द्विसममितीय आव्यूह: Difference between revisions
From Vigyanwiki
m (added Category:Vigyan Ready using HotCat) |
m (8 revisions imported from alpha:द्विसममितीय_मैट्रिक्स) |
(No difference)
|
Revision as of 11:19, 16 August 2023
गणित में, द्विसममितीय आव्यूह वर्ग आव्यूह है जो अपने दोनों मुख्य विकर्णों के विषय में सममित है। अधिक त्रुटिहीन रूप से, n × n आव्यूह A द्विसममितीय है यदि यह A = AT और AJ = JA दोनों को संतुष्ट करता है जहां J, n × n विनिमय आव्यूह है।
उदाहरण के लिए, रूप का कोई भी आव्यूह है:
द्विसममितीय इस उदाहरण के लिए विनिमय आव्यूह है:
गुण
- द्विसममितीय आव्यूह सममित सेंट्रोसिमेट्रिक और सममित पर्सिमेट्रिक दोनों हैं।
- दो द्विसममितीय आव्यूहों का गुणनफल सेंट्रोसिमेट्रिक आव्यूह होता है।
- वास्तविक संख्या द्विसममितीय आव्यूह वास्तव में वे सममित आव्यूह हैं जिनके स्वदेशी मान विनिमय आव्यूह द्वारा पूर्व या पश्चात के गुणन के पश्चात संभावित संकेत परिवर्तनों के अतिरिक्त समान रहते हैं।[1]
- यदि A भिन्न-भिन्न एइग मान के साथ वास्तविक द्विसममितीय आव्यूह है, तो A के साथ आने वाले आव्यूहों को द्विसममितीय होना चाहिए।[2]
- द्विसममितीय आव्यूहों के व्युत्क्रम आव्यूह को पुनरावृत्ति सूत्रों द्वारा प्रदर्शित किया जा सकता है।[3]
संदर्भ
- ↑ Tao, David; Yasuda, Mark (2002). "A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices". SIAM Journal on Matrix Analysis and Applications. 23 (3): 885–895. doi:10.1137/S0895479801386730.
- ↑ Yasuda, Mark (2012). "कम्यूटिंग और एंटी-कम्यूटिंग एम-इन्वोल्यूशन के कुछ गुण". Acta Mathematica Scientia. 32 (2): 631–644. doi:10.1016/S0252-9602(12)60044-7.
- ↑ Wang, Yanfeng; Lü, Feng; Lü, Weiran (2018-01-10). "द्विसममितीय आव्यूहों का व्युत्क्रम". Linear and Multilinear Algebra. 67 (3): 479–489. doi:10.1080/03081087.2017.1422688. ISSN 0308-1087. S2CID 125163794.