ समाप्त होती है (उदाहरण के लिए ऐलिस हमेशा आउटपुट 1. बॉब और कैरोल हमेशा आउटपुट 0)। खिलाड़ी 75% समय जीतते हैं और केवल तभी हारते हैं जब प्रश्न हों .
वास्तव में, शास्त्रीय दृष्टि से यह जीतने की सबसे अच्छी योजना है। हम जीत की 4 में से अधिकतम 3 शर्तों को ही पूरा कर सकते हैं। होने देना क्रमशः प्रश्न 0 और 1 पर ऐलिस की प्रतिक्रिया हो, प्रश्न 0, 1, और पर बॉब की प्रतिक्रिया हो प्रश्न 0, 1 पर कैरल की प्रतिक्रिया बनें। हम उन सभी बाधाओं को लिख सकते हैं जो जीतने की शर्तों को पूरा करती हैं
क्वांटम योजना
अब हम उस दिलचस्प हिस्से पर आ गए हैं जहां ऐलिस, बॉब और कैरोल ने क्वांटम योजना अपनाने का फैसला किया। वे तीनों अब त्रिपक्षीय उलझन वाली स्थिति साझा करते हैं , जिसे GHZ राज्य के रूप में जाना जाता है।
यदि प्रश्न 0 प्राप्त होता है, तो खिलाड़ी X आधार पर माप करता है . यदि प्रश्न 1 प्राप्त होता है, तो खिलाड़ी Y आधार पर माप करता है . दोनों मामलों में, यदि माप का परिणाम जोड़ी की पहली स्थिति है तो खिलाड़ी उत्तर 0 देते हैं, और यदि परिणाम जोड़ी की दूसरी स्थिति है तो उत्तर 1 देते हैं।
यह जांचना आसान है कि इस योजना से खिलाड़ी प्रायिकता 1 के साथ खेल जीतते हैं।
यह भी देखें
- क्वांटम गेम सिद्धांत
- क्वांटम रेफरीड गेम
- जीएचजेड अवस्था - एक उलझी हुई 3-कण अवस्था।
- ईपीआर विरोधाभास
- कोचेन-स्पेकर प्रमेय
- क्वांटम सूचना विज्ञान
- क्यूबिट
- Tsirelson की सीमा
- व्हीलर-फेनमैन अवशोषक सिद्धांत
टिप्पणियाँ
- ↑ Brassard, Gilles; Cleve, Richard; Tapp, Alain (1999). "शास्त्रीय संचार के साथ क्वांटम उलझाव का सटीक अनुकरण करने की लागत". Physical Review Letters. 83 (9): 1874–1877. arXiv:quant-ph/9901035. Bibcode:1999PhRvL..83.1874B. doi:10.1103/PhysRevLett.83.1874. S2CID 5837965.
- ↑ Brassard, Gilles; Broadbent, Anne; Tapp, Alain (2003). "Multi-party Pseudo-Telepathy". एल्गोरिदम और डेटा संरचनाएं. Lecture Notes in Computer Science. Vol. 2748. pp. 1–11. arXiv:quant-ph/0306042. doi:10.1007/978-3-540-45078-8_1. ISBN 978-3-540-40545-0. S2CID 14390319.
- ↑ Cabello, A. (2001). "बेल का प्रमेय दो पर्यवेक्षकों के लिए असमानताओं और संभावनाओं के बिना". Physical Review Letters. 86 (10): 1911–1914. arXiv:quant-ph/0008085. Bibcode:2001PhRvL..86.1911C. doi:10.1103/PhysRevLett.86.1911. PMID 11289818. S2CID 119472501.
- ↑ Cabello, A. (2001). "दो पर्यवेक्षकों के लिए सब बनाम कुछ भी नहीं की अविभाज्यता". Physical Review Letters. 87 (1): 010403. arXiv:quant-ph/0101108. Bibcode:2001PhRvL..87a0403C. doi:10.1103/PhysRevLett.87.010403. PMID 11461451. S2CID 18748483.
- ↑ Aravind, P.K. (2004). "क्वांटम रहस्यों पर फिर से गौर किया गया" (PDF). American Journal of Physics. 72 (10): 1303–1307. arXiv:quant-ph/0206070. Bibcode:2004AmJPh..72.1303A. CiteSeerX 10.1.1.121.9157. doi:10.1119/1.1773173.
- ↑ Gisin, N.; Methot, A. A.; Scarani, V. (2007). "Pseudo-telepathy: Input cardinality and Bell-type inequalities". International Journal of Quantum Information. 5 (4): 525–534. arXiv:quant-ph/0610175. doi:10.1142/S021974990700289X. S2CID 11386567.
- ↑ Kunkri, Samir; Kar, Guruprasad; Ghosh, Sibasish; Roy, Anirban (2006). "एकल गैर-स्थानीय बॉक्स का उपयोग करके छद्म टेलीपैथी गेम के लिए जीतने की रणनीतियाँ". arXiv:quant-ph/0602064.
- ↑ Avis, D.; Hasegawa, Jun; Kikuchi, Yosuke; Sasaki, Yuuya (2006). "सभी हैडामर्ड ग्राफ़ पर ग्राफ़ कलरिंग गेम जीतने के लिए एक क्वांटम प्रोटोकॉल". IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. 89 (5): 1378–1381. arXiv:quant-ph/0509047. Bibcode:2006IEITF..89.1378A. doi:10.1093/ietfec/e89-a.5.1378.
- ↑ Cameron, Peter J.; Montanaro, Ashley; Newman, Michael W.; Severini, Simone; Winter, Andreas (2007). "ग्राफ़ की क्वांटम रंगीन संख्या पर". Electronic Journal of Combinatorics. 14 (1). arXiv:quant-ph/0608016. doi:10.37236/999. S2CID 6320177.
- ↑ Brassard, Gilles; Broadbent, Anne; Tapp, Alain (2005). "मर्मिन के मल्टी-प्लेयर गेम को छद्म टेलीपैथी के ढांचे में दोबारा ढालना". Quantum Information and Computation. 5 (7): 538–550. arXiv:quant-ph/0408052. Bibcode:2004quant.ph..8052B. doi:10.26421/QIC5.7-2.
- ↑ "क्वांटम गेम्स में, बाधाओं से खेलने का कोई तरीका नहीं है". Quanta Magazine. 1 April 2019.
- ↑ Ji, Zhengfeng; Natarajan, Anand; Vidick, Thomas; Wright, John; Yuen, Henry (November 2021). "MIP* = RE". Communications of the ACM. 64 (11): 131–138. doi:10.1145/3485628. S2CID 210165045.
- ↑ Hartnett, Kevin (4 March 2020). "भौतिकी और गणित के माध्यम से ऐतिहासिक कंप्यूटर विज्ञान प्रमाण कैस्केड". Quanta Magazine (in English).
- ↑ Gawron, Piotr; Miszczak, Jarosław; Sładkowski, JAN (2008). "क्वांटम मैजिक स्क्वेयर गेम में शोर प्रभाव". International Journal of Quantum Information. 06: 667–673. arXiv:0801.4848. Bibcode:2008arXiv0801.4848G. doi:10.1142/S0219749908003931. S2CID 14337088.
- ↑ Marblestone, Adam Henry; Devoret, Michel (2010). "स्थानीय गैर-रैखिकता के साथ वितरित जोड़ के लिए घातीय क्वांटम वृद्धि". Quantum Information Processing. 9: 47–59. arXiv:0907.3465. doi:10.1007/s11128-009-0126-9. S2CID 14744349.
- ↑ Xu, Jia-Min; Zhen, Yi-Zheng; Yang, Yu-Xiang; Cheng, Zi-Mo; Ren, Zhi-Cheng; Chen, Kai; Wang, Xi-Lin; Wang, Hui-Tian (2022-07-26). "क्वांटम स्यूडोटेलीपैथी का प्रायोगिक प्रदर्शन". Physical Review Letters. 129 (5): 050402. arXiv:2206.12042. Bibcode:2022PhRvL.129e0402X. doi:10.1103/PhysRevLett.129.050402. PMID 35960591. S2CID 250048711.
- ↑ "जब तक आप इसे माप नहीं लेते तब तक वास्तविकता अस्तित्व में नहीं है, क्वांटम पार्लर ट्रिक इसकी पुष्टि करती है". www.science.org (in English). Retrieved 2022-08-27.