बॉक्स में गैस: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Basic statistical model}} | {{Short description|Basic statistical model}} | ||
[[क्वांटम यांत्रिकी]] में, बॉक्स में क्वांटम कण के परिणामों का उपयोग बॉक्स में क्वांटम [[आदर्श गैस]] के लिए [[संतुलन समाधान]] को देखने के लिए किया जा सकता है, जो ऐसा बॉक्स होता है जिसमें बड़ी संख्या में अणु होते हैं जो तात्कालिक को छोड़कर दूसरे के साथ | [[क्वांटम यांत्रिकी]] में, बॉक्स में क्वांटम कण के परिणामों का उपयोग बॉक्स में क्वांटम [[आदर्श गैस]] के लिए [[संतुलन समाधान]] को देखने के लिए किया जा सकता है, जो ऐसा बॉक्स होता है जिसमें बड़ी संख्या में अणु होते हैं जो तात्कालिक को छोड़कर एक दूसरे के साथ इंटरैक्ट नहीं करते हैं। थर्मलीकरण कोलिसन इस सरल मॉडल का उपयोग मौलिक आदर्श गैस के साथ-साथ विभिन्न क्वांटम आदर्श गैसों जैसे कि आदर्श मैसिव [[फर्मी गैस]], आदर्श मैसिव [[बोस गैस]] और साथ ही [[ काला शरीर |ब्लैक बॉडी]] विकिरण ([[फोटॉन गैस]]) का वर्णन करने के लिए किया जा सकता है, जिसे द्रव्यमान रहित माना जा सकता है। बोस गैस, जिसमें थर्मलाइजेशन को सामान्यतः संतुलित द्रव्यमान के साथ फोटॉन की इंटरैक्ट से सुविधाजनक माना जाता है। | ||
मैक्सवेल-बोल्ट्ज़मैन आँकड़ों, बोस-आइंस्टीन आँकड़ों या फ़र्मी-डिराक आँकड़ों के परिणामों का उपयोग करते हुए, और बहुत बड़े बॉक्स की सीमा पर विचार करते हुए, थॉमस-फ़र्मी सन्निकटन ([[एनरिको फर्मी]] और [[लेवेलिन थॉमस]] के नाम पर) का उपयोग डीजेनरेट को व्यक्त करने के लिए किया जाता है। | मैक्सवेल-बोल्ट्ज़मैन आँकड़ों, बोस-आइंस्टीन आँकड़ों या फ़र्मी-डिराक आँकड़ों के परिणामों का उपयोग करते हुए, और बहुत बड़े बॉक्स की सीमा पर विचार करते हुए, थॉमस-फ़र्मी सन्निकटन ([[एनरिको फर्मी]] और [[लेवेलिन थॉमस]] के नाम पर) का उपयोग डीजेनरेट को व्यक्त करने के लिए किया जाता है। आंतरिक ऊर्जा स्तर, और अभिन्न के रूप में स्थितियो पर योग यह गैस के थर्मोडायनामिक गुणों की गणना [[विभाजन फ़ंक्शन (सांख्यिकीय यांत्रिकी)|विभाजन फलन (सांख्यिकीय यांत्रिकी)]] या भव्य विभाजन फलन के उपयोग से करने में सक्षम बनाता है। यह परिणाम बड़े और द्रव्यमान रहित दोनों कणों पर प्रयुक्त होते है। अधिक संपूर्ण गणनाएँ भिन्न-भिन्न लेखों पर छोड़ दी जाती है, किन्तु इस लेख में कुछ सरल उदाहरण दिए जाते है। | ||
==थॉमस- | ==थॉमस-स्थितियो की अधोगति के लिए फर्मी सन्निकटन== | ||
बॉक्स में भारी और | एक बॉक्स में भारी और द्रव्यमान रहित दोनों कणों के लिए, एक कण की अवस्थाओं की गणना क्वांटम संख्याओं के एक समुच्चय {{nowrap|[''n<sub>x</sub>'', ''n<sub>y</sub>'', ''n<sub>z</sub>'']}} द्वारा की जाती है। संवेग का परिमाण किसके द्वारा दिया गया है? | ||
क्वांटम संख्याओं के | |||
:<math>p=\frac{h}{2L}\sqrt{n_x^2+n_y^2+n_z^2} \qquad \qquad n_x,n_y,n_z=1,2,3,\ldots </math> | :<math>p=\frac{h}{2L}\sqrt{n_x^2+n_y^2+n_z^2} \qquad \qquad n_x,n_y,n_z=1,2,3,\ldots </math> | ||
जहाँ h प्लैंक स्थिरांक है और L बॉक्स के किनारे की लंबाई है। किसी कण की प्रत्येक संभावित अवस्था को धनात्मक पूर्णांकों के त्रि-आयामी ग्रिड पर बिंदु के रूप में सोचा जा सकता है। उद्गम से किसी बिन्दु तक की दूरी | जहाँ h प्लैंक स्थिरांक है और L बॉक्स के किनारे की लंबाई है। किसी कण की प्रत्येक संभावित अवस्था को धनात्मक पूर्णांकों के त्रि-आयामी ग्रिड पर बिंदु के रूप में सोचा जा सकता है। उद्गम से किसी बिन्दु तक की दूरी होती है | ||
:<math>n=\sqrt{n_x^2+n_y^2+n_z^2}=\frac{2Lp}{h}</math> | :<math>n=\sqrt{n_x^2+n_y^2+n_z^2}=\frac{2Lp}{h}</math> | ||
मान लीजिए कि क्वांटम संख्याओं का प्रत्येक | मान लीजिए कि क्वांटम संख्याओं का प्रत्येक समुच्चय F बताता है जहां F कण की स्वतंत्रता की आंतरिक डिग्री की संख्या है जिसे कोलिसन द्वारा परिवर्तित किया जा सकता है। उदाहरण के लिए, स्पिन {{frac|1|2}} कण में f=2 होगा, प्रत्येक स्पिन अवस्था के लिए एक। n के बड़े मानों के लिए, उपरोक्त समीकरण से p से कम या उसके बराबर संवेग परिमाण वाले स्थितियो की संख्या लगभग है | ||
:<math> | :<math> | ||
Line 20: | Line 19: | ||
= \frac{4\pi f}{3} \left(\frac{Lp}{h}\right)^3 | = \frac{4\pi f}{3} \left(\frac{Lp}{h}\right)^3 | ||
</math> | </math> | ||
जो त्रिज्या n के गोले के आयतन का केवल f गुना है, जिसे आठ से विभाजित किया गया है क्योंकि यह केवल धनात्मक n | जो त्रिज्या n के गोले के आयतन का केवल f गुना है, जिसे आठ से विभाजित किया गया है क्योंकि यह केवल धनात्मक n<sub>i</sub> वाला अष्टक है माना जाता है। सातत्य सन्निकटन का उपयोग करते हुए, p और p+dp के मध्य संवेग के परिमाण वाली अवस्थाओं की संख्या है | ||
:<math>dg = \frac{\pi}{2}~f n^2\,dn = \frac{4\pi fV}{h^3}~ p^2\,dp</math> | :<math>dg = \frac{\pi}{2}~f n^2\,dn = \frac{4\pi fV}{h^3}~ p^2\,dp</math> | ||
जहां | जहां V=L<sup>3</sup>बॉक्स का आयतन है। ध्यान दें कि इस सातत्य सन्निकटन का उपयोग करने में, जिसे थॉमस-फर्मी सन्निकटन के रूप में भी जाना जाता है, निम्न-ऊर्जा वाले स्थितियो को चिह्नित करने की क्षमता खो जाती है, जिसमें ग्राउंड अवस्था भी सम्मिलित है जहां ''N''<sub>i</sub>= 1. अधिकतर स्थितियों में यह कोई समस्या नहीं होती है, किन्तु जब बोस-आइंस्टीन कंडेनसेट या बोस-आइंस्टीन कंडेनसेशन पर विचार किया जाता है, जिसमें गैस का बड़ा हिस्सा ग्राउंड अवस्था में या उसके निकट होता है, तो कम ऊर्जा वाले स्थितियो से निपटने की क्षमता महत्वपूर्ण हो जाती है। | ||
बिना किसी अनुमान के, ऊर्जा ε | बिना किसी अनुमान के, ऊर्जा ε<sub>i</sub> वाले कणों की संख्या द्वारा दिया गया है | ||
:<math> N_i = \frac{g_i}{\Phi(\varepsilon_i)}</math> | :<math> N_i = \frac{g_i}{\Phi(\varepsilon_i)}</math> | ||
जहाँ <math> g_i</math> स्थिति I और का डेजेनेरेट ऊर्जा स्तर है <math display="block"> \Phi(\varepsilon_i) = | |||
\begin{cases} | \begin{cases} | ||
e^{\beta(\varepsilon_i-\mu)}, & \text{for particles obeying Maxwell-Boltzmann statistics} \\ | e^{\beta(\varepsilon_i-\mu)}, & \text{for particles obeying Maxwell-Boltzmann statistics} \\ | ||
e^{\beta(\varepsilon_i-\mu)}-1, & \text{for particles obeying Bose-Einstein statistics}\\ | e^{\beta(\varepsilon_i-\mu)}-1, & \text{for particles obeying Bose-Einstein statistics}\\ | ||
e^{\beta(\varepsilon_i-\mu)}+1, & \text{for particles obeying Fermi-Dirac statistics}\\ | e^{\beta(\varepsilon_i-\mu)}+1, & \text{for particles obeying Fermi-Dirac statistics}\\ | ||
\end{cases}</math> β = 1/k | \end{cases}</math> β = 1/k<sub>B</sub>T बोल्ट्जमैन के स्थिर k<sub>B</sub> [[तापमान]] T और [[रासायनिक क्षमता]] μ के साथ। (मैक्सवेल-बोल्ट्ज़मैन आँकड़े बोस-आइंस्टीन आँकड़े और फर्मी-डिराक आँकड़े देखें।) | ||
थॉमस-फर्मी सन्निकटन का उपयोग | थॉमस-फर्मी सन्निकटन का उपयोग करके E और E+dE के मध्य ऊर्जा वाले कणों dNE की संख्या है: | ||
:<math>dN_E= \frac{dg_E}{\Phi(E)} </math> | :<math>dN_E= \frac{dg_E}{\Phi(E)} </math> | ||
जहाँ <math>dg_E</math> E और E+dE के मध्य ऊर्जा वाले स्थितियो की संख्या है। | |||
==ऊर्जा वितरण== | ==ऊर्जा वितरण== | ||
इस आलेख के पिछले अनुभागों से प्राप्त परिणामों का उपयोग करके, अब बॉक्स में गैस के लिए कुछ वितरण निर्धारित किए जा सकते हैं। कणों की प्रणाली के लिए, | इस आलेख के पिछले अनुभागों से प्राप्त परिणामों का उपयोग करके, अब एक बॉक्स में गैस के लिए कुछ वितरण निर्धारित किए जा सकते हैं। कणों की एक प्रणाली के लिए, एक चर <math>A</math> के लिए वितरण <math>P_A</math> को अभिव्यक्ति <math>P_AdA</math> के माध्यम से परिभाषित किया गया है, जो कणों का वह अंश है जिसमें <math>A</math> और <math>A+dA</math> के मध्य <math>A</math> का मान होता है। | ||
:<math>P_A~dA = \frac{dN_A}{N} = \frac{dg_A}{N\Phi_A}</math> | :<math>P_A~dA = \frac{dN_A}{N} = \frac{dg_A}{N\Phi_A}</math> | ||
जहाँ | |||
*<math>dN_A</math>, कणों की संख्या | *<math>dN_A</math>, कणों की संख्या जिनमें <math>A</math> और <math>A+dA</math> के मध्य <math>A</math> का मान है | ||
*<math>dg_A</math>, उन | *<math>dg_A</math>, उन स्थितियों की संख्या जिनमें <math>A</math> और <math>A+dA</math> के मध्य <math>A</math> का मान है | ||
*<math>\Phi_A^{-1}</math>, संभावना है कि | *<math>\Phi_A^{-1}</math>, संभावना है कि जिस अवस्था का मान <math>A</math> है उस पर एक कण का अधिकृत करता है | ||
*<math>N</math>, कणों की कुल | *<math>N</math>, कणों की कुल संख्या है। | ||
यह इस प्रकार है कि: | यह इस प्रकार है कि: | ||
:<math>\int_A P_A~dA = 1</math> | :<math>\int_A P_A~dA = 1</math> | ||
संवेग वितरण के लिए <math>P_p</math>, | संवेग वितरण के लिए <math>P_p</math>, मध्य में गति के परिमाण के साथ कणों का अंश <math>p</math> और <math>p+dp</math> है: | ||
:<math>P_p~dp = \frac{Vf}{N}~\frac{4\pi}{h^3\Phi_p}~p^2dp</math> | :<math>P_p~dp = \frac{Vf}{N}~\frac{4\pi}{h^3\Phi_p}~p^2dp</math> | ||
और ऊर्जा वितरण के लिए <math>P_E</math>, | और ऊर्जा वितरण के लिए <math>P_E</math>, मध्य में ऊर्जा वाले कणों का अंश <math>E</math> और <math>E+dE</math> है: | ||
:<math>P_E~dE = P_p\frac{dp}{dE}~dE</math> | :<math>P_E~dE = P_p\frac{dp}{dE}~dE</math> | ||
बॉक्स में कण के लिए (और मुक्त कण के लिए भी), ऊर्जा के | बॉक्स में कण के लिए (और मुक्त कण के लिए भी), ऊर्जा के मध्य संबंध <math>E</math> और गति <math>p</math> मैसिव और द्रव्यमानहीन कणों के लिए भिन्न है। बड़े कणों के लिए, | ||
:<math> E=\frac{p^2}{2m}</math> | :<math> E=\frac{p^2}{2m}</math> | ||
Line 65: | Line 64: | ||
:<math>E = pc</math> | :<math>E = pc</math> | ||
जहाँ <math>m</math> कण का द्रव्यमान है और <math>c</math> प्रकाश की गति है. इन संबंधो का उपयोग करते हुए, | |||
इन | |||
* बड़े कणों के लिए <math display="block">\begin{alignat}{2} | * बड़े कणों के लिए <math display="block">\begin{alignat}{2} | ||
Line 73: | Line 71: | ||
P_E~dE & = \frac{1}{N}\left(\frac{Vf}{\Lambda^3}\right) | P_E~dE & = \frac{1}{N}\left(\frac{Vf}{\Lambda^3}\right) | ||
\frac{2}{\sqrt{\pi}}~\frac{\beta^{3/2}E^{1/2}}{\Phi(E)}~dE \\ | \frac{2}{\sqrt{\pi}}~\frac{\beta^{3/2}E^{1/2}}{\Phi(E)}~dE \\ | ||
\end{alignat}</math> | \end{alignat}</math> जहाँ {{math|Λ}} गैस की तापीय तरंग दैर्ध्य है। <math display="block">\Lambda =\sqrt{\frac{h^2 \beta }{2\pi m}}</math>यह एक महत्वपूर्ण मात्रा है, क्योंकि जब {{math|Λ}} अंतर-कण दूरी <math>(V/N)^{1/3}</math> के क्रम पर होता है, तो क्वांटम प्रभाव हावी होने लगते हैं और गैस को मैक्सवेल-बोल्ट्ज़मैन गैस नहीं माना जा सकता है। | ||
* द्रव्यमान रहित कणों के लिए <math display="block">\begin{alignat}{2} | * द्रव्यमान रहित कणों के लिए <math display="block">\begin{alignat}{2} | ||
dg_E & = \quad \ \left(\frac{Vf}{\Lambda^3}\right) | dg_E & = \quad \ \left(\frac{Vf}{\Lambda^3}\right) | ||
Line 80: | Line 78: | ||
\frac{1}{2}~\frac{\beta^3E^2}{\Phi(E)}~dE \\ | \frac{1}{2}~\frac{\beta^3E^2}{\Phi(E)}~dE \\ | ||
\end{alignat} | \end{alignat} | ||
</math> | </math> जहाँ {{math|Λ}} अब द्रव्यमान रहित कणों के लिए थर्मल तरंग दैर्ध्य है। <math display="block">\Lambda = \frac{ch\beta}{2\, \pi^{1/3}}</math> | ||
==विशिष्ट उदाहरण== | ==विशिष्ट उदाहरण== | ||
निम्नलिखित अनुभाग कुछ विशिष्ट | निम्नलिखित अनुभाग कुछ विशिष्ट स्थितियों के परिणामों का उदाहरण देते हैं। | ||
=== | ===मैसिव मैक्सवेल-बोल्ट्ज़मैन कण=== | ||
इस | इस स्थिति के लिए: | ||
:<math>\Phi(E)=e^{\beta(E-\mu)}</math> | :<math>\Phi(E)=e^{\beta(E-\mu)}</math> | ||
ऊर्जा वितरण | ऊर्जा वितरण फलन को एकीकृत करना और एन के लिए समाधान देना | ||
:<math>N = \left(\frac{Vf}{\Lambda^3}\right)\,\,e^{\beta\mu}</math> | :<math>N = \left(\frac{Vf}{\Lambda^3}\right)\,\,e^{\beta\mu}</math> | ||
Line 98: | Line 96: | ||
:<math>P_E~dE = 2 \sqrt{\frac{\beta^3 E}{\pi}}~e^{-\beta E}~dE</math> | :<math>P_E~dE = 2 \sqrt{\frac{\beta^3 E}{\pi}}~e^{-\beta E}~dE</math> | ||
जो मैक्सवेल-बोल्ट्ज़मैन वितरण के लिए | जो मैक्सवेल-बोल्ट्ज़मैन वितरण के लिए मौलिक रूप से प्राप्त समान परिणाम हैं। आगे के परिणाम आदर्श गैस पर लेख के मौलिक खंड में पाए जा सकते हैं। | ||
=== | ===मैसिव बोस-आइंस्टीन कण=== | ||
इस | इस स्थिति के लिए: | ||
:<math>\Phi(E)=\frac{e^{\beta E}}{z}-1</math> | :<math>\Phi(E)=\frac{e^{\beta E}}{z}-1</math> | ||
जहाँ <math> z=e^{\beta\mu}.</math> | |||
ऊर्जा वितरण | |||
ऊर्जा वितरण फलन को एकीकृत करने और एन के लिए समाधान करने से [[कण संख्या]] मिलती है | |||
:<math>N = \left(\frac{Vf}{\Lambda^3}\right)\textrm{Li}_{3/2}(z)</math> | :<math>N = \left(\frac{Vf}{\Lambda^3}\right)\textrm{Li}_{3/2}(z)</math> | ||
जहाँ Li<sub>''s''</sub>(z) बहु लघुगणक फलन है. पॉलीलॉगरिदम शब्द सदैव धनात्मक और वास्तविक होना चाहिए, जिसका अर्थ है कि इसका मान 0 से ζ(3/2) तक जाएगा क्योंकि z 0 से 1 तक जाता है। जैसे-जैसे तापमान शून्य की ओर गिरता है, इस प्रकार {{math|Λ}} अंततः बड़ा और बड़ा होता जाएगा जब तक कि अंततः {{math|Λ}} तक नहीं पहुंच जाता महत्वपूर्ण मान {{math|Λ<sub>c</sub>}} जहां z=1 और | |||
:<math>N = \left(\frac{Vf}{\Lambda_{\rm c}^3}\right)\zeta(3/2),</math> | :<math>N = \left(\frac{Vf}{\Lambda_{\rm c}^3}\right)\zeta(3/2),</math> | ||
जहाँ <math>\zeta(z)</math> [[रीमैन ज़ेटा फ़ंक्शन|रीमैन ज़ेटा फलन]] को दर्शाता है। जिस तापमान पर {{math|1=Λ = Λ<sub>c</sub>}}क्रांतिक तापमान है. इस महत्वपूर्ण तापमान से नीचे के तापमान के लिए, कण संख्या के लिए उपरोक्त समीकरण का कोई समाधान नहीं है। क्रांतिक तापमान वह तापमान है जिस पर बोस-आइंस्टीन कंडेनसेट बनना प्रारंभ होता है। जैसा कि ऊपर उल्लेख किया गया है, समस्या यह है कि सातत्य सन्निकटन में ग्राउंड स्थिति को नजरअंदाज कर दिया गया है। चूँकि, यह पता चला है कि कण संख्या के लिए उपरोक्त समीकरण उत्तेजित अवस्था में बोसॉन की संख्या को अच्छी तरह से व्यक्त करता है, और इस प्रकार: | |||
:<math> | :<math> | ||
N=\frac{g_0 z}{1-z}+\left(\frac{Vf}{\Lambda^3}\right)\operatorname{Li}_{3/2}(z) | N=\frac{g_0 z}{1-z}+\left(\frac{Vf}{\Lambda^3}\right)\operatorname{Li}_{3/2}(z) | ||
</math> | </math> | ||
जहां जोड़ा गया शब्द | जहां जोड़ा गया शब्द ग्राउंड अवस्था में कणों की संख्या है। ग्राउंड स्तर की ऊर्जा को नजरअंदाज कर दिया गया है। यह समीकरण शून्य तापमान तक बनाये रखता है। आगे के परिणाम आदर्श बोस गैस पर लेख में पाए जा सकते हैं। | ||
===द्रव्यमान रहित बोस-आइंस्टीन कण (उदाहरण के लिए ब्लैक बॉडी विकिरण)=== | ===द्रव्यमान रहित बोस-आइंस्टीन कण (उदाहरण के लिए ब्लैक बॉडी विकिरण)=== | ||
द्रव्यमान रहित कणों के | द्रव्यमान रहित कणों के स्थिति में, द्रव्यमान रहित ऊर्जा वितरण फलन का उपयोग किया जाना चाहिए। इस फलन को आवृत्ति वितरण फलन में परिवर्तित करना सुविधाजनक है: | ||
:<math> | :<math> | ||
Line 124: | Line 123: | ||
\frac{1}{2}~\frac{\beta^3\nu^2}{e^{(h\nu-\mu)/k_{\rm B}T}-1}~d\nu | \frac{1}{2}~\frac{\beta^3\nu^2}{e^{(h\nu-\mu)/k_{\rm B}T}-1}~d\nu | ||
</math> | </math> | ||
जहाँ {{math|Λ}} द्रव्यमान रहित कणों के लिए तापीय तरंग दैर्ध्य है। तब वर्णक्रमीय ऊर्जा घनत्व (प्रति इकाई आयतन प्रति इकाई आवृत्ति ऊर्जा) है | |||
:<math>U_\nu~d\nu = \left(\frac{N\,h\nu}{V}\right) P_\nu~d\nu = \frac{4\pi f h\nu^3 }{c^3}~\frac{1}{e^{(h\nu-\mu)/k_{\rm B}T}-1}~d\nu.</math> | :<math>U_\nu~d\nu = \left(\frac{N\,h\nu}{V}\right) P_\nu~d\nu = \frac{4\pi f h\nu^3 }{c^3}~\frac{1}{e^{(h\nu-\mu)/k_{\rm B}T}-1}~d\nu.</math> | ||
अन्य थर्मोडायनामिक मापदंडों को बड़े कणों के | अन्य थर्मोडायनामिक मापदंडों को बड़े कणों के स्थिति में अनुरूप रूप से प्राप्त किया जा सकता है। उदाहरण के लिए, आवृत्ति वितरण फलन को एकीकृत करना और एन के लिए समाधान करना कणों की संख्या देता है: | ||
:<math>N=\frac{16\,\pi V}{c^3h^3\beta^3}\,\mathrm{Li}_3\left(e^{\mu/k_{\rm B}T}\right).</math> | :<math>N=\frac{16\,\pi V}{c^3h^3\beta^3}\,\mathrm{Li}_3\left(e^{\mu/k_{\rm B}T}\right).</math> | ||
सबसे | सबसे सामान्य द्रव्यमान रहित बोस गैस ब्लैक बॉडी में फोटॉन गैस है। इस प्रकार बॉक्स को ब्लैक बॉडी कैविटी मानते हुए, फोटॉन निरंतर दीवारों द्वारा अवशोषित और पुन: उत्सर्जित होते रहते हैं। जब यह स्थिति होती है, तो फोटॉन की संख्या संरक्षित नहीं होती है। बोस-आइंस्टीन सांख्यिकी की व्युत्पत्ति में, जब कणों की संख्या पर प्रतिबंध हटा दिया जाता है, तो यह प्रभावी रूप से रासायनिक क्षमता (μ) को शून्य पर समुच्चय करने के समान होता है। इसके अतिरिक्त, चूँकि फोटॉन की दो स्पिन अवस्थाएँ होती हैं, f का मान 2 होता है। तब वर्णक्रमीय ऊर्जा घनत्व होता है | ||
:<math>U_\nu~d\nu = \frac{8\pi h\nu^3 }{c^3}~\frac{1}{e^{h\nu/k_{\rm B}T}-1}~d\nu </math> | :<math>U_\nu~d\nu = \frac{8\pi h\nu^3 }{c^3}~\frac{1}{e^{h\nu/k_{\rm B}T}-1}~d\nu </math> | ||
जो प्लैंक के ब्लैक बॉडी विकिरण के नियम के लिए वर्णक्रमीय ऊर्जा घनत्व है। ध्यान दें कि यदि यह प्रक्रिया द्रव्यमान रहित मैक्सवेल-बोल्ट्ज़मैन कणों के लिए की जाती है, तो वियन सन्निकटन पुनर्प्राप्त किया जाता है, जो उच्च तापमान या कम घनत्व के लिए प्लैंक के वितरण का अनुमान लगाता है। | जो प्लैंक के ब्लैक बॉडी विकिरण के नियम के लिए वर्णक्रमीय ऊर्जा घनत्व है। ध्यान दें कि यदि यह प्रक्रिया द्रव्यमान रहित मैक्सवेल-बोल्ट्ज़मैन कणों के लिए की जाती है, तो वियन सन्निकटन पुनर्प्राप्त किया जाता है, जो उच्च तापमान या कम घनत्व के लिए प्लैंक के वितरण का अनुमान लगाता है। | ||
कुछ स्थितियों में, फोटॉनों से जुड़ी प्रतिक्रियाओं के परिणामस्वरूप फोटॉनों की संख्या का संरक्षण होगा (जैसे [[प्रकाश उत्सर्जक डायोड]], | कुछ स्थितियों में, फोटॉनों से जुड़ी प्रतिक्रियाओं के परिणामस्वरूप फोटॉनों की संख्या का संरक्षण होगा (जैसे [[प्रकाश उत्सर्जक डायोड]], वाइट कैविटी)। इन स्थितियों में, फोटॉन वितरण फलन में गैर-शून्य रासायनिक क्षमता सम्मिलित होगी। (हरमन 2005) | ||
ताप क्षमता के लिए [[डेबी मॉडल]] द्वारा और द्रव्यमान रहित बोस गैस दी गई है। यह मॉडल बॉक्स में [[फोनन]] की गैस पर विचार करता है और फोटॉन के विकास से | ताप क्षमता के लिए [[डेबी मॉडल]] द्वारा और द्रव्यमान रहित बोस गैस दी गई है। यह मॉडल बॉक्स में [[फोनन]] की गैस पर विचार करता है और फोटॉन के विकास से भिन्न है क्योंकि फोनन की गति प्रकाश की गति से कम है, और बॉक्स के प्रत्येक अक्ष के लिए अधिकतम अनुमत तरंग दैर्ध्य है। इसका कारण यह है कि अवस्था स्थान पर एकीकरण अनंत तक नहीं किया जा सकता है, और परिणामों को पॉलीलॉगरिदम में व्यक्त करने के अतिरिक्त, उन्हें संबंधित [[डिबाई समारोह|डिबाई फलन]] में व्यक्त किया जाता है। | ||
=== | ===मैसिव फर्मी-डिराक कण (जैसे किसी धातु में इलेक्ट्रॉन)=== | ||
इस | इस स्थिति के लिए: | ||
:<math>\Phi(E)=e^{\beta(E-\mu)}+1.\,</math> | :<math>\Phi(E)=e^{\beta(E-\mu)}+1.\,</math> | ||
ऊर्जा वितरण | ऊर्जा वितरण फलन को एकीकृत करना देता है | ||
:<math>N=\left(\frac{Vf}{\Lambda^3}\right)\left[-\textrm{Li}_{3/2}(-z)\right]</math> | :<math>N=\left(\frac{Vf}{\Lambda^3}\right)\left[-\textrm{Li}_{3/2}(-z)\right]</math> | ||
फिर | फिर जहाँ, LI<sub>''s''</sub>(z) बहु लघुगणक फलन है और {{math|Λ}} [[थर्मल डी ब्रोगली तरंग दैर्ध्य]] है। आगे के परिणाम आदर्श फर्मी गैस पर लेख में पाए जा सकते हैं। फर्मी गैस के अनुप्रयोग [[मुक्त इलेक्ट्रॉन मॉडल]], वाइट बौनों के सिद्धांत और सामान्य रूप से [[पतित पदार्थ|डेजेनेरेट पदार्थ]] में पाए जाते हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[एक हार्मोनिक जाल में गैस|हार्मोनिक | * [[एक हार्मोनिक जाल में गैस|हार्मोनिक ट्रैप में गैस]] | ||
== संदर्भ == | == संदर्भ == | ||
* {{cite journal| last = Herrmann| first = F.|author2=Würfel, P. | * {{cite journal| last = Herrmann| first = F.|author2=Würfel, P. |
Revision as of 14:24, 3 August 2023
क्वांटम यांत्रिकी में, बॉक्स में क्वांटम कण के परिणामों का उपयोग बॉक्स में क्वांटम आदर्श गैस के लिए संतुलन समाधान को देखने के लिए किया जा सकता है, जो ऐसा बॉक्स होता है जिसमें बड़ी संख्या में अणु होते हैं जो तात्कालिक को छोड़कर एक दूसरे के साथ इंटरैक्ट नहीं करते हैं। थर्मलीकरण कोलिसन इस सरल मॉडल का उपयोग मौलिक आदर्श गैस के साथ-साथ विभिन्न क्वांटम आदर्श गैसों जैसे कि आदर्श मैसिव फर्मी गैस, आदर्श मैसिव बोस गैस और साथ ही ब्लैक बॉडी विकिरण (फोटॉन गैस) का वर्णन करने के लिए किया जा सकता है, जिसे द्रव्यमान रहित माना जा सकता है। बोस गैस, जिसमें थर्मलाइजेशन को सामान्यतः संतुलित द्रव्यमान के साथ फोटॉन की इंटरैक्ट से सुविधाजनक माना जाता है।
मैक्सवेल-बोल्ट्ज़मैन आँकड़ों, बोस-आइंस्टीन आँकड़ों या फ़र्मी-डिराक आँकड़ों के परिणामों का उपयोग करते हुए, और बहुत बड़े बॉक्स की सीमा पर विचार करते हुए, थॉमस-फ़र्मी सन्निकटन (एनरिको फर्मी और लेवेलिन थॉमस के नाम पर) का उपयोग डीजेनरेट को व्यक्त करने के लिए किया जाता है। आंतरिक ऊर्जा स्तर, और अभिन्न के रूप में स्थितियो पर योग यह गैस के थर्मोडायनामिक गुणों की गणना विभाजन फलन (सांख्यिकीय यांत्रिकी) या भव्य विभाजन फलन के उपयोग से करने में सक्षम बनाता है। यह परिणाम बड़े और द्रव्यमान रहित दोनों कणों पर प्रयुक्त होते है। अधिक संपूर्ण गणनाएँ भिन्न-भिन्न लेखों पर छोड़ दी जाती है, किन्तु इस लेख में कुछ सरल उदाहरण दिए जाते है।
थॉमस-स्थितियो की अधोगति के लिए फर्मी सन्निकटन
एक बॉक्स में भारी और द्रव्यमान रहित दोनों कणों के लिए, एक कण की अवस्थाओं की गणना क्वांटम संख्याओं के एक समुच्चय [nx, ny, nz] द्वारा की जाती है। संवेग का परिमाण किसके द्वारा दिया गया है?
जहाँ h प्लैंक स्थिरांक है और L बॉक्स के किनारे की लंबाई है। किसी कण की प्रत्येक संभावित अवस्था को धनात्मक पूर्णांकों के त्रि-आयामी ग्रिड पर बिंदु के रूप में सोचा जा सकता है। उद्गम से किसी बिन्दु तक की दूरी होती है
मान लीजिए कि क्वांटम संख्याओं का प्रत्येक समुच्चय F बताता है जहां F कण की स्वतंत्रता की आंतरिक डिग्री की संख्या है जिसे कोलिसन द्वारा परिवर्तित किया जा सकता है। उदाहरण के लिए, स्पिन 1⁄2 कण में f=2 होगा, प्रत्येक स्पिन अवस्था के लिए एक। n के बड़े मानों के लिए, उपरोक्त समीकरण से p से कम या उसके बराबर संवेग परिमाण वाले स्थितियो की संख्या लगभग है
जो त्रिज्या n के गोले के आयतन का केवल f गुना है, जिसे आठ से विभाजित किया गया है क्योंकि यह केवल धनात्मक ni वाला अष्टक है माना जाता है। सातत्य सन्निकटन का उपयोग करते हुए, p और p+dp के मध्य संवेग के परिमाण वाली अवस्थाओं की संख्या है
जहां V=L3बॉक्स का आयतन है। ध्यान दें कि इस सातत्य सन्निकटन का उपयोग करने में, जिसे थॉमस-फर्मी सन्निकटन के रूप में भी जाना जाता है, निम्न-ऊर्जा वाले स्थितियो को चिह्नित करने की क्षमता खो जाती है, जिसमें ग्राउंड अवस्था भी सम्मिलित है जहां Ni= 1. अधिकतर स्थितियों में यह कोई समस्या नहीं होती है, किन्तु जब बोस-आइंस्टीन कंडेनसेट या बोस-आइंस्टीन कंडेनसेशन पर विचार किया जाता है, जिसमें गैस का बड़ा हिस्सा ग्राउंड अवस्था में या उसके निकट होता है, तो कम ऊर्जा वाले स्थितियो से निपटने की क्षमता महत्वपूर्ण हो जाती है।
बिना किसी अनुमान के, ऊर्जा εi वाले कणों की संख्या द्वारा दिया गया है
जहाँ स्थिति I और का डेजेनेरेट ऊर्जा स्तर है
थॉमस-फर्मी सन्निकटन का उपयोग करके E और E+dE के मध्य ऊर्जा वाले कणों dNE की संख्या है:
जहाँ E और E+dE के मध्य ऊर्जा वाले स्थितियो की संख्या है।
ऊर्जा वितरण
इस आलेख के पिछले अनुभागों से प्राप्त परिणामों का उपयोग करके, अब एक बॉक्स में गैस के लिए कुछ वितरण निर्धारित किए जा सकते हैं। कणों की एक प्रणाली के लिए, एक चर के लिए वितरण को अभिव्यक्ति के माध्यम से परिभाषित किया गया है, जो कणों का वह अंश है जिसमें और के मध्य का मान होता है।
जहाँ
- , कणों की संख्या जिनमें और के मध्य का मान है
- , उन स्थितियों की संख्या जिनमें और के मध्य का मान है
- , संभावना है कि जिस अवस्था का मान है उस पर एक कण का अधिकृत करता है
- , कणों की कुल संख्या है।
यह इस प्रकार है कि:
संवेग वितरण के लिए , मध्य में गति के परिमाण के साथ कणों का अंश और है:
और ऊर्जा वितरण के लिए , मध्य में ऊर्जा वाले कणों का अंश और है:
बॉक्स में कण के लिए (और मुक्त कण के लिए भी), ऊर्जा के मध्य संबंध और गति मैसिव और द्रव्यमानहीन कणों के लिए भिन्न है। बड़े कणों के लिए,
जबकि द्रव्यमान रहित कणों के लिए,
जहाँ कण का द्रव्यमान है और प्रकाश की गति है. इन संबंधो का उपयोग करते हुए,
- बड़े कणों के लिए जहाँ Λ गैस की तापीय तरंग दैर्ध्य है।यह एक महत्वपूर्ण मात्रा है, क्योंकि जब Λ अंतर-कण दूरी के क्रम पर होता है, तो क्वांटम प्रभाव हावी होने लगते हैं और गैस को मैक्सवेल-बोल्ट्ज़मैन गैस नहीं माना जा सकता है।
- द्रव्यमान रहित कणों के लिए जहाँ Λ अब द्रव्यमान रहित कणों के लिए थर्मल तरंग दैर्ध्य है।
विशिष्ट उदाहरण
निम्नलिखित अनुभाग कुछ विशिष्ट स्थितियों के परिणामों का उदाहरण देते हैं।
मैसिव मैक्सवेल-बोल्ट्ज़मैन कण
इस स्थिति के लिए:
ऊर्जा वितरण फलन को एकीकृत करना और एन के लिए समाधान देना
मूल ऊर्जा वितरण फलन में प्रतिस्थापित करने से प्राप्त होता है
जो मैक्सवेल-बोल्ट्ज़मैन वितरण के लिए मौलिक रूप से प्राप्त समान परिणाम हैं। आगे के परिणाम आदर्श गैस पर लेख के मौलिक खंड में पाए जा सकते हैं।
मैसिव बोस-आइंस्टीन कण
इस स्थिति के लिए:
जहाँ
ऊर्जा वितरण फलन को एकीकृत करने और एन के लिए समाधान करने से कण संख्या मिलती है
जहाँ Lis(z) बहु लघुगणक फलन है. पॉलीलॉगरिदम शब्द सदैव धनात्मक और वास्तविक होना चाहिए, जिसका अर्थ है कि इसका मान 0 से ζ(3/2) तक जाएगा क्योंकि z 0 से 1 तक जाता है। जैसे-जैसे तापमान शून्य की ओर गिरता है, इस प्रकार Λ अंततः बड़ा और बड़ा होता जाएगा जब तक कि अंततः Λ तक नहीं पहुंच जाता महत्वपूर्ण मान Λc जहां z=1 और
जहाँ रीमैन ज़ेटा फलन को दर्शाता है। जिस तापमान पर Λ = Λcक्रांतिक तापमान है. इस महत्वपूर्ण तापमान से नीचे के तापमान के लिए, कण संख्या के लिए उपरोक्त समीकरण का कोई समाधान नहीं है। क्रांतिक तापमान वह तापमान है जिस पर बोस-आइंस्टीन कंडेनसेट बनना प्रारंभ होता है। जैसा कि ऊपर उल्लेख किया गया है, समस्या यह है कि सातत्य सन्निकटन में ग्राउंड स्थिति को नजरअंदाज कर दिया गया है। चूँकि, यह पता चला है कि कण संख्या के लिए उपरोक्त समीकरण उत्तेजित अवस्था में बोसॉन की संख्या को अच्छी तरह से व्यक्त करता है, और इस प्रकार:
जहां जोड़ा गया शब्द ग्राउंड अवस्था में कणों की संख्या है। ग्राउंड स्तर की ऊर्जा को नजरअंदाज कर दिया गया है। यह समीकरण शून्य तापमान तक बनाये रखता है। आगे के परिणाम आदर्श बोस गैस पर लेख में पाए जा सकते हैं।
द्रव्यमान रहित बोस-आइंस्टीन कण (उदाहरण के लिए ब्लैक बॉडी विकिरण)
द्रव्यमान रहित कणों के स्थिति में, द्रव्यमान रहित ऊर्जा वितरण फलन का उपयोग किया जाना चाहिए। इस फलन को आवृत्ति वितरण फलन में परिवर्तित करना सुविधाजनक है:
जहाँ Λ द्रव्यमान रहित कणों के लिए तापीय तरंग दैर्ध्य है। तब वर्णक्रमीय ऊर्जा घनत्व (प्रति इकाई आयतन प्रति इकाई आवृत्ति ऊर्जा) है
अन्य थर्मोडायनामिक मापदंडों को बड़े कणों के स्थिति में अनुरूप रूप से प्राप्त किया जा सकता है। उदाहरण के लिए, आवृत्ति वितरण फलन को एकीकृत करना और एन के लिए समाधान करना कणों की संख्या देता है:
सबसे सामान्य द्रव्यमान रहित बोस गैस ब्लैक बॉडी में फोटॉन गैस है। इस प्रकार बॉक्स को ब्लैक बॉडी कैविटी मानते हुए, फोटॉन निरंतर दीवारों द्वारा अवशोषित और पुन: उत्सर्जित होते रहते हैं। जब यह स्थिति होती है, तो फोटॉन की संख्या संरक्षित नहीं होती है। बोस-आइंस्टीन सांख्यिकी की व्युत्पत्ति में, जब कणों की संख्या पर प्रतिबंध हटा दिया जाता है, तो यह प्रभावी रूप से रासायनिक क्षमता (μ) को शून्य पर समुच्चय करने के समान होता है। इसके अतिरिक्त, चूँकि फोटॉन की दो स्पिन अवस्थाएँ होती हैं, f का मान 2 होता है। तब वर्णक्रमीय ऊर्जा घनत्व होता है
जो प्लैंक के ब्लैक बॉडी विकिरण के नियम के लिए वर्णक्रमीय ऊर्जा घनत्व है। ध्यान दें कि यदि यह प्रक्रिया द्रव्यमान रहित मैक्सवेल-बोल्ट्ज़मैन कणों के लिए की जाती है, तो वियन सन्निकटन पुनर्प्राप्त किया जाता है, जो उच्च तापमान या कम घनत्व के लिए प्लैंक के वितरण का अनुमान लगाता है।
कुछ स्थितियों में, फोटॉनों से जुड़ी प्रतिक्रियाओं के परिणामस्वरूप फोटॉनों की संख्या का संरक्षण होगा (जैसे प्रकाश उत्सर्जक डायोड, वाइट कैविटी)। इन स्थितियों में, फोटॉन वितरण फलन में गैर-शून्य रासायनिक क्षमता सम्मिलित होगी। (हरमन 2005)
ताप क्षमता के लिए डेबी मॉडल द्वारा और द्रव्यमान रहित बोस गैस दी गई है। यह मॉडल बॉक्स में फोनन की गैस पर विचार करता है और फोटॉन के विकास से भिन्न है क्योंकि फोनन की गति प्रकाश की गति से कम है, और बॉक्स के प्रत्येक अक्ष के लिए अधिकतम अनुमत तरंग दैर्ध्य है। इसका कारण यह है कि अवस्था स्थान पर एकीकरण अनंत तक नहीं किया जा सकता है, और परिणामों को पॉलीलॉगरिदम में व्यक्त करने के अतिरिक्त, उन्हें संबंधित डिबाई फलन में व्यक्त किया जाता है।
मैसिव फर्मी-डिराक कण (जैसे किसी धातु में इलेक्ट्रॉन)
इस स्थिति के लिए:
ऊर्जा वितरण फलन को एकीकृत करना देता है
फिर जहाँ, LIs(z) बहु लघुगणक फलन है और Λ थर्मल डी ब्रोगली तरंग दैर्ध्य है। आगे के परिणाम आदर्श फर्मी गैस पर लेख में पाए जा सकते हैं। फर्मी गैस के अनुप्रयोग मुक्त इलेक्ट्रॉन मॉडल, वाइट बौनों के सिद्धांत और सामान्य रूप से डेजेनेरेट पदार्थ में पाए जाते हैं।
यह भी देखें
संदर्भ
- Herrmann, F.; Würfel, P. (August 2005). "Light with nonzero chemical potential". American Journal of Physics. 73 (8): 717–723. Bibcode:2005AmJPh..73..717H. doi:10.1119/1.1904623. Retrieved 2006-11-20.
- Huang, Kerson (1967). Statistical Mechanics. New York: John Wiley & Sons.
- Isihara, A. (1971). Statistical Physics. New York: Academic Press.
- Landau, L. D.; E. M. Lifshitz (1996). Statistical Physics (3rd Edition Part 1 ed.). Oxford: Butterworth-Heinemann.
- Yan, Zijun (2000). "General thermal wavelength and its applications". Eur. J. Phys. 21 (6): 625–631. Bibcode:2000EJPh...21..625Y. doi:10.1088/0143-0807/21/6/314. S2CID 250870934.
- Vu-Quoc, L., Configuration integral (statistical mechanics), 2008. this wiki site is down; see this article in the web archive on 2012 April 28.