संवहनी उपलब्ध संभावित ऊर्जा: Difference between revisions
No edit summary |
No edit summary |
||
Line 24: | Line 24: | ||
तड़ित झंझावात तब बनते हैं जब वायु पार्सलों को लंबवत रूप से उठाया जाता है। गहरे, नम संवहन के लिए एक पार्सल को एलएफसी तक ले जाने की आवश्यकता होती है जहां यह गैर-सकारात्मक उछाल की परत तक पहुंचने तक स्वचालित रूप से उगता है। पृथ्वी का वातावरण सतह पर और क्षोभमंडल के निचले स्तरों पर गर्म है जहां [[मिश्रित परत]] ([[ग्रहों की सीमा परत]] ग्रहों की सीमा परत (पीबीएल)) है, किन्तु ऊंचाई के साथ काफी ठंडा हो जाता है। वातावरण का तापमान प्रोफ़ाइल, तापमान में परिवर्तन, ऊंचाई के साथ ठंडा होने की डिग्री, ह्रास दर है। जब ऊपर उठता हुआ वायु पार्सल आसपास के वातावरण की समानता में अधिक धीरे-धीरे ठंडा होता है, तो यह गर्म रहता है और वायु का घनत्व कम होता है। पार्सल वायुमंडल के माध्यम से स्वतंत्र रूप से (संवहन; यांत्रिक लिफ्ट के बिना) तब तक जारी रहता है जब तक कि यह अपने से कम घने (गर्म) हवा के क्षेत्र तक नहीं पंहुचा सकता हैं । | तड़ित झंझावात तब बनते हैं जब वायु पार्सलों को लंबवत रूप से उठाया जाता है। गहरे, नम संवहन के लिए एक पार्सल को एलएफसी तक ले जाने की आवश्यकता होती है जहां यह गैर-सकारात्मक उछाल की परत तक पहुंचने तक स्वचालित रूप से उगता है। पृथ्वी का वातावरण सतह पर और क्षोभमंडल के निचले स्तरों पर गर्म है जहां [[मिश्रित परत]] ([[ग्रहों की सीमा परत]] ग्रहों की सीमा परत (पीबीएल)) है, किन्तु ऊंचाई के साथ काफी ठंडा हो जाता है। वातावरण का तापमान प्रोफ़ाइल, तापमान में परिवर्तन, ऊंचाई के साथ ठंडा होने की डिग्री, ह्रास दर है। जब ऊपर उठता हुआ वायु पार्सल आसपास के वातावरण की समानता में अधिक धीरे-धीरे ठंडा होता है, तो यह गर्म रहता है और वायु का घनत्व कम होता है। पार्सल वायुमंडल के माध्यम से स्वतंत्र रूप से (संवहन; यांत्रिक लिफ्ट के बिना) तब तक जारी रहता है जब तक कि यह अपने से कम घने (गर्म) हवा के क्षेत्र तक नहीं पंहुचा सकता हैं । | ||
सकारात्मक-उछाल क्षेत्र की मात्रा, और आकार, [[ updraft | | सकारात्मक-उछाल क्षेत्र की मात्रा, और आकार, [[ updraft |उपद्रफ्ट]] की गति को नियंत्रित करता है, इस प्रकार चरम सीएपीई के परिणाम स्वरूप विस्फोटक झंझावात विकास हो सकता है; इस प्रकार का तेजी से विकास सामान्यतः तब होता है जब ढक्कन को हीटिंग या मैकेनिकल लिफ्ट से तोड़ा जाता है जब [[कैपिंग उलटा]] के लिए संग्रहीत सीएपीई जारी किया जाता है। सीएपीई की मात्रा यह भी नियंत्रित करती है कि निम्न-स्तर की [[vorticity|वोर्टिकितय]] कैसे प्रवेश करती है और फिर अपड्राफ्ट में फैली हुई है, [[[[बवंडर]]जनन]] के महत्व के साथ बवंडर के लिए सबसे महत्वपूर्ण सीएपीई वायुमंडल के सबसे निचले 1 से 3 किमी (0.6 से 1.9 मील) के आन्तरिक है, चूँकि गहरी परत सीएपीई और मध्य-स्तर पर सीएपीई की चौड़ाई [[ Supercell |सुपरसेल]] के लिए महत्वपूर्ण है। [[बवंडर का प्रकोप]] उच्च सीएपीई वातावरण में होता है। अपड्राफ्ट ताकत के कारण बहुत बड़े ओलों के उत्पादन के लिए बड़े सीएपीई की आवश्यकता होती है, चूंकि कम सीएपीई के साथ घूमने वाला अपड्राफ्ट मजबूत हो सकता है। बड़ा सीएपीई लाइटनिंग गतिविधि को भी बढ़ावा देता है।<ref name="climatology parameters">{{cite journal |last=Craven |first=Jeffrey P. |author2=H.E. Brooks |title=गहरे नम संवहन से जुड़े साउंडिंग डेरिवेटिव पैरामीटर्स का बेसलाइन क्लाइमेटोलॉजी|journal=[[National Weather Digest]] |volume=28 |pages=13–24 |date=December 2004 |url=http://www.nssl.noaa.gov/users/brooks/public_html/papers/cravenbrooksnwa.pdf }}</ref>गंभीर मौसम के लिए दो उल्लेखनीय दिनों ने 5 kJ/kg से अधिक सीएपीई मान प्रदर्शित किया। 1999 के ओक्लाहोमा बवंडर के प्रकोप से दो घंटे पहले 3 मई, 1999 को ओक्लाहोमा सिटी, ओक्लाहोमा में लगने वाला सीएपीई मूल्य 5.89 kJ/kg था। कुछ घंटों बाद, शहर के दक्षिणी उपनगरों में एक फुजिता पैमाने का बवंडर आया। साथ ही 4 मई, 2007 को 5.5 kJ/kg के सीएपीई मान तक पहुँच गए थे और मई 2007 में [[फुजिता पैमाना]] में वृद्धि हुई थी, ग्रीन्सबर्ग, कैनसस के माध्यम से बवंडर का प्रकोप हुआ था। उन दिनों, यह स्पष्ट था कि बवंडर के लिए परिस्थितियाँ परिपक्व थीं और सीएपीई एक महत्वपूर्ण कारक नहीं था। चूंकि, एक्सट्रीम सीएपीई, अपड्राफ्ट (और डॉवंड्राफ्ट) को संशोधित करके, असाधारण घटनाओं के लिए अनुमति दे सकता है, जैसे कि घातक F5 बवंडर जिसने प्लेनफील्ड टोर्नेडो को मारा। 28 अगस्त, 1990 को प्लेनफील्ड, [[इलिनोइस]] और 27 मई, 1997 को जेरेल, टेक्सास दिनों में। जो बड़े बवंडर के लिए अनुकूल रूप से स्पष्ट नहीं थे। [[ प्लेनफील्ड बवंडर |प्लेनफील्ड बवंडर]] के वातावरण में सीएपीई 8 kJ/किग्रा से अधिक होने का अनुमान लगाया गया था और [[मध्य टेक्सास बवंडर प्रकोप]] के लिए अधिकतर7 kJ/किग्रा था। | ||
कम सीएपीई मूल्यों वाले क्षेत्र में गंभीर मौसम और बवंडर विकसित हो सकते हैं। 20 अप्रैल 2004 को इलिनोइस और [[इंडियाना]] में हुआ अप्रैल 2004 का यूटिका बवंडर इसका एक अच्छा उदाहरण है। महत्वपूर्ण रूप से उस मामले में, चूंकि समग्र सीएपीई कमजोर था, क्षोभमंडल के निम्नतम स्तरों में मजबूत सीएपीई था जो बड़े, लंबे-ट्रैक, तीव्र बवंडर पैदा करने वाले मिनीसुपरसेल के प्रकोप को सक्षम करता था।<ref name="Utica outbreak">{{cite conference |first=Albert E. |last=Pietrycha |author-link=Albert E. Pietrycha |author2=J.M. Davies |author3=M. Ratzer |author4=P. Merzlock |title=Tornadoes in a Deceptively Small CAPE Environment: The 4/20/04 Outbreak in Illinois and Indiana |book-title=Preprints of the 22nd Conference on Severe Local Storms |publisher=[[American Meteorological Society]] |date=October 2004 |location=Hyannis, Massachusetts |url=http://ams.confex.com/ams/11aram22sls/techprogram/paper_81569.htm }}</ref> | कम सीएपीई मूल्यों वाले क्षेत्र में गंभीर मौसम और बवंडर विकसित हो सकते हैं। 20 अप्रैल 2004 को इलिनोइस और [[इंडियाना]] में हुआ अप्रैल 2004 का यूटिका बवंडर इसका एक अच्छा उदाहरण है। महत्वपूर्ण रूप से उस मामले में, चूंकि समग्र सीएपीई कमजोर था, क्षोभमंडल के निम्नतम स्तरों में मजबूत सीएपीई था जो बड़े, लंबे-ट्रैक, तीव्र बवंडर पैदा करने वाले मिनीसुपरसेल के प्रकोप को सक्षम करता था।<ref name="Utica outbreak">{{cite conference |first=Albert E. |last=Pietrycha |author-link=Albert E. Pietrycha |author2=J.M. Davies |author3=M. Ratzer |author4=P. Merzlock |title=Tornadoes in a Deceptively Small CAPE Environment: The 4/20/04 Outbreak in Illinois and Indiana |book-title=Preprints of the 22nd Conference on Severe Local Storms |publisher=[[American Meteorological Society]] |date=October 2004 |location=Hyannis, Massachusetts |url=http://ams.confex.com/ams/11aram22sls/techprogram/paper_81569.htm }}</ref> | ||
Line 32: | Line 32: | ||
== सीमाएं == | == सीमाएं == | ||
मौसम विज्ञान में उपयोग किए जाने वाले अधिकांश मापदंडों के साथ, ध्यान में रखने के लिए कुछ चेतावनियां हैं। इनमें से एक वह है जो सीएपीई भौतिक रूप से दर्शाता है और किन मामलों में सीएपीई का उपयोग किया जा सकता है। एक उदाहरण जहां सीएपीई निर्धारित करने के लिए अधिक सामान्य विधि टूटना प्रारंभ हो सकती है वह उष्णकटिबंधीय चक्रवातों (उदा. उष्णकटिबंधीय अवसाद, उष्णकटिबंधीय [[तूफान]], तूफान) की उपस्थिति में है।<ref>{{cite conference |title=ट्रॉपिकल साइक्लोन टोरनेडो रिजीम में रिवर्सिबल केप|last1= Edwards |first1= Roger |author-link1= Roger Edwards (meteorologist)|last2= Thompson |first2= Richard |date= November 2014 |publisher= [[American Meteorological Society]] |location= Madison, WI |conference= 27th AMS Severe Local Storms Conference |doi= 10.13140/2.1.2530.5921 |url= https://www.researchgate.net/publication/270821803 }}</ref> <ref>{{cite AV media |people= [[Roger Edwards (meteorologist)|Roger Edwards]] |date= July 7, 2017 |title= Tropical Cyclone Tornadoes: Dual-Pol Radar Applications and Reversible CAPE |type= YouTube Video |language= English |url= https://www.youtube.com/watch?v=_AhqdR_UNoM&ab_channel=NOAAWeatherPartners |access-date= December 27, 2021 |publisher= [[NOAA]]}}</ref> | मौसम विज्ञान में उपयोग किए जाने वाले अधिकांश मापदंडों के साथ, ध्यान में रखने के लिए कुछ चेतावनियां हैं। इनमें से एक वह है जो सीएपीई भौतिक रूप से दर्शाता है और किन मामलों में सीएपीई का उपयोग किया जा सकता है। एक उदाहरण जहां सीएपीई निर्धारित करने के लिए अधिक सामान्य विधि टूटना प्रारंभ हो सकती है वह उष्णकटिबंधीय चक्रवातों (उदा. उष्णकटिबंधीय अवसाद, उष्णकटिबंधीय [[तूफान]], तूफान) की उपस्थिति में है।<ref>{{cite conference |title=ट्रॉपिकल साइक्लोन टोरनेडो रिजीम में रिवर्सिबल केप|last1= Edwards |first1= Roger |author-link1= Roger Edwards (meteorologist)|last2= Thompson |first2= Richard |date= November 2014 |publisher= [[American Meteorological Society]] |location= Madison, WI |conference= 27th AMS Severe Local Storms Conference |doi= 10.13140/2.1.2530.5921 |url= https://www.researchgate.net/publication/270821803 }}</ref> <ref>{{cite AV media |people= [[Roger Edwards (meteorologist)|Roger Edwards]] |date= July 7, 2017 |title= Tropical Cyclone Tornadoes: Dual-Pol Radar Applications and Reversible CAPE |type= YouTube Video |language= English |url= https://www.youtube.com/watch?v=_AhqdR_UNoM&ab_channel=NOAAWeatherPartners |access-date= December 27, 2021 |publisher= [[NOAA]]}}</ref> | ||
सीएपीई निर्धारित करने का अधिक सामान्य तरीका उष्णकटिबंधीय चक्रवातों के पास टूट सकता है क्योंकि सीएपीई मानता है कि संक्षेपण के | |||
सीएपीई निर्धारित करने का अधिक सामान्य तरीका उष्णकटिबंधीय चक्रवातों के पास टूट सकता है क्योंकि सीएपीई मानता है कि संक्षेपण के समय तरल पानी तुरंत खो जाता है। इस प्रकार यह प्रक्रिया रूद्धोष्म वंश पर अपरिवर्तनीय है। यह प्रक्रिया उष्णकटिबंधीय चक्रवातों (लघु अवधि के लिए टीसी) के लिए यथार्थवादी नहीं है। उष्णकटिबंधीय चक्रवातों के लिए प्रक्रिया को अधिक यथार्थवादी बनाने के लिए प्रतिवर्ती सीएपीई (संक्षेप में Rसीएपीई) का उपयोग करना है। Rसीएपीई, सीएपीई के मानक सम्मेलन के विपरीत चरम को मानता है और यह है कि प्रक्रिया के समय कोई तरल पानी नहीं खोएगा। यह नई प्रक्रिया पार्सल को जल लोडिंग से संबंधित अधिक सघनता प्रदान करती है। | |||
Rसीएपीई की गणना सीएपीई के समान सूत्र का उपयोग करके की जाती है, सूत्र में अंतर आभासी तापमान में होता है। इस नए सूत्रीकरण में, हम पार्सल संतृप्ति मिश्रण अनुपात (जिससे तरल पानी का संघनन और गायब हो जाता है) को पार्सल पानी की मात्रा से बदल देते हैं। यह मामूली परिवर्तन एकीकरण के माध्यम से हमें मिलने वाले मूल्यों को काफी हद तक बदल सकता है। | Rसीएपीई की गणना सीएपीई के समान सूत्र का उपयोग करके की जाती है, सूत्र में अंतर आभासी तापमान में होता है। इस नए सूत्रीकरण में, हम पार्सल संतृप्ति मिश्रण अनुपात (जिससे तरल पानी का संघनन और गायब हो जाता है) को पार्सल पानी की मात्रा से बदल देते हैं। यह मामूली परिवर्तन एकीकरण के माध्यम से हमें मिलने वाले मूल्यों को काफी हद तक बदल सकता है। |
Revision as of 00:11, 19 June 2023
मौसम विज्ञान में, संवहन उपलब्ध संभावित ऊर्जा (सामान्यतः सीएपीई के रूप में संक्षिप्त),[1] कार्य (भौतिकी) की एकीकृत मात्रा है जो ऊपर की ओर (सकारात्मक) उछाल हवा के दिए गए द्रव्यमान (जिसे हवाई पार्सेल कहा जाता है) पर प्रदर्शन करेगी यदि यह पूरे वातावरण में लंबवत रूप से उठे। सकारात्मक सीएपीई से एयर पार्सल ऊपर उठेगा, चूँकि नेगेटिव सीएपीई एयर पार्सल को डूबने का कारण बनेगा।अशून्य सीएपीई किसी भी वायुमंडलीय ध्वनि में वायुमंडलीय अस्थिरता का एक संकेत है, क्यूम्यलस बादल और क्यूम्यलोनिम्बस बादल क्लाउड के विकास के लिए एक आवश्यक शर्त है जिसके साथ मौसम संबंधी गंभीर खतरे हैं।
यांत्रिकी
सीएपीई क्षोभमंडल की सशर्त अस्थिरता परत मुक्त संवहन (एफसीएल) के अंतर्गत उपस्थित है, जहां एक आरोही वायु पार्सल परिवेशी वायु की समानता में गर्म है। सीएपीई को जूल प्रति किलोग्राम वायु (J/kg) में मापा जाता है। 0 J/kg से अधिक कोई भी मान अस्थिरता और आंधी और ओलों की बढ़ती संभावना को इंगित करता है। सामान्य सीएपीई की गणना मुक्त संवहन (एलएफसी) के स्तर से संतुलन स्तर (ईएल) तक पार्सल की स्थानीय उछाल के अभिन्न अंग के लिए की जाती है:
किसी दिए गए क्षेत्र के लिए सीएपीई की गणना अधिकांशतः थर्मोडायनामिक आरेख या वायुमंडलीय ध्वनि आरेख (जैसे, तिरछा-टी लॉग-पी आरेख) से हवा के तापमान और ओस बिंदु डेटा का उपयोग करके की जाती है, जिसे सामान्यतः मौसम के गुब्बारे के लिए मापा जाता है।
सीएपीई प्रभावी रूप से सकारात्मक उछाल है, व्यक्त बी + या बस बी; संवहन अवरोध के विपरीत है संवहन अवरोध (सीआईएन), जिसे B- के रूप में व्यक्त किया जाता है, और इसे नकारात्मक सीएपीई माना जा सकता है। सीआईएन की प्रकार, सीएपीई को सामान्यतः J/kg में व्यक्त किया जाता है, किन्तु इसे m के रूप में भी व्यक्त किया जा सकता है2/से2, क्योंकि मान समतुल्य हैं। वास्तव में, सीएपीई को कभी-कभी सकारात्मक उत्प्लावक ऊर्जा (पीबीई) कहा जाता है। इस प्रकार का सीएपीई एक आरोही पार्सल और नम संवहन के लिए उपलब्ध अधिकतम ऊर्जा है। जब सीआईएन की एक परत उपस्थित होती है, तो परत को सतह के ताप या यांत्रिक उठाने से नष्ट होना चाहिए, जिससे संवहन सीमा परत पार्सल अपने मुक्त संवहन (एलएफसी) के स्तर तक पंहुचा सकते हैं ।
ध्वनि आरेख पर, सीएपीई एलएफसी के ऊपर सकारात्मक क्षेत्र है, पार्सल की आभासी तापमान रेखा और पर्यावरण आभासी तापमान रेखा के बीच का क्षेत्र जहां आरोही पार्सल पर्यावरण की समानता में गर्म है। आभासी तापमान सुधार की उपेक्षा करने से छोटे सीएपीई मूल्यों के लिए सीएपीई के परिकलित मूल्य में पर्याप्त सापेक्ष त्रुटियां हो सकती हैं।[2] सीएपीई एलएफसी के नीचे भी उपस्थित हो सकता है, किन्तु यदि सीआईएन (घटाव) की एक परत उपस्थित है, तो यह सीआईएन के समाप्त होने तक गहरे, नम संवहन के लिए अनुपलब्ध है। जब संतृप्त द्रव में यांत्रिक लिफ्ट होती है, तो बादल का आधार उत्थापित संघनन स्तर (एलसीएल) पर प्रारंभ होता है; बल की अनुपस्थिति, बादल आधार संवहन संघनन स्तर (सीसीएल) पर प्रारंभ होता है, जहां नीचे से गर्म होने से संवहन तापमान तक पहुंचने पर संक्षेपण के बिंदु तक सहज उत्प्लावक उत्थापन होता है। जब सीआईएन अनुपस्थित होता है तो एलसीएल या सीसीएल में संतृप्त पार्सल, जो छोटे मेघपुंज बादल थे, एलएफसी तक उठेंगे, और फिर संतुलन स्तर की स्थिर परत को मारने तक स्वचालित रूप से बढ़ेंगे। परिणाम गहरा, नम संवहन (डीएमसी), या बस, एक आंधी है।
जब एक पार्सल अस्थिर होता है, तो यह किसी भी दिशा में लंबवत रूप से आगे बढ़ना जारी रखेगा, यह इस बात पर निर्भर करता है कि यह ऊपर या नीचे की ओर बल प्राप्त करता है, जब तक कि यह एक स्थिर परत तक नहीं पहुंच जाता (चूंकि संवेग, गुरुत्वाकर्षण और अन्य बल पार्सल को जारी रखने का कारण हो सकते हैं)। सीएपीई के कई प्रकार हैं, डॉवंड्राफ्ट सीएपीई (डीसीएपीई), बारिश की संभावित ताकत और बाष्पीकरणीय रूप से ठंडे डाउनड्राफ्ट का अनुमान लगाता है। अन्य प्रकार के सीएपीई विचार की जा रही गहराई पर निर्भर हो सकते हैं। अन्य उदाहरण सतह आधारित सीएपीई (एस.बीसीएपीई), मिश्रित परत या औसत परत सीएपीई (एमएलसीएपीई), सबसे अस्थिर या अधिकतम प्रयोग करने योग्य सीएपीई (म्यूसीएपीई), और सामान्यीकृत सीएपीई (एनसीएपीई) हैं।[3]
ऐसे वातावरण में ऊपर या नीचे की ओर विस्थापित द्रव तत्व अपने परिवेश के साथ दबाव संतुलन में बने रहने के लिए रूद्धोष्म रूप से फैलते या संकुचित होते हैं, और इस प्रकार कम या अधिक सघन हो जाते हैं।
यदि एडियाबेटिक कमी या घनत्व में वृद्धि परिवेश (स्थानांतरित नहीं) माध्यम के घनत्व में कमी या वृद्धि से कम है, तो विस्थापित द्रव तत्व नीचे या ऊपर की ओर दबाव के अधीन होगा, जो इसे अपने मूल रूप में पुनरुद्धारित करने के लिए कार्य करेगा। इसलिए प्रारंभिक विस्थापन के लिए एक प्रतिकारी बल होगा। ऐसी स्थिति को संवहन स्थिरता कहा जाता है।
दूसरी ओर, यदि एडियाबेटिक कमी या घनत्व में वृद्धि परिवेश तरल पदार्थ की समानता में अधिक है, तो ऊपर या नीचे की ओर विस्थापन को परिवेशी तरल के लिए उसी दिशा में एक अतिरिक्त बल के साथ पूरा किया जाएगा। इन परिस्थितियों में प्रारंभिक अवस्था से छोटे विचलन बढ़ जाएंगे। इस स्थिति को संवहनी अस्थिरता कहा जाता है।[4]
संवहन अस्थिरता को स्थिर अस्थिरता भी कहा जाता है, क्योंकि अस्थिरता हवा की उपस्थिता गति पर निर्भर नहीं करती है; यह गतिशील अस्थिरता (द्रव यांत्रिकी) के विपरीत है जहां अस्थिरता हवा की गति और इसके संबंधित प्रभावों जैसे गतिशील उठाने पर निर्भर है।
वज्रपात का महत्व
तड़ित झंझावात तब बनते हैं जब वायु पार्सलों को लंबवत रूप से उठाया जाता है। गहरे, नम संवहन के लिए एक पार्सल को एलएफसी तक ले जाने की आवश्यकता होती है जहां यह गैर-सकारात्मक उछाल की परत तक पहुंचने तक स्वचालित रूप से उगता है। पृथ्वी का वातावरण सतह पर और क्षोभमंडल के निचले स्तरों पर गर्म है जहां मिश्रित परत (ग्रहों की सीमा परत ग्रहों की सीमा परत (पीबीएल)) है, किन्तु ऊंचाई के साथ काफी ठंडा हो जाता है। वातावरण का तापमान प्रोफ़ाइल, तापमान में परिवर्तन, ऊंचाई के साथ ठंडा होने की डिग्री, ह्रास दर है। जब ऊपर उठता हुआ वायु पार्सल आसपास के वातावरण की समानता में अधिक धीरे-धीरे ठंडा होता है, तो यह गर्म रहता है और वायु का घनत्व कम होता है। पार्सल वायुमंडल के माध्यम से स्वतंत्र रूप से (संवहन; यांत्रिक लिफ्ट के बिना) तब तक जारी रहता है जब तक कि यह अपने से कम घने (गर्म) हवा के क्षेत्र तक नहीं पंहुचा सकता हैं ।
सकारात्मक-उछाल क्षेत्र की मात्रा, और आकार, उपद्रफ्ट की गति को नियंत्रित करता है, इस प्रकार चरम सीएपीई के परिणाम स्वरूप विस्फोटक झंझावात विकास हो सकता है; इस प्रकार का तेजी से विकास सामान्यतः तब होता है जब ढक्कन को हीटिंग या मैकेनिकल लिफ्ट से तोड़ा जाता है जब कैपिंग उलटा के लिए संग्रहीत सीएपीई जारी किया जाता है। सीएपीई की मात्रा यह भी नियंत्रित करती है कि निम्न-स्तर की वोर्टिकितय कैसे प्रवेश करती है और फिर अपड्राफ्ट में फैली हुई है, [[बवंडरजनन]] के महत्व के साथ बवंडर के लिए सबसे महत्वपूर्ण सीएपीई वायुमंडल के सबसे निचले 1 से 3 किमी (0.6 से 1.9 मील) के आन्तरिक है, चूँकि गहरी परत सीएपीई और मध्य-स्तर पर सीएपीई की चौड़ाई सुपरसेल के लिए महत्वपूर्ण है। बवंडर का प्रकोप उच्च सीएपीई वातावरण में होता है। अपड्राफ्ट ताकत के कारण बहुत बड़े ओलों के उत्पादन के लिए बड़े सीएपीई की आवश्यकता होती है, चूंकि कम सीएपीई के साथ घूमने वाला अपड्राफ्ट मजबूत हो सकता है। बड़ा सीएपीई लाइटनिंग गतिविधि को भी बढ़ावा देता है।[5]गंभीर मौसम के लिए दो उल्लेखनीय दिनों ने 5 kJ/kg से अधिक सीएपीई मान प्रदर्शित किया। 1999 के ओक्लाहोमा बवंडर के प्रकोप से दो घंटे पहले 3 मई, 1999 को ओक्लाहोमा सिटी, ओक्लाहोमा में लगने वाला सीएपीई मूल्य 5.89 kJ/kg था। कुछ घंटों बाद, शहर के दक्षिणी उपनगरों में एक फुजिता पैमाने का बवंडर आया। साथ ही 4 मई, 2007 को 5.5 kJ/kg के सीएपीई मान तक पहुँच गए थे और मई 2007 में फुजिता पैमाना में वृद्धि हुई थी, ग्रीन्सबर्ग, कैनसस के माध्यम से बवंडर का प्रकोप हुआ था। उन दिनों, यह स्पष्ट था कि बवंडर के लिए परिस्थितियाँ परिपक्व थीं और सीएपीई एक महत्वपूर्ण कारक नहीं था। चूंकि, एक्सट्रीम सीएपीई, अपड्राफ्ट (और डॉवंड्राफ्ट) को संशोधित करके, असाधारण घटनाओं के लिए अनुमति दे सकता है, जैसे कि घातक F5 बवंडर जिसने प्लेनफील्ड टोर्नेडो को मारा। 28 अगस्त, 1990 को प्लेनफील्ड, इलिनोइस और 27 मई, 1997 को जेरेल, टेक्सास दिनों में। जो बड़े बवंडर के लिए अनुकूल रूप से स्पष्ट नहीं थे। प्लेनफील्ड बवंडर के वातावरण में सीएपीई 8 kJ/किग्रा से अधिक होने का अनुमान लगाया गया था और मध्य टेक्सास बवंडर प्रकोप के लिए अधिकतर7 kJ/किग्रा था।
कम सीएपीई मूल्यों वाले क्षेत्र में गंभीर मौसम और बवंडर विकसित हो सकते हैं। 20 अप्रैल 2004 को इलिनोइस और इंडियाना में हुआ अप्रैल 2004 का यूटिका बवंडर इसका एक अच्छा उदाहरण है। महत्वपूर्ण रूप से उस मामले में, चूंकि समग्र सीएपीई कमजोर था, क्षोभमंडल के निम्नतम स्तरों में मजबूत सीएपीई था जो बड़े, लंबे-ट्रैक, तीव्र बवंडर पैदा करने वाले मिनीसुपरसेल के प्रकोप को सक्षम करता था।[6]
मौसम विज्ञान से उदाहरण
संवहनी अस्थिरता का एक अच्छा उदाहरण हमारे अपने वातावरण में पाया जा सकता है। यदि शुष्क मध्य-स्तर की हवा बहुत गर्म, निचले क्षोभमंडल में नम हवा पर खींची जाती है, तो एक हाइड्रोलैप्स (ऊंचाई के साथ तेजी से घटते ओस बिंदु तापमान का एक क्षेत्र) का परिणाम उस क्षेत्र में होता है जहां नम सीमा परत और मध्य-स्तर की हवा मिलती है। जैसे-जैसे दिन के समय गर्माहट नम सीमा परत के भीतर बढ़ती जाती है, कुछ नम हवा इसके ऊपर की शुष्क मध्य-स्तर की हवा के साथ परस्पर क्रिया करना प्रारंभ कर देगी। थर्मोडायनामिक प्रक्रियाओं के कारण, चूंकि शुष्क मध्य-स्तर की हवा धीरे-धीरे संतृप्त होती है, इसका तापमान गिरना प्रारंभ हो जाता है, जिससे स्थिरोष्म चूक दर बढ़ जाती है। कुछ शर्तों के तहत, चूक दर कम समय में काफी बढ़ सकती है, जिसके परिणामस्वरूप संवहन होता है। उच्च संवहन अस्थिरता गंभीर झंझावात और बवंडर का कारण बन सकती है क्योंकि नम हवा जो सीमा परत में फंसी हुई है, अंतत: एडियाबेटिक लैप्स दर के सापेक्ष अत्यधिक नकारात्मक रूप से उत्प्लावक हो जाती है और क्यूम्यलस क्लाउड या क्यूम्यलोनिम्बस के विकास को ट्रिगर करने वाली आर्द्र हवा के तेजी से बढ़ते बुलबुले के रूप में निकल जाती है। बादल।
सीमाएं
मौसम विज्ञान में उपयोग किए जाने वाले अधिकांश मापदंडों के साथ, ध्यान में रखने के लिए कुछ चेतावनियां हैं। इनमें से एक वह है जो सीएपीई भौतिक रूप से दर्शाता है और किन मामलों में सीएपीई का उपयोग किया जा सकता है। एक उदाहरण जहां सीएपीई निर्धारित करने के लिए अधिक सामान्य विधि टूटना प्रारंभ हो सकती है वह उष्णकटिबंधीय चक्रवातों (उदा. उष्णकटिबंधीय अवसाद, उष्णकटिबंधीय तूफान, तूफान) की उपस्थिति में है।[7] [8]
सीएपीई निर्धारित करने का अधिक सामान्य तरीका उष्णकटिबंधीय चक्रवातों के पास टूट सकता है क्योंकि सीएपीई मानता है कि संक्षेपण के समय तरल पानी तुरंत खो जाता है। इस प्रकार यह प्रक्रिया रूद्धोष्म वंश पर अपरिवर्तनीय है। यह प्रक्रिया उष्णकटिबंधीय चक्रवातों (लघु अवधि के लिए टीसी) के लिए यथार्थवादी नहीं है। उष्णकटिबंधीय चक्रवातों के लिए प्रक्रिया को अधिक यथार्थवादी बनाने के लिए प्रतिवर्ती सीएपीई (संक्षेप में Rसीएपीई) का उपयोग करना है। Rसीएपीई, सीएपीई के मानक सम्मेलन के विपरीत चरम को मानता है और यह है कि प्रक्रिया के समय कोई तरल पानी नहीं खोएगा। यह नई प्रक्रिया पार्सल को जल लोडिंग से संबंधित अधिक सघनता प्रदान करती है।
Rसीएपीई की गणना सीएपीई के समान सूत्र का उपयोग करके की जाती है, सूत्र में अंतर आभासी तापमान में होता है। इस नए सूत्रीकरण में, हम पार्सल संतृप्ति मिश्रण अनुपात (जिससे तरल पानी का संघनन और गायब हो जाता है) को पार्सल पानी की मात्रा से बदल देते हैं। यह मामूली परिवर्तन एकीकरण के माध्यम से हमें मिलने वाले मूल्यों को काफी हद तक बदल सकता है।
Rसीएपीई की कुछ सीमाएँ हैं, जिनमें से एक यह है कि Rसीएपीई किसी टीसी के भीतर उपयोग के लिए सुसंगत रखते हुए कोई वाष्पीकरण नहीं मानता है, किन्तु इसका उपयोग कहीं और किया जाना चाहिए।
सीएपीई और आरसीएपीई दोनों की एक और सीमा यह है कि वर्तमान में, दोनों प्रणालियां प्रवेश (मौसम विज्ञान) पर विचार नहीं करती हैं।
यह भी देखें
संदर्भ
- ↑ M. W. Moncrieff, M.J. Miller (1976). "उष्णकटिबंधीय क्यूम्यलोनिम्बस और स्क्वॉल लाइनों की गतिशीलता और अनुकरण". Q. J. R. Meteorol. Soc. 120 (432): 373–94. Bibcode:1976QJRMS.102..373M. doi:10.1002/qj.49710243208.
- ↑ Charles A. Doswell III, E.N. Rasmussen (December 1994). "केप गणनाओं पर आभासी तापमान सुधार की उपेक्षा का प्रभाव". Weather and Forecasting. 9 (4): 625–9. Bibcode:1994WtFor...9..625D. doi:10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.
- ↑ Thompson, Rich (2006). "एसपीसी गंभीर मौसम पैरामीटर्स की व्याख्या". Storm Prediction Center. Retrieved 2007-05-30.
- ↑ Shu, Frank (1992). The Physics of Astrophysics, volume II: Gas dynamics. Bibcode:1992pavi.book.....S. ISBN 978-0-935702-65-1.
{{cite book}}
:|journal=
ignored (help) - ↑ Craven, Jeffrey P.; H.E. Brooks (December 2004). "गहरे नम संवहन से जुड़े साउंडिंग डेरिवेटिव पैरामीटर्स का बेसलाइन क्लाइमेटोलॉजी" (PDF). National Weather Digest. 28: 13–24.
- ↑ Pietrycha, Albert E.; J.M. Davies; M. Ratzer; P. Merzlock (October 2004). "Tornadoes in a Deceptively Small CAPE Environment: The 4/20/04 Outbreak in Illinois and Indiana". Preprints of the 22nd Conference on Severe Local Storms. Hyannis, Massachusetts: American Meteorological Society.
- ↑ Edwards, Roger; Thompson, Richard (November 2014). ट्रॉपिकल साइक्लोन टोरनेडो रिजीम में रिवर्सिबल केप. 27th AMS Severe Local Storms Conference. Madison, WI: American Meteorological Society. doi:10.13140/2.1.2530.5921.
- ↑ Roger Edwards (July 7, 2017). Tropical Cyclone Tornadoes: Dual-Pol Radar Applications and Reversible CAPE (YouTube Video) (in English). NOAA. Retrieved December 27, 2021.
अग्रिम पठन
- Barry, R.G. and Chorley, R.J. Atmosphere, weather and climate (7th ed) Routledge 1998 p. 80-81 ISBN 0-415-16020-0