अभिलक्षणिक बहुपद: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
{{About|एक आव्यूह या सदिश रिक्त समिष्ट के एंडोमोर्फिज्म की विशेषता बहुपद|मैट्रोइड का अभिलक्षणिक बहुपद|मैट्रोइड|एक श्रेणीबद्ध पोसेट का|ग्रेडेड पॉसेट}} | {{About|एक आव्यूह या सदिश रिक्त समिष्ट के एंडोमोर्फिज्म की विशेषता बहुपद|मैट्रोइड का अभिलक्षणिक बहुपद|मैट्रोइड|एक श्रेणीबद्ध पोसेट का|ग्रेडेड पॉसेट}} | ||
रैखिक बीजगणित में, [[वर्ग मैट्रिक्स|वर्ग आव्यूह]] का विशिष्ट [[बहुपद]] बहुपद होता है जो [[मैट्रिक्स समानता|आव्यूह समानता]] के अनुसार अपरिवर्तनीय होता है और बहुपद के मूल के रूप में स्वदेशी मान होता है। इसके गुणांकों के बीच आव्यूह का निर्धारक और [[ट्रेस (रैखिक बीजगणित)]] है। परिमित-आयामी [[सदिश स्थल|सदिश समिष्ट]] के [[एंडोमोर्फिज्म]] का विशेषता बहुपद किसी भी आधार पर उस एंडोमोर्फिज्म के आव्यूह का विशेषता बहुपद है (अर्थात, विशेषता बहुपद [[आधार (रैखिक बीजगणित)]] की पसंद पर निर्भर नहीं करता है)। विशेषता समीकरण, जिसे निर्धारक समीकरण के रूप में भी जाना जाता है,<ref>{{cite book |last=Guillemin |first=Ernst |title=परिचयात्मक सर्किट सिद्धांत|author-link=Ernst_Guillemin |date=1953 |url=https://archive.org/details/introductorycirc0000guil |publisher=Wiley |pages=366, 541 |isbn=0471330663}}</ref><ref>{{cite journal |last1=Forsythe |first1=George E. |last2=Motzkin |first2=Theodore |date=January 1952 |title=रैखिक समीकरणों की प्रणालियों की स्थिति में सुधार के लिए गॉस परिवर्तन का विस्तार|url=https://www.ams.org/journals/mcom/1952-06-037/S0025-5718-1952-0048162-0/S0025-5718-1952-0048162-0.pdf |journal=American Mathematical Society – Mathematics of Computation |volume=6 |issue=37 |pages=18–34 |doi=10.1090/S0025-5718-1952-0048162-0 |access-date=3 October 2020|doi-access=free }}</ref><ref>{{cite journal |last=Frank |first=Evelyn |date=1946 |title=सम्मिश्र गुणांक वाले बहुपदों के शून्यकों पर|journal=Bulletin of the American Mathematical Society |volume=52 |issue=2 |pages=144–157 |doi=10.1090/S0002-9904-1946-08526-2 |doi-access=free }}</ref> विशेषता बहुपद को शून्य के | रैखिक बीजगणित में, [[वर्ग मैट्रिक्स|वर्ग आव्यूह]] का विशिष्ट [[बहुपद]] बहुपद होता है जो [[मैट्रिक्स समानता|आव्यूह समानता]] के अनुसार अपरिवर्तनीय होता है और बहुपद के मूल के रूप में स्वदेशी मान होता है। इसके गुणांकों के बीच आव्यूह का निर्धारक और [[ट्रेस (रैखिक बीजगणित)]] है। परिमित-आयामी [[सदिश स्थल|सदिश समिष्ट]] के [[एंडोमोर्फिज्म]] का विशेषता बहुपद किसी भी आधार पर उस एंडोमोर्फिज्म के आव्यूह का विशेषता बहुपद है (अर्थात, विशेषता बहुपद [[आधार (रैखिक बीजगणित)]] की पसंद पर निर्भर नहीं करता है)। विशेषता समीकरण, जिसे निर्धारक समीकरण के रूप में भी जाना जाता है,<ref>{{cite book |last=Guillemin |first=Ernst |title=परिचयात्मक सर्किट सिद्धांत|author-link=Ernst_Guillemin |date=1953 |url=https://archive.org/details/introductorycirc0000guil |publisher=Wiley |pages=366, 541 |isbn=0471330663}}</ref><ref>{{cite journal |last1=Forsythe |first1=George E. |last2=Motzkin |first2=Theodore |date=January 1952 |title=रैखिक समीकरणों की प्रणालियों की स्थिति में सुधार के लिए गॉस परिवर्तन का विस्तार|url=https://www.ams.org/journals/mcom/1952-06-037/S0025-5718-1952-0048162-0/S0025-5718-1952-0048162-0.pdf |journal=American Mathematical Society – Mathematics of Computation |volume=6 |issue=37 |pages=18–34 |doi=10.1090/S0025-5718-1952-0048162-0 |access-date=3 October 2020|doi-access=free }}</ref><ref>{{cite journal |last=Frank |first=Evelyn |date=1946 |title=सम्मिश्र गुणांक वाले बहुपदों के शून्यकों पर|journal=Bulletin of the American Mathematical Society |volume=52 |issue=2 |pages=144–157 |doi=10.1090/S0002-9904-1946-08526-2 |doi-access=free }}</ref> विशेषता बहुपद को शून्य के समान करके प्राप्त समीकरण है। | ||
[[वर्णक्रमीय ग्राफ सिद्धांत]] में, ग्राफ़ (असतत गणित) का विशेषता बहुपद इसके आसन्न आव्यूह का विशेषता बहुपद है।<ref>{{cite web | [[वर्णक्रमीय ग्राफ सिद्धांत]] में, ग्राफ़ (असतत गणित) का विशेषता बहुपद इसके आसन्न आव्यूह का विशेषता बहुपद है।<ref>{{cite web | ||
Line 12: | Line 12: | ||
==प्रेरणा== | ==प्रेरणा== | ||
रैखिक बीजगणित में, ईजेनवैल्यू और | रैखिक बीजगणित में, ईजेनवैल्यू और ईजेनवेक्टर मौलिक भूमिका निभाते हैं, क्योंकि, [[रैखिक परिवर्तन]] को देखते हुए, ईजेनवेक्टर सदिश होता है जिसकी दिशा परिवर्तन से नहीं बदलती है, और संबंधित ईजेनवैल्यू सदिश के परिमाण के परिणामी परिवर्तन का माप है। | ||
अधिक स्पष्टतः, यदि परिवर्तन को वर्ग आव्यूह <math>A,</math> द्वारा दर्शाया जाता है तो | अधिक स्पष्टतः, यदि परिवर्तन को वर्ग आव्यूह <math>A,</math> द्वारा दर्शाया जाता है तो ईजेनवेक्टर <math>\mathbf{v},</math> और संबंधित ईजेनवैल्यू <math>\lambda</math> समीकरण को संतुष्ट करता है | ||
<math display="block">A \mathbf{v} = \lambda \mathbf{v},</math> | <math display="block">A \mathbf{v} = \lambda \mathbf{v},</math> | ||
Line 52: | Line 52: | ||
\end{pmatrix} | \end{pmatrix} | ||
</math> और <math>(t-2)t - 1(-1) = t^2-2t+1 \,\!,</math> का विशेषता बहुपद <math>A.</math> पाया गया | </math> और <math>(t-2)t - 1(-1) = t^2-2t+1 \,\!,</math> का विशेषता बहुपद <math>A.</math> पाया गया | ||
एक अन्य उदाहरण अतिपरवलय कोण φ के अतिपरवलय | एक अन्य उदाहरण अतिपरवलय कोण φ के अतिपरवलय फलनों का उपयोग करता है। आव्यूह के लिए माना | ||
<math display=block>A = \begin{pmatrix} \cosh(\varphi) & \sinh(\varphi)\\ \sinh(\varphi)& \cosh(\varphi) \end{pmatrix}.</math> | <math display=block>A = \begin{pmatrix} \cosh(\varphi) & \sinh(\varphi)\\ \sinh(\varphi)& \cosh(\varphi) \end{pmatrix}.</math> | ||
इसका विशेषता बहुपद है | इसका विशेषता बहुपद है | ||
Line 67: | Line 67: | ||
<math display=block>p_A (t) = \sum_{k=0}^n t^{n-k} (-1)^k \operatorname{tr}\left(\textstyle\bigwedge^k A\right)</math> | <math display=block>p_A (t) = \sum_{k=0}^n t^{n-k} (-1)^k \operatorname{tr}\left(\textstyle\bigwedge^k A\right)</math> | ||
जहां <math display="inline">\operatorname{tr}\left(\bigwedge^k A\right)</math> की <math>k</math>वीं बाह्य शक्ति का ट्रेस है, जिसका आयाम <math>A,</math> है इस ट्रेस की गणना <math display="inline">\binom {n}{k}.</math> आकार के <math>A</math> के सभी प्रमुख माइनरों के योग के रूप में की जा सकती है। पुनरावर्ती फ़ैडीव-लेवेरियर एल्गोरिदम इन गुणांकों की अधिक कुशलता से गणना करता है। | जहां <math display="inline">\operatorname{tr}\left(\bigwedge^k A\right)</math> की <math>k</math>वीं बाह्य शक्ति का ट्रेस है, जिसका आयाम <math>A,</math> है इस ट्रेस की गणना <math display="inline">\binom {n}{k}.</math> आकार के <math>A</math> के सभी प्रमुख माइनरों के योग के रूप में की जा सकती है। पुनरावर्ती फ़ैडीव-लेवेरियर एल्गोरिदम इन गुणांकों की अधिक कुशलता से गणना करता है। | ||
जब गुणांक के क्षेत्र की विशेषता <math>0,</math> होती है, तो प्रत्येक ऐसे ट्रेस को वैकल्पिक रूप से <math>k \times k</math> आव्यूह के एकल निर्धारक के रूप में गणना की जा सकती है, | जब गुणांक के क्षेत्र की विशेषता <math>0,</math> होती है, तो प्रत्येक ऐसे ट्रेस को वैकल्पिक रूप से <math>k \times k</math> आव्यूह के एकल निर्धारक के रूप में गणना की जा सकती है, | ||
Line 77: | Line 76: | ||
\operatorname{tr}A^k &\operatorname{tr}A^{k-1}& & \cdots & \operatorname{tr}A | \operatorname{tr}A^k &\operatorname{tr}A^{k-1}& & \cdots & \operatorname{tr}A | ||
\end{vmatrix} ~.</math> | \end{vmatrix} ~.</math> | ||
केली-हैमिल्टन प्रमेय | |||
केली-हैमिल्टन प्रमेय में कहा गया है कि विशेषता बहुपद में <math>t</math> को <math>A</math> द्वारा प्रतिस्थापित करना (परिणामी शक्तियों को आव्यूह शक्तियों के रूप में व्याख्या करना, और स्थिर पद <math>c</math> को पहचान आव्यूह के <math>c</math> गुना के रूप में व्याख्या करना) शून्य आव्यूह उत्पन्न करता है। अनौपचारिक रूप से कहें तो, प्रत्येक आव्यूह अपने स्वयं के विशिष्ट समीकरण को संतुष्ट करता है। यह कथन यह कहने के समान है कि <math>A</math> का न्यूनतम बहुपद <math>A.</math> के विशिष्ट बहुपद को विभाजित करता है | |||
दो समान आव्यूहों का विशेषता बहुपद समान होता है। चूँकि, इसका विपरीत सामान्य रूप से सत्य नहीं है: समान विशेषता बहुपद वाले दो आव्यूहों का समान होना आवश्यक नहीं है। | दो समान आव्यूहों का विशेषता बहुपद समान होता है। चूँकि, इसका विपरीत सामान्य रूप से सत्य नहीं है: समान विशेषता बहुपद वाले दो आव्यूहों का समान होना आवश्यक नहीं है। | ||
आव्यूह <math>A</math> और उसके समिष्टान्तरण में समान विशेषता बहुपद है। <math>A</math> एक [[त्रिकोणीय मैट्रिक्स|त्रिकोणीय आव्यूह]] के समान है यदि और केवल तभी जब इसके विशेषता बहुपद को <math>K</math> के ऊपर रैखिक कारकों में पूरी तरह से विभाजित किया जा सकता है (विशेष बहुपद के अतिरिक्त न्यूनतम बहुपद के साथ भी यही सत्य है)। इस स्थिति में <math>A</math> [[जॉर्डन सामान्य रूप|जॉर्डन]] सामान्यतः एक आव्यूह के समान है। | |||
==दो आव्यूहों के गुणनफल का विशेषता बहुपद== | ==दो आव्यूहों के गुणनफल का विशेषता बहुपद== | ||
यदि <math>A</math> और <math>B</math> दो वर्ग <math>n \times n</math> आव्यूह हैं तो <math>AB</math> और <math>BA</math> के अभिलक्षणिक बहुपद संपाती होते हैं: | |||
<math display="block">p_{AB}(t)=p_{BA}(t).\,</math> | <math display="block">p_{AB}(t)=p_{BA}(t).\,</math> | ||
जब <math>A</math> गैर-एकवचन है तो यह परिणाम इस तथ्य से निकलता है कि <math>AB</math> और <math>BA</math> समान हैं: | |||
<math display="block">BA = A^{-1} (AB) A.</math> | <math display="block">BA = A^{-1} (AB) A.</math> | ||
ऐसे स्थिति के लिए जहां <math>A</math> और <math>B</math> दोनों एकवचन हैं, वांछित पहचान <math>t</math> में बहुपद और आव्यूहों के गुणांक के बीच समानता है। इस प्रकार, इस समानता को सिद्ध करने के लिए, यह सिद्ध करना पर्याप्त है कि यह सभी गुणांकों के समिष्ट के एक गैर-रिक्त विवृत उपसमुच्चय (सामान्य [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल समिष्ट]] के लिए, या, अधिक सामान्यतः, [[ज़ारिस्की टोपोलॉजी]] के लिए) पर सत्यापित है। चूँकि गैर-एकवचन आव्यूह सभी आव्यूहों के समिष्ट का एक विवृत उपसमुच्चय बनाते हैं, यह परिणाम को सिद्ध करता है। | |||
अधिक सामान्यतः, यदि <math>A</math>, <math>m \times n</math> क्रम का एक आव्यूह है और <math>B</math>, <math>n \times m,</math>, क्रम का एक आव्यूह है, तो <math>AB</math> <math>m \times m</math> है और <math>BA</math>, <math>n \times n</math> आव्यूह है, और एक के पास है<math display="block">p_{BA}(t) = t^{n-m} p_{AB}(t).\,</math> | |||
इसे सिद्ध करने के लिए, यदि आवश्यक हो, तो <math>A</math> और <math>B.</math> को अदला-बदली करके <math>n > m,</math> मान लिया जा सकता है। फिर, नीचे <math>A</math> को शून्य की <math>n - m</math> पंक्तियों से और दाईं ओर <math>B</math> को, शून्य के <math>n - m</math> स्तंभों से सीमाबद्ध करके, व्यक्ति को दो <math>n \times n</math> आव्यूह <math>A^{\prime}</math> और <math>B^{\prime}</math> इस प्रकार प्राप्त होते हैं कि <math>B^{\prime}A^{\prime} = BA</math> और <math>A^{\prime}B^{\prime}</math> शून्य की <math>n - m</math> पंक्तियों और स्तंभों से घिरे <math>AB</math> के समान हैं। परिणाम <math>A^{\prime}B^{\prime}</math> और <math>AB.</math> के विशिष्ट बहुपदों की तुलना करके, वर्ग आव्यूह के स्थिति से प्राप्त होता है | |||
==<math>A</math><sup>k</sup> का विशेषता बहुपद== | |||
== | यदि <math>\lambda</math>, ईजेनवेक्टर <math>A</math> के साथ वर्ग आव्यूह <math>A</math> का एक eigenvalue है तो <math>\mathbf{v},</math>, <math>\lambda^k</math> का एक ईजेनवैल्यू है क्योंकि | ||
<math display="block">A^k \textbf{v} = A^{k-1} A \textbf{v} = \lambda A^{k-1} \textbf{v} = \dots = \lambda^k \textbf{v}.</math> | |||
बहुलताओं को सहमत होते हुए भी दिखाया जा सकता है, और यह इसके <math>x^k</math> समिष्ट पर किसी भी बहुपद का सामान्यीकरण करता है :<ref>{{Cite book | last1=Horn | first1=Roger A. | last2=Johnson | first2=Charles R. | title=मैट्रिक्स विश्लेषण| publisher=[[Cambridge University Press]] | isbn=978-0-521-54823-6 | year=2013 |edition=2nd|at=pp. 108–109, Section 2.4.2}}</ref> | |||
{{math theorem | {{math theorem | ||
| name = | | name = प्रमेय | ||
| | | माना <math>A</math> एक वर्ग हो <math>n \times n</math> आव्यूह और माना <math>f(t)</math> एक बहुपद हो. यदि की विशेषता बहुपद <math>A</math> एक गुणनखंडन है | ||
<math display=block>p_A(t) = (t - \lambda_1) (t - \lambda_2) \cdots (t-\lambda_n)</math> | <math display=block>p_A(t) = (t - \lambda_1) (t - \lambda_2) \cdots (t-\lambda_n)</math> | ||
फिर आव्यूह का विशेषता बहुपद <math>f(A)</math> द्वारा दिया गया है | |||
<math display=block>p_{f(A)}(t) = (t - f(\lambda_1)) (t - f(\lambda_2)) \cdots (t-f(\lambda_n)).</math> | <math display=block>p_{f(A)}(t) = (t - f(\lambda_1)) (t - f(\lambda_2)) \cdots (t-f(\lambda_n)).</math> | ||
}} | }} | ||
अर्थात् बीजगणितीय बहुलता <math>\lambda</math> में <math>f(A)</math> के बीजगणितीय गुणन के योग के | |||
चूँकि, यह धारणा <math>p_A(t)</math> रैखिक कारकों में गुणनखंडन | अर्थात् बीजगणितीय बहुलता <math>\lambda</math> में <math>f(A)</math> के बीजगणितीय गुणन के योग के समान है ऐसा है कि <math>f(\lambda') = \lambda.</math> विशेष रूप से, <math>\operatorname{tr}(f(A)) = \textstyle\sum_{i=1}^n f(\lambda_i)</math> और <math>\operatorname{det}(f(A)) = \textstyle\prod_{i=1}^n f(\lambda_i).</math> यहाँ बहुपद <math>f(t) = t^3+1,</math> है उदाहरण के लिए, आव्यूह <math>A</math> पर मूल्यांकन किया जाता है इस प्रकार <math>f(A) = A^3+I.</math> प्रमेय किसी भी क्षेत्र या [[क्रमविनिमेय वलय]] पर आव्यूहों और बहुपदों पर प्रयुक्त होता है।<ref>{{Cite book |last=Lang |first=Serge |url=https://www.worldcat.org/oclc/852792828 |title=बीजगणित|publisher=Springer |year=1993 |isbn=978-1-4613-0041-0 |location=New York |oclc=852792828|at=p.567, Theorem 3.10}}</ref> | ||
चूँकि, यह धारणा <math>p_A(t)</math> रैखिक कारकों में गुणनखंडन सदैव सत्य नहीं होता है, जब तक कि आव्यूह सम्मिश्र संख्याओं जैसे बीजगणितीय रूप से संवृत क्षेत्र पर नही होती है। | |||
{{math proof|proof= | {{math proof|proof= | ||
यह प्रमाण केवल सम्मिश्र संख्याओं (या किसी बीजगणितीय रूप से संवृत क्षेत्र) पर आव्यूहों और बहुपदों पर प्रयुक्त होता है। | |||
उस स्थिति में, किसी भी वर्ग अक्व्युह के अभिलक्षणिक बहुपद को सदैव इस प्रकार गुणनखंडित किया जा सकता है | |||
<math display=block>p_A(t) = \left(t - \lambda_1\right) \left(t - \lambda_2\right) \cdots \left(t - \lambda_n\right)</math> | <math display=block>p_A(t) = \left(t - \lambda_1\right) \left(t - \lambda_2\right) \cdots \left(t - \lambda_n\right)</math> | ||
जहाँ <math>\lambda_1, \lambda_2, \ldots, \lambda_n</math> के इजेनवैल्यू हैं <math>A,</math> संभवतः दोहराया गया. | |||
इसके अतिरिक्त, [[जॉर्डन सामान्य रूप|जॉर्डन अपघटन प्रमेय]] गारंटी देता है कि कोई भी वर्ग आव्यूह <math>A</math> के रूप में विघटित किया जा सकता है <math>A = S^{-1} U S,</math> जहाँ <math>S</math> एक [[विपरीत आव्यूह]] है और <math>U</math> [[ऊपरी त्रिकोणीय]] है | |||
साथ <math>\lambda_1, \ldots, \lambda_n</math> विकर्ण पर (प्रत्येक इजेनवैल्यू को उसकी बीजगणितीय बहुलता के अनुसार दोहराया जाता है)। | |||
( | (जॉर्डन सामान्य रूप में सशक्त गुण हैं, किन्तु ये पर्याप्त हैं; वैकल्पिक रूप से [[शूर अपघटन]] का उपयोग किया जा सकता है, जो कम लोकप्रिय है किन्तु सिद्ध करना कुछ सीमा तक सरल है)। | ||
माना <math display="inline">f(t) = \sum_i \alpha_i t^i.</math> | |||
तब | |||
<math display=block>f(A) = \textstyle\sum \alpha_i (S^{-1} U S)^i = \textstyle\sum \alpha_i S^{-1} U S S^{-1} U S \cdots S^{-1} U S = \textstyle\sum \alpha_i S^{-1} U^i S = S^{-1} (\textstyle\sum \alpha_i U^i) S = S^{-1} f(U) S.</math> | <math display=block>f(A) = \textstyle\sum \alpha_i (S^{-1} U S)^i = \textstyle\sum \alpha_i S^{-1} U S S^{-1} U S \cdots S^{-1} U S = \textstyle\sum \alpha_i S^{-1} U^i S = S^{-1} (\textstyle\sum \alpha_i U^i) S = S^{-1} f(U) S.</math> | ||
ऊपरी त्रिकोणीय आव्यूह के लिए <math>U</math> विकर्ण सहित <math>\lambda_1, \dots, \lambda_n,</math> आव्यूह <math>U^i</math> विकर्ण के साथ ऊपरी त्रिकोणीय है <math>\lambda_1^i,\dots,\lambda_n^i</math> in <math>U^i,</math> | |||
और इसलिए <math>f(U)</math> विकर्ण के साथ ऊपरी त्रिकोणीय है <math>f\left(\lambda_1\right), \dots, f\left(\lambda_n\right).</math> | |||
इसलिए, के मान <math>f(U)</math> है <math>f(\lambda_1),\dots,f(\lambda_n).</math> | |||
इसलिए <math>f(A) = S^{-1} f(U) S</math> [[समान आव्यूह|समान]] है <math>f(U),</math> इसमें समान बीजगणितीय बहुलताओं के साथ समान इजेनवैल्यू हैं. | |||
}} | }} | ||
== | ==सेक्युलर फलन और सेक्युलर समीकरण== | ||
=== | ===सेक्युलर फलन=== | ||
सेक्युलर फलन शब्द का प्रयोग उस चीज़ के लिए किया गया है जिसे अब ''विशेषता बहुपद'' कहा जाता है (कुछ साहित्य में सेक्युलर फलन शब्द अभी भी प्रयोग किया जाता है)। यह शब्द इस तथ्य से आया है कि [[जोसेफ लुई लैग्रेंज]] के दोलन सिद्धांत के अनुसार, विशेषता बहुपद का उपयोग ग्रहों की कक्षाओं की [[धर्मनिरपेक्ष घटना|सेक्युलर घटना]]ओं (एक सदी के समय के मापदंड पर, अर्थात वार्षिक गति की तुलना में धीमी) की गणना करने के लिए किया गया था। | |||
=== | ===सेक्युलर समीकरण=== | ||
सेक्युलर समीकरण के कई अर्थ हो सकते हैं. | |||
* रैखिक बीजगणित में इसका प्रयोग कभी-कभी अभिलाक्षणिक समीकरण के | * रैखिक बीजगणित में इसका प्रयोग कभी-कभी अभिलाक्षणिक समीकरण के समिष्ट पर किया जाता है। | ||
* [[खगोल]] विज्ञान में यह किसी ग्रह की गति में असमानताओं के परिमाण की बीजगणितीय या संख्यात्मक अभिव्यक्ति है जो छोटी अवधि की असमानताओं की अनुमति के | * [[खगोल]] विज्ञान में यह किसी ग्रह की गति में असमानताओं के परिमाण की बीजगणितीय या संख्यात्मक अभिव्यक्ति है जो छोटी अवधि की असमानताओं की अनुमति के पश्चात् बनी रहती है।<ref>{{cite web | ||
| url = http://dict.die.net/secular%20equation/ | | url = http://dict.die.net/secular%20equation/ | ||
| title = secular equation | | title = secular equation | ||
|access-date = January 21, 2010}}</ref> | |access-date = January 21, 2010}}</ref> | ||
* इलेक्ट्रॉन की ऊर्जा और उसके तरंग | * इलेक्ट्रॉन की ऊर्जा और उसके तरंग फलन से संबंधित [[आणविक कक्षीय]] गणनाओं में विशेषता समीकरण के समिष्ट पर भी इसका उपयोग किया जाता है। | ||
==सामान्य साहचर्य बीजगणित के लिए== | ==सामान्य साहचर्य बीजगणित के लिए== | ||
किसी क्षेत्र <math>F</math> में प्रविष्टियों के साथ आव्यूह <math>A \in M_n(F)</math> के विशेषता बहुपद की उपरोक्त परिभाषा उस स्थिति में बिना किसी बदलाव के सामान्यीकरण करती है जब <math>F</math> केवल एक क्रमविनिमेय वलय है। {{harvtxt|गैरीबाल्डी|2004}} एक क्षेत्र एफ पर एक परिमित-आयामी (साहचर्य, किन्तु आवश्यक नहीं कि क्रमविनिमेय) बीजगणित के अवयवो के लिए विशेषता बहुपद को परिभाषित करता है और इस व्यापकता में विशेषता बहुपद के मानक गुणों को सिद्ध करता है। | |||
==यह भी देखें== | ==यह भी देखें== | ||
Line 157: | Line 162: | ||
* सैमुएलसन-बर्कोविट्ज़ एल्गोरिथम | * सैमुएलसन-बर्कोविट्ज़ एल्गोरिथम | ||
==संदर्भ== | ==संदर्भ == | ||
{{reflist}} | {{reflist}} |
Revision as of 11:41, 25 July 2023
रैखिक बीजगणित में, वर्ग आव्यूह का विशिष्ट बहुपद बहुपद होता है जो आव्यूह समानता के अनुसार अपरिवर्तनीय होता है और बहुपद के मूल के रूप में स्वदेशी मान होता है। इसके गुणांकों के बीच आव्यूह का निर्धारक और ट्रेस (रैखिक बीजगणित) है। परिमित-आयामी सदिश समिष्ट के एंडोमोर्फिज्म का विशेषता बहुपद किसी भी आधार पर उस एंडोमोर्फिज्म के आव्यूह का विशेषता बहुपद है (अर्थात, विशेषता बहुपद आधार (रैखिक बीजगणित) की पसंद पर निर्भर नहीं करता है)। विशेषता समीकरण, जिसे निर्धारक समीकरण के रूप में भी जाना जाता है,[1][2][3] विशेषता बहुपद को शून्य के समान करके प्राप्त समीकरण है।
वर्णक्रमीय ग्राफ सिद्धांत में, ग्राफ़ (असतत गणित) का विशेषता बहुपद इसके आसन्न आव्यूह का विशेषता बहुपद है।[4]
प्रेरणा
रैखिक बीजगणित में, ईजेनवैल्यू और ईजेनवेक्टर मौलिक भूमिका निभाते हैं, क्योंकि, रैखिक परिवर्तन को देखते हुए, ईजेनवेक्टर सदिश होता है जिसकी दिशा परिवर्तन से नहीं बदलती है, और संबंधित ईजेनवैल्यू सदिश के परिमाण के परिणामी परिवर्तन का माप है।
अधिक स्पष्टतः, यदि परिवर्तन को वर्ग आव्यूह द्वारा दर्शाया जाता है तो ईजेनवेक्टर और संबंधित ईजेनवैल्यू समीकरण को संतुष्ट करता है
यह इस प्रकार है कि आव्यूह एकवचन आव्यूह और उसका निर्धारक होना चाहिए
दूसरे शब्दों में A के ईजेनवैल्यू की मूल हैं
औपचारिक परिभाषा
एक आव्यूह पर विचार करें। का विशेषता बहुपद, जिसे द्वारा निरूपित किया जाता है,[5]
जहां पहचान आव्यूह को दर्शाता हूं।
कुछ लेखक विशेषता बहुपद को के रूप में परिभाषित करते हैं, वह बहुपद यहां चिह्न द्वारा परिभाषित बहुपद से भिन्न है, इसलिए इससे के मूल मान जैसे गुणों के लिए कोई अंतर नहीं पड़ता है; चूँकि ऊपर दी गई परिभाषा सदैव एक विशेषता बहुपद देती है, जबकि वैकल्पिक परिभाषा केवल एक विशेषता बहुपद देती है
उदाहरण
आव्यूह के विशेषता बहुपद की गणना करता है
गुण
आव्यूह का विशिष्ट बहुपद मोनिक है (इसका अग्रणी गुणांक है) और इसकी डिग्री है। अभिलक्षणिक बहुपद के बारे में सबसे महत्वपूर्ण तथ्य पहले से ही प्रेरक अनुच्छेद में उल्लिखित किया गया था: के स्वदेशी मान ठीक की मूल हैं (यह के न्यूनतम बहुपद (रैखिक बीजगणित) के लिए भी प्रयुक्त होता है, किन्तु इसकी डिग्री से कम हो सकती है)। विशेषता बहुपद के सभी गुणांक आव्यूह की प्रविष्टियों में बहुपद अभिव्यक्ति हैं। विशेष रूप से इसका निरंतर गुणांक है, का गुणांक एक है, और का गुणांक, जहां का ट्रेस (आव्यूह) है। (यहां दिए गए संकेत पिछले अनुभाग में दी गई औपचारिक परिभाषा के अनुरूप हैं; [6] वैकल्पिक परिभाषा के लिए ये क्रमशः और (−1)n – 1 tr(A) होते है।[7])
आव्यूह के लिए, विशेषता बहुपद इस प्रकार दिया गया है
जब गुणांक के क्षेत्र की विशेषता होती है, तो प्रत्येक ऐसे ट्रेस को वैकल्पिक रूप से आव्यूह के एकल निर्धारक के रूप में गणना की जा सकती है,
केली-हैमिल्टन प्रमेय में कहा गया है कि विशेषता बहुपद में को द्वारा प्रतिस्थापित करना (परिणामी शक्तियों को आव्यूह शक्तियों के रूप में व्याख्या करना, और स्थिर पद को पहचान आव्यूह के गुना के रूप में व्याख्या करना) शून्य आव्यूह उत्पन्न करता है। अनौपचारिक रूप से कहें तो, प्रत्येक आव्यूह अपने स्वयं के विशिष्ट समीकरण को संतुष्ट करता है। यह कथन यह कहने के समान है कि का न्यूनतम बहुपद के विशिष्ट बहुपद को विभाजित करता है
दो समान आव्यूहों का विशेषता बहुपद समान होता है। चूँकि, इसका विपरीत सामान्य रूप से सत्य नहीं है: समान विशेषता बहुपद वाले दो आव्यूहों का समान होना आवश्यक नहीं है।
आव्यूह और उसके समिष्टान्तरण में समान विशेषता बहुपद है। एक त्रिकोणीय आव्यूह के समान है यदि और केवल तभी जब इसके विशेषता बहुपद को के ऊपर रैखिक कारकों में पूरी तरह से विभाजित किया जा सकता है (विशेष बहुपद के अतिरिक्त न्यूनतम बहुपद के साथ भी यही सत्य है)। इस स्थिति में जॉर्डन सामान्यतः एक आव्यूह के समान है।
दो आव्यूहों के गुणनफल का विशेषता बहुपद
यदि और दो वर्ग आव्यूह हैं तो और के अभिलक्षणिक बहुपद संपाती होते हैं:
अधिक सामान्यतः, यदि , क्रम का एक आव्यूह है और , , क्रम का एक आव्यूह है, तो है और , आव्यूह है, और एक के पास है
इसे सिद्ध करने के लिए, यदि आवश्यक हो, तो और को अदला-बदली करके मान लिया जा सकता है। फिर, नीचे को शून्य की पंक्तियों से और दाईं ओर को, शून्य के स्तंभों से सीमाबद्ध करके, व्यक्ति को दो आव्यूह और इस प्रकार प्राप्त होते हैं कि और शून्य की पंक्तियों और स्तंभों से घिरे के समान हैं। परिणाम और के विशिष्ट बहुपदों की तुलना करके, वर्ग आव्यूह के स्थिति से प्राप्त होता है
k का विशेषता बहुपद
यदि , ईजेनवेक्टर के साथ वर्ग आव्यूह का एक eigenvalue है तो , का एक ईजेनवैल्यू है क्योंकि
प्रमेय — माना एक वर्ग हो आव्यूह और माना एक बहुपद हो. यदि की विशेषता बहुपद एक गुणनखंडन है
अर्थात् बीजगणितीय बहुलता में के बीजगणितीय गुणन के योग के समान है ऐसा है कि विशेष रूप से, और यहाँ बहुपद है उदाहरण के लिए, आव्यूह पर मूल्यांकन किया जाता है इस प्रकार प्रमेय किसी भी क्षेत्र या क्रमविनिमेय वलय पर आव्यूहों और बहुपदों पर प्रयुक्त होता है।[9]
चूँकि, यह धारणा रैखिक कारकों में गुणनखंडन सदैव सत्य नहीं होता है, जब तक कि आव्यूह सम्मिश्र संख्याओं जैसे बीजगणितीय रूप से संवृत क्षेत्र पर नही होती है।
यह प्रमाण केवल सम्मिश्र संख्याओं (या किसी बीजगणितीय रूप से संवृत क्षेत्र) पर आव्यूहों और बहुपदों पर प्रयुक्त होता है। उस स्थिति में, किसी भी वर्ग अक्व्युह के अभिलक्षणिक बहुपद को सदैव इस प्रकार गुणनखंडित किया जा सकता है
माना तब
सेक्युलर फलन और सेक्युलर समीकरण
सेक्युलर फलन
सेक्युलर फलन शब्द का प्रयोग उस चीज़ के लिए किया गया है जिसे अब विशेषता बहुपद कहा जाता है (कुछ साहित्य में सेक्युलर फलन शब्द अभी भी प्रयोग किया जाता है)। यह शब्द इस तथ्य से आया है कि जोसेफ लुई लैग्रेंज के दोलन सिद्धांत के अनुसार, विशेषता बहुपद का उपयोग ग्रहों की कक्षाओं की सेक्युलर घटनाओं (एक सदी के समय के मापदंड पर, अर्थात वार्षिक गति की तुलना में धीमी) की गणना करने के लिए किया गया था।
सेक्युलर समीकरण
सेक्युलर समीकरण के कई अर्थ हो सकते हैं.
- रैखिक बीजगणित में इसका प्रयोग कभी-कभी अभिलाक्षणिक समीकरण के समिष्ट पर किया जाता है।
- खगोल विज्ञान में यह किसी ग्रह की गति में असमानताओं के परिमाण की बीजगणितीय या संख्यात्मक अभिव्यक्ति है जो छोटी अवधि की असमानताओं की अनुमति के पश्चात् बनी रहती है।[10]
- इलेक्ट्रॉन की ऊर्जा और उसके तरंग फलन से संबंधित आणविक कक्षीय गणनाओं में विशेषता समीकरण के समिष्ट पर भी इसका उपयोग किया जाता है।
सामान्य साहचर्य बीजगणित के लिए
किसी क्षेत्र में प्रविष्टियों के साथ आव्यूह के विशेषता बहुपद की उपरोक्त परिभाषा उस स्थिति में बिना किसी बदलाव के सामान्यीकरण करती है जब केवल एक क्रमविनिमेय वलय है। गैरीबाल्डी (2004) एक क्षेत्र एफ पर एक परिमित-आयामी (साहचर्य, किन्तु आवश्यक नहीं कि क्रमविनिमेय) बीजगणित के अवयवो के लिए विशेषता बहुपद को परिभाषित करता है और इस व्यापकता में विशेषता बहुपद के मानक गुणों को सिद्ध करता है।
यह भी देखें
- विशेषता समीकरण (बहुविकल्पी)
- टेंसर के अपरिवर्तनीय
- सहयोगी आव्यूह
- फद्दीव-लेवेरियर एल्गोरिदम
- केली-हैमिल्टन प्रमेय
- सैमुएलसन-बर्कोविट्ज़ एल्गोरिथम
संदर्भ
- ↑ Guillemin, Ernst (1953). परिचयात्मक सर्किट सिद्धांत. Wiley. pp. 366, 541. ISBN 0471330663.
- ↑ Forsythe, George E.; Motzkin, Theodore (January 1952). "रैखिक समीकरणों की प्रणालियों की स्थिति में सुधार के लिए गॉस परिवर्तन का विस्तार" (PDF). American Mathematical Society – Mathematics of Computation. 6 (37): 18–34. doi:10.1090/S0025-5718-1952-0048162-0. Retrieved 3 October 2020.
- ↑ Frank, Evelyn (1946). "सम्मिश्र गुणांक वाले बहुपदों के शून्यकों पर". Bulletin of the American Mathematical Society. 52 (2): 144–157. doi:10.1090/S0002-9904-1946-08526-2.
- ↑ "Characteristic Polynomial of a Graph – Wolfram MathWorld". Retrieved August 26, 2011.
- ↑ Steven Roman (1992). उन्नत रैखिक बीजगणित (2 ed.). Springer. p. 137. ISBN 3540978372.
- ↑ Proposition 28 in these lecture notes[permanent dead link]
- ↑ Theorem 4 in these lecture notes
- ↑ Horn, Roger A.; Johnson, Charles R. (2013). मैट्रिक्स विश्लेषण (2nd ed.). Cambridge University Press. pp. 108–109, Section 2.4.2. ISBN 978-0-521-54823-6.
- ↑ Lang, Serge (1993). बीजगणित. New York: Springer. p.567, Theorem 3.10. ISBN 978-1-4613-0041-0. OCLC 852792828.
- ↑ "secular equation". Retrieved January 21, 2010.
- T.S. Blyth & E.F. Robertson (1998) Basic Linear Algebra, p 149, Springer ISBN 3-540-76122-5 .
- John B. Fraleigh & Raymond A. Beauregard (1990) Linear Algebra 2nd edition, p 246, Addison-Wesley ISBN 0-201-11949-8 .
- Garibaldi, Skip (2004), "The characteristic polynomial and determinant are not ad hoc constructions", American Mathematical Monthly, 111 (9): 761–778, arXiv:math/0203276, doi:10.2307/4145188, JSTOR 4145188, MR 2104048
- Werner Greub (1974) Linear Algebra 4th edition, pp 120–5, Springer, ISBN 0-387-90110-8 .
- Paul C. Shields (1980) Elementary Linear Algebra 3rd edition, p 274, Worth Publishers ISBN 0-87901-121-1 .
- Gilbert Strang (1988) Linear Algebra and Its Applications 3rd edition, p 246, Brooks/Cole ISBN 0-15-551005-3 .