मोसबाउर स्पेक्ट्रोस्कोपी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 33: Line 33:


== उपयुक्त स्रोत का चयन ==
== उपयुक्त स्रोत का चयन ==
उपयुक्त गामा-किरण स्रोतों में रेडियोधर्मी जनक होता है जो वांछित समस्थानिक में क्षय होता है। उदाहरण के लिए <sup>57</sup>Fe के स्रोत में <sup>57</sup>Co सम्मिलित है, जो [[इलेक्ट्रॉन कैप्चर]] द्वारा <sup>57</sup>Fe की उत्तेजित अवस्था में क्षय होता है, जो बदले में गामा-किरण उत्सर्जन की श्रृंखला के माध्यम से जमीनी अवस्था में क्षय हो जाता है जिसमें मोसबाउर प्रभाव प्रदर्शित होता है। रेडियोधर्मी कोबाल्ट प्रायः रोडियम की पन्नी पर तैयार किया जाता है।<ref>{{Cite Q| Q56601097|author=Longworth, G|author2=Window, B}}</ref> आदर्श रूप से मूल आइसोटोप का सुविधाजनक आधा जीवन होगा। इसके अतिरिक्त, गामा-रे ऊर्जा अपेक्षाकृत अल्प होनी चाहिए, अन्यथा सिस्टम में अल्प रिकॉइल-मुक्त अंश होगा जिसके परिणामस्वरूप खराब सिग्नल-टू-शोर अनुपात और लंबे संग्रह समय की आवश्यकता होगी। नीचे दी गई आवर्त सारणी उन तत्वों को इंगित करती है जिनमें मोसबाउर स्पेक्ट्रोस्कोपी के लिए उपयुक्त आइसोटोप होता है। इनमें से, <sup>57</sup>Fe अब तक प्रौद्योगिकी का उपयोग करके अध्ययन किया जाने वाला सबसे सामान्य तत्व है, चूंकि <sup>129</sup>I, <sup>119</sup>Sn, और <sup>121</sup>Sb का भी प्रायः अध्ययन किया जाता है।
उपयुक्त गामा-किरण स्रोतों में रेडियोधर्मी जनक होता है जो वांछित समस्थानिक में क्षय होता है। उदाहरण के लिए <sup>57</sup>Fe के स्रोत में <sup>57</sup>Co सम्मिलित है, जो [[इलेक्ट्रॉन कैप्चर]] द्वारा <sup>57</sup>Fe की उत्तेजित अवस्था में क्षय होता है, जो परिवर्तन में गामा-किरण उत्सर्जन की श्रृंखला के माध्यम से भूमि अवस्था में क्षय हो जाता है जिसमें मोसबाउर प्रभाव प्रदर्शित होता है। रेडियोधर्मी कोबाल्ट प्रायः रोडियम की पन्नी पर तैयार किया जाता है।<ref>{{Cite Q| Q56601097|author=Longworth, G|author2=Window, B}}</ref> आदर्श रूप से मूल आइसोटोप का सुविधाजनक अर्ध जीवन होगा। इसके अतिरिक्त, गामा-रे ऊर्जा अपेक्षाकृत अल्प होनी चाहिए, अन्यथा प्रणाली में अल्प रिकॉइल-मुक्त अंश होगा जिसके परिणामस्वरूप सिग्नल-टू-शोर अनुपात और लंबे संग्रह समय की आवश्यकता होगी। नीचे दी गई आवर्त सारणी उन तत्वों को प्रदर्शित करती है जिनमें मोसबाउर स्पेक्ट्रोस्कोपी के लिए उपयुक्त आइसोटोप होता है। इनमें से, <sup>57</sup>Fe अब तक प्रौद्योगिकी का उपयोग करके अध्ययन किया जाने वाला सबसे सामान्य तत्व है, चूंकि <sup>129</sup>I, <sup>119</sup>Sn, और <sup>121</sup>Sb का भी प्रायः अध्ययन किया जाता है।


{| class="collapsible" style="margin:1em auto; width:90%; text-align:center; border: 1px solid darkgray;"
{| class="collapsible" style="margin:1em auto; width:90%; text-align:center; border: 1px solid darkgray;"
Line 191: Line 191:
s कक्षीय में केवल इलेक्ट्रॉनों के नाभिक में पाए जाने की अन्य-शून्य संभावना होती है (परमाणु कक्षीय के आकार देखें)। चूंकि, ''p'', ''d'', और ''f''  इलेक्ट्रॉन [[स्क्रीनिंग प्रभाव]] के माध्यम से s इलेक्ट्रॉन घनत्व को प्रभावित कर सकते हैं।
s कक्षीय में केवल इलेक्ट्रॉनों के नाभिक में पाए जाने की अन्य-शून्य संभावना होती है (परमाणु कक्षीय के आकार देखें)। चूंकि, ''p'', ''d'', और ''f''  इलेक्ट्रॉन [[स्क्रीनिंग प्रभाव]] के माध्यम से s इलेक्ट्रॉन घनत्व को प्रभावित कर सकते हैं।


आइसोमर शिफ्ट को नीचे दिए गए सूत्र का उपयोग करके व्यक्त किया जा सकता है, जहां K परमाणु स्थिरांक है, R<sub>e</sub><sup>2</sup> और  R<sub>g</sub><sup>2</sup> के मध्य का अंतर उत्तेजित अवस्था और जमीनी अवस्था के मध्य प्रभावी परमाणु आवेश त्रिज्या का अंतर है, और [Ψ<sub>s</sub><sup>2</sup>(0)]<sub>a</sub> और [Ψ<sub>s</sub><sup>2</sup>(0)]<sub>b</sub> के मध्य का अंतर नाभिक में इलेक्ट्रॉन घनत्व का अंतर है (ए = स्रोत, बी = प्रतिरूप)। यहां वर्णित रासायनिक आइसोमर तापमान के साथ नहीं परिवर्तित होता है, चूंकि, मोसबाउर स्पेक्ट्रा में दूसरे क्रम के डॉपलर प्रभाव के रूप में जाने वाले सापेक्ष प्रभाव के कारण तापमान संवेदनशीलता होती है। सामान्यतः, इस प्रभाव का प्रभाव छोटा होता है, और [[आईयूपीएसी]] मानक आइसोमर शिफ्ट को इसके लिए सही किए बिना रिपोर्ट करने की अनुमति देता है।<ref name="MW2">International Board on the Applications of the Mössbauer Effect (IBAME) and Mössbauer Effect Data Center (MEDC), [http://www.mossbauer.info/nomenclature.html Mössbauer Effect website] Accessed December 20, 2017</ref>
आइसोमर शिफ्ट को नीचे दिए गए सूत्र का उपयोग करके व्यक्त किया जा सकता है, जहां K परमाणु स्थिरांक है, R<sub>e</sub><sup>2</sup> और  R<sub>g</sub><sup>2</sup> के मध्य का अंतर उत्तेजित अवस्था और भूमि अवस्था के मध्य प्रभावी परमाणु आवेश त्रिज्या का अंतर है, और [Ψ<sub>s</sub><sup>2</sup>(0)]<sub>a</sub> और [Ψ<sub>s</sub><sup>2</sup>(0)]<sub>b</sub> के मध्य का अंतर नाभिक में इलेक्ट्रॉन घनत्व का अंतर है (ए = स्रोत, बी = प्रतिरूप)। यहां वर्णित रासायनिक आइसोमर तापमान के साथ नहीं परिवर्तित होता है, चूंकि, मोसबाउर स्पेक्ट्रा में दूसरे क्रम के डॉपलर प्रभाव के रूप में जाने वाले सापेक्ष प्रभाव के कारण तापमान संवेदनशीलता होती है। सामान्यतः, इस प्रभाव का प्रभाव छोटा होता है, और [[आईयूपीएसी]] मानक आइसोमर शिफ्ट को इसके लिए सही किए बिना रिपोर्ट करने की अनुमति देता है।<ref name="MW2">International Board on the Applications of the Mössbauer Effect (IBAME) and Mössbauer Effect Data Center (MEDC), [http://www.mossbauer.info/nomenclature.html Mössbauer Effect website] Accessed December 20, 2017</ref>
:<math>\text{CS} = K\left(\langle R_e^2\rangle - \langle R_g^2\rangle\right)\left([\Psi_s^2(0)]_b - [\Psi_s^2(0)]_a\right).</math>
:<math>\text{CS} = K\left(\langle R_e^2\rangle - \langle R_g^2\rangle\right)\left([\Psi_s^2(0)]_b - [\Psi_s^2(0)]_a\right).</math>
इस समीकरण का भौतिक अर्थ उदाहरणों का उपयोग करके स्पष्ट किया जा सकता है:
इस समीकरण का भौतिक अर्थ उदाहरणों का उपयोग करके स्पष्ट किया जा सकता है:
Line 217: Line 217:


===चुंबकीय अतिसूक्ष्म विभाजन===
===चुंबकीय अतिसूक्ष्म विभाजन===
ज़ेमान प्रभाव द्वारा वर्णित के रूप में चुंबकीय हाइपरफाइन विभाजन नाभिक और आसपास के किसी भी चुंबकीय क्षेत्र के मध्य परस्पर क्रिया का परिणाम है। स्पिन I वाला नाभिक चुंबकीय क्षेत्र की उपस्थिति में 2I + 1 उप-ऊर्जा स्तरों में विभाजित हो जाता है। उदाहरण के लिए, स्पिन अवस्था I = 3/2मी. के साथ  <sup>57</sup>Fe नाभिक की प्रथम उत्तेजित अवस्था +3/2, +1/2, -1/2 और -3/2 के mI मानों के साथ 4 अन्य-पतित उप-अवस्थाओं में विभाजित होगी। 10<sup>−7</sup>eV के क्रम में होने के कारण समान दूरी वाले विभाजनों को हाइपरफाइन कहा जाता है। चुंबकीय द्विध्रुव संक्रमणों के लिए चयन नियम का अर्थ है कि उत्तेजित अवस्था और जमीनी अवस्था के मध्य संक्रमण केवल वहीं हो सकता है जहाँ m<sub>''I''</sub> 0 या 1 या -1 से परिवर्तित होता है। यह 3/2 से 1/2 संक्रमण के लिए 6 संभव देता है।<ref name="RSC2"/>
ज़ेमान प्रभाव द्वारा वर्णित के रूप में चुंबकीय हाइपरफाइन विभाजन नाभिक और आसपास के किसी भी चुंबकीय क्षेत्र के मध्य परस्पर क्रिया का परिणाम है। स्पिन I वाला नाभिक चुंबकीय क्षेत्र की उपस्थिति में 2I + 1 उप-ऊर्जा स्तरों में विभाजित हो जाता है। उदाहरण के लिए, स्पिन अवस्था I = 3/2मी. के साथ  <sup>57</sup>Fe नाभिक की प्रथम उत्तेजित अवस्था +3/2, +1/2, -1/2 और -3/2 के mI मानों के साथ 4 अन्य-पतित उप-अवस्थाओं में विभाजित होगी। 10<sup>−7</sup>eV के क्रम में होने के कारण समान दूरी वाले विभाजनों को हाइपरफाइन कहा जाता है। चुंबकीय द्विध्रुव संक्रमणों के लिए चयन नियम का अर्थ है कि उत्तेजित अवस्था और भूमि अवस्था के मध्य संक्रमण केवल वहीं हो सकता है जहाँ m<sub>''I''</sub> 0 या 1 या -1 से परिवर्तित होता है। यह 3/2 से 1/2 संक्रमण के लिए 6 संभव देता है।<ref name="RSC2"/>


विभाजन की सीमा नाभिक में चुंबकीय क्षेत्र के बल के समानुपाती होती है, जो बदले में नाभिक के इलेक्ट्रॉन वितरण ("रासायनिक वातावरण") पर निर्भर करती है। विभाजन को मापा जा सकता है, उदाहरण के लिए, दोलन स्रोत और फोटॉन संसूचक (चित्र 5 देखें) के मध्य रखे गए प्रतिरूप पन्नी के साथ, जिसके परिणामस्वरूप अवशोषण स्पेक्ट्रम होता है, जैसा कि चित्र 4 में दिखाया गया है। चुंबकीय क्षेत्र के शिखरों के मध्य की दूरी  से निर्धारित किया जा सकता है, यदि परमाणु राज्यों के क्वांटम "जी-कारक" ज्ञात हों। कई लोहे के यौगिकों सहित फेरोमैग्नेटिक सामग्रियों में, प्राकृतिक आंतरिक चुंबकीय क्षेत्र अधिक दृढ़ होते हैं और उनके प्रभाव स्पेक्ट्रा पर आच्छादित होते हैं।
विभाजन की सीमा नाभिक में चुंबकीय क्षेत्र के बल के समानुपाती होती है, जो परिवर्तन में नाभिक के इलेक्ट्रॉन वितरण ("रासायनिक वातावरण") पर निर्भर करती है। विभाजन को मापा जा सकता है, उदाहरण के लिए, दोलन स्रोत और फोटॉन संसूचक (चित्र 5 देखें) के मध्य रखे गए प्रतिरूप पन्नी के साथ, जिसके परिणामस्वरूप अवशोषण स्पेक्ट्रम होता है, जैसा कि चित्र 4 में दिखाया गया है। चुंबकीय क्षेत्र के शिखरों के मध्य की दूरी  से निर्धारित किया जा सकता है, यदि परमाणु राज्यों के क्वांटम "जी-कारक" ज्ञात हों। कई लोहे के यौगिकों सहित फेरोमैग्नेटिक सामग्रियों में, प्राकृतिक आंतरिक चुंबकीय क्षेत्र अधिक दृढ़ होते हैं और उनके प्रभाव स्पेक्ट्रा पर आच्छादित होते हैं।


=== सभी का संयोजन ===
=== सभी का संयोजन ===
Line 319: Line 319:
: <math>V=\frac{c\,B_\text{int}\,\mu_{\rm N}}{E_\gamma}(3g_n^e+g_n)</math>
: <math>V=\frac{c\,B_\text{int}\,\mu_{\rm N}}{E_\gamma}(3g_n^e+g_n)</math>
जहाँ c प्रकाश की गति है, B<sub>int</sub> धात्विक लोहे ({{val|33|ul=T}}) का आंतरिक चुंबकीय क्षेत्र है, μN [[परमाणु चुंबक]]त्व है ({{val|3.1524512605|e=-8|u=eV/T}}), Eγ उत्तेजन ऊर्जा है (14.412497(3) keV<ref>
जहाँ c प्रकाश की गति है, B<sub>int</sub> धात्विक लोहे ({{val|33|ul=T}}) का आंतरिक चुंबकीय क्षेत्र है, μN [[परमाणु चुंबक]]त्व है ({{val|3.1524512605|e=-8|u=eV/T}}), Eγ उत्तेजन ऊर्जा है (14.412497(3) keV<ref>
[http://www.medc.dicp.ac.cn/Resources-isotopes/Resource-Fe.php Mössbauer Effect Data Center] 20.08.2013</ref>), ''g''<sub>n</sub> जमीनी राज्य परमाणु विभाजन कारक है ({{val|0.090604}}/(I), जहां [[समभारिक प्रचक्रण]] I ={{frac|1|2}}) और ''g''{{su|b=n|p=e}} <sup>57</sup>Fe (-0.15532/(I), जहां I ={{frac|3|2}}) का उत्तेजित अवस्था विभाजन कारक है।
[http://www.medc.dicp.ac.cn/Resources-isotopes/Resource-Fe.php Mössbauer Effect Data Center] 20.08.2013</ref>), ''g''<sub>n</sub> भूमि राज्य परमाणु विभाजन कारक है ({{val|0.090604}}/(I), जहां [[समभारिक प्रचक्रण]] I ={{frac|1|2}}) और ''g''{{su|b=n|p=e}} <sup>57</sup>Fe (-0.15532/(I), जहां I ={{frac|3|2}}) का उत्तेजित अवस्था विभाजन कारक है।


उपरोक्त मानों को प्रतिस्थापित करने पर V = {{val|10.6258|u=mm/s}}. प्राप्त होगा।
उपरोक्त मानों को प्रतिस्थापित करने पर V = {{val|10.6258|u=mm/s}}. प्राप्त होगा।

Revision as of 20:51, 20 February 2023

57Fe का मोसबाउर अवशोषण स्पेक्ट्रम

मोसबाउर स्पेक्ट्रोस्कोपी ऐसी स्पेक्ट्रोस्कोपी प्रौद्योगिकी है जो मोसबाउर प्रभाव पर आधारित है।1958 में रुडोल्फ मोसबाउर (कभी-कभी "मोएसबाउर", जर्मन: "मोसबाउर") द्वारा शोध किये गए इस प्रभाव में ठोस पदार्थों में परमाणु गामा किरणों के लगभग परमाणु पुनरावृत्ति-मुक्त उत्सर्जन और अवशोषण सम्मिलित हैं। परिणामी परमाणु स्पेक्ट्रोस्कोपी विधि कुछ नाभिकों के रासायनिक वातावरण में छोटे परिवर्तनों के प्रति अति संवेदनशील है।

सामान्यतः, तीन प्रकार के परमाणु इंटरैक्शन देखे जा सकते हैं: निकटतम के इलेक्ट्रॉन घनत्व (जिसे प्राचीन साहित्य में रासायनिक परिवर्तन भी कहा जाता है) में अंतर के कारण आइसोमेरिक शिफ्ट, परमाणु-स्तर पर विद्युत क्षेत्र के ढाल के कारण चतुर्गुण विभाजन; और चुंबकीय ज़ेमान प्रभाव अन्य-परमाणु चुंबकीय क्षेत्रों के कारण विभाजन होता है। परमाणु गामा किरणों की उच्च ऊर्जा और अत्यंत संकीर्ण रेखा चौड़ाई के कारण, मोसबाउर स्पेक्ट्रोस्कोपी ऊर्जा (और इसलिए आवृत्ति) संकल्प की स्थिति में अत्यधिक संवेदनशील प्रौद्योगिकी है, जो 1011 में केवल कुछ भागों के परिवर्तनों को ज्ञात करने में सक्षम है।</उप> यह परमाणु चुंबकीय अनुनाद स्पेक्ट्रोस्कोपी में पूर्ण रूप से असंबंधित विधि है।

मूल सिद्धांत

जिस प्रकार गोली चलाने पर बंदूक पीछे हटती है, संवेग के संरक्षण के लिए गामा किरण के उत्सर्जन या अवशोषण के समय नाभिक (जैसे गैस में) को पीछे हटने की आवश्यकता होती है। यदि कोई नाभिक सरलता से गामा किरण का उत्सर्जन करता है, तो गामा किरण की ऊर्जा संक्रमण की प्राकृतिक ऊर्जा से थोड़ी अल्प होती है, लेकिन गामा किरण को अवशोषित करने के लिए सरलता से नाभिक के लिए, गामा किरण की ऊर्जा प्राकृतिक ऊर्जा से थोड़ी अधिक होनी चाहिए, क्योंकि दोनों ही स्तिथियों में ऊर्जा विस्थापित के लिए समाप्त हो जाती है। इसका तात्पर्य है कि परमाणु अनुनाद (समान नाभिक द्वारा समान गामा किरण का उत्सर्जन और अवशोषण) मुक्त नाभिक के साथ अप्राप्य है, क्योंकि ऊर्जा में परिवर्तन अधिक है, उत्सर्जन और अवशोषण स्पेक्ट्रा में कोई महत्वपूर्ण अधिव्यापन नहीं है।

ठोस क्रिस्टल में नाभिक मुक्त नहीं होते हैं क्योंकि वे क्रिस्टल जाली से बंधे होते हैं। जब ठोस में नाभिक गामा किरण को उत्सर्जित या अवशोषित करता है, तब भी कुछ ऊर्जा प्रतिक्षेप ऊर्जा के रूप में समाप्त हो सकती है, लेकिन इस स्थिति में यह सदैव असतत पैकेट में होता है जिसे फोनन कहा जाता है (क्रिस्टल जालक के मात्राबद्ध कंपन)। शून्य सहित किसी भी संख्या में फ़ोनों का उत्सर्जन किया जा सकता है, जिसे "पुनरावृत्ति-मुक्त" घटना के रूप में जाना जाता है। इस स्थिति में संवेग का संरक्षण समग्र रूप से क्रिस्टल के संवेग से संतुष्ट होता है, इसलिए व्यावहारिक रूप से कोई ऊर्जा नष्ट नहीं होती है।[1]

मोसबाउर ने सिद्ध किया कि उत्सर्जन और अवशोषण की घटनाओं का महत्वपूर्ण अंश पुनरावृत्ति-मुक्त होगा, जिसे लैम्ब-मोसबाउर कारक का उपयोग करके परिमाणित किया जाता है।[2]

यह तथ्य मोसबाउर स्पेक्ट्रोस्कोपी को संभव बनाता है, क्योंकि इसका तात्पर्य है कि नाभिक द्वारा उत्सर्जित गामा किरणों को आइसोटोप के नाभिक वाले प्रतिरूप द्वारा प्रतिध्वनित रूप से अवशोषित किया जा सकता है, और इस अवशोषण को मापा जा सकता है।

मोसबाउर अवशोषण के प्रतिक्षेप अंश का विश्लेषण परमाणु अनुनाद कंपन स्पेक्ट्रोस्कोपी द्वारा किया जाता है।

विशिष्ट विधि

अपने सबसे सामान्य रूप में, मोसबाउर अवशोषण स्पेक्ट्रोस्कोपी, ठोस प्रतिरूप गामा विकिरण के बीम के संपर्क में आता है, और संसूचक प्रतिरूप के माध्यम से प्रेषित बीम की तीव्रता को मापता है। गामा किरणों को उत्सर्जित करने वाले स्रोत में परमाणु उसी समस्थानिक के होने चाहिए, जिस प्रतिरूप में परमाणु उन्हें अवशोषित करते हैं।

यदि उत्सर्जक और अवशोषित नाभिक समान रासायनिक वातावरण में थे, तो परमाणु संक्रमण ऊर्जा सामान्य होगी और दोनों सामग्रियों के साथ अवशोषण देखा जाएगा। चूँकि, रासायनिक वातावरण में अंतर, परमाणु ऊर्जा के स्तर को कुछ भिन्न विधियों से परिवर्तित का कारण बनता है, जैसा कि नीचे वर्णित है। चूँकि ये ऊर्जा परिवर्तन छोटे होते हैं (प्रायः माइक्रो-इलेक्ट्रॉनवॉल्ट से अल्प), कुछ रेडियोन्यूक्लाइड्स के लिए गामा किरणों की अत्यंत संकीर्ण वर्णक्रमीय लाइनविड्थ छोटे ऊर्जा परिवर्तन को अवशोषण में बड़े परिवर्तनों के अनुरूप बनाते हैं। दो नाभिकों को प्रतिध्वनि में वापस लाने के लिए गामा किरण की ऊर्जा में थोड़ा परिवर्तन आवश्यक है, और व्यवहार में यह सदैव डॉपलर शिफ्ट का उपयोग करके किया जाता है। मोसबाउर अवशोषण स्पेक्ट्रोस्कोपी के समय, डॉपलर प्रभाव उत्पन्न करने के लिए रैखिक मोटर का उपयोग करके स्रोत को वेग की श्रृंखला के माध्यम से त्वरित किया जाता है और निश्चित सीमा के माध्यम से गामा किरण ऊर्जा को स्कैन करता है। उदाहरण के लिए, 57Fe के लिए वेग की सामान्य श्रेणी ±11 mm/s (1 mm/s = 48.075 neV) हो सकती है। [2] [3]

परिणामी स्पेक्ट्रा में, गामा किरण की तीव्रता को स्रोत वेग के कार्य के रूप में प्लॉट किया जाता है। प्रतिरूप के ऊर्जा स्तरों के अनुरूप वेगों पर, गामा किरणों का अंश अवशोषित होता है, जिसके परिणामस्वरूप मापी गई तीव्रता में अल्पता आती है और स्पेक्ट्रम में समान अल्पता होती है। डिप्स की संख्या, स्थिति और तीव्रता (जिसे पीक्स भी कहा जाता है; संचरित तीव्रता में डिप्स अवशोषण में शिखर हैं) अवशोषित नाभिक के रासायनिक वातावरण के बारे में जानकारी प्रदान करते हैं और प्रतिरूप को चिह्नित करने के लिए उपयोग किया जा सकता है।

उपयुक्त स्रोत का चयन

उपयुक्त गामा-किरण स्रोतों में रेडियोधर्मी जनक होता है जो वांछित समस्थानिक में क्षय होता है। उदाहरण के लिए 57Fe के स्रोत में 57Co सम्मिलित है, जो इलेक्ट्रॉन कैप्चर द्वारा 57Fe की उत्तेजित अवस्था में क्षय होता है, जो परिवर्तन में गामा-किरण उत्सर्जन की श्रृंखला के माध्यम से भूमि अवस्था में क्षय हो जाता है जिसमें मोसबाउर प्रभाव प्रदर्शित होता है। रेडियोधर्मी कोबाल्ट प्रायः रोडियम की पन्नी पर तैयार किया जाता है।[3] आदर्श रूप से मूल आइसोटोप का सुविधाजनक अर्ध जीवन होगा। इसके अतिरिक्त, गामा-रे ऊर्जा अपेक्षाकृत अल्प होनी चाहिए, अन्यथा प्रणाली में अल्प रिकॉइल-मुक्त अंश होगा जिसके परिणामस्वरूप सिग्नल-टू-शोर अनुपात और लंबे संग्रह समय की आवश्यकता होगी। नीचे दी गई आवर्त सारणी उन तत्वों को प्रदर्शित करती है जिनमें मोसबाउर स्पेक्ट्रोस्कोपी के लिए उपयुक्त आइसोटोप होता है। इनमें से, 57Fe अब तक प्रौद्योगिकी का उपयोग करके अध्ययन किया जाने वाला सबसे सामान्य तत्व है, चूंकि 129I, 119Sn, और 121Sb का भी प्रायः अध्ययन किया जाता है।

Periodic table of Mössbauer-active elements
H   He
Li Be   B C N O F Ne
Na Mg   Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
  Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
  Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
 
Mössbauer-active elements Gamma-ray sources Unsuitable for Mössbauer

मोसबाउर स्पेक्ट्रा का विश्लेषण

जैसा कि ऊपर वर्णित है, मोसबाउर स्पेक्ट्रोस्कोपी में अत्यंत सूक्ष्म ऊर्जा संकल्प है और संबंधित परमाणुओं के परमाणु वातावरण में भी सूक्ष्म परिवर्तनों को ज्ञात कर सकता है। सामान्यतः, तीन प्रकार के परमाणु इंटरैक्शन : आइसोमेरिक शिफ्ट, क्वाड्रुपोल स्प्लिटिंग और अति सूक्ष्म मैग्नेटिक स्प्लिटिंग देखे जाते हैं।[4][5]

आइसोमर शिफ्ट

चित्र 2: रासायनिक परिवर्तन और परमाणु ऊर्जा स्तरों का चतुष्कोणीय विखंडन और मोसबाउर स्पेक्ट्रा

आइसोमर शिफ्ट (δ) ( जिसे विशेष रूप से प्राचीन साहित्य में, कभी-कभी रासायनिक परिवर्तन भी कहा जाता है) नाभिक की अनुनाद ऊर्जा में परिवर्तन का वर्णन करने वाला सापेक्ष उपाय है (चित्र 2 देखें) इलेक्ट्रॉनों के संक्रमण के कारण इसके s कक्षीय के भीतर। नाभिक में इलेक्ट्रॉन चार्ज घनत्व के आधार पर पूर्ण स्पेक्ट्रम को या तो सकारात्मक या नकारात्मक दिशा में स्थानांतरित किया जाता है। यह परिवर्तन अन्य-शून्य प्रायिकता s कक्षीय इलेक्ट्रॉनों और अन्य-शून्य आयतन नाभिक के मध्य स्थिर वैद्युत प्रतिक्रिया में परिवर्तन के कारण उत्पन्न होता है।

s कक्षीय में केवल इलेक्ट्रॉनों के नाभिक में पाए जाने की अन्य-शून्य संभावना होती है (परमाणु कक्षीय के आकार देखें)। चूंकि, p, d, और f इलेक्ट्रॉन स्क्रीनिंग प्रभाव के माध्यम से s इलेक्ट्रॉन घनत्व को प्रभावित कर सकते हैं।

आइसोमर शिफ्ट को नीचे दिए गए सूत्र का उपयोग करके व्यक्त किया जा सकता है, जहां K परमाणु स्थिरांक है, Re2 और Rg2 के मध्य का अंतर उत्तेजित अवस्था और भूमि अवस्था के मध्य प्रभावी परमाणु आवेश त्रिज्या का अंतर है, और [Ψs2(0)]a और [Ψs2(0)]b के मध्य का अंतर नाभिक में इलेक्ट्रॉन घनत्व का अंतर है (ए = स्रोत, बी = प्रतिरूप)। यहां वर्णित रासायनिक आइसोमर तापमान के साथ नहीं परिवर्तित होता है, चूंकि, मोसबाउर स्पेक्ट्रा में दूसरे क्रम के डॉपलर प्रभाव के रूप में जाने वाले सापेक्ष प्रभाव के कारण तापमान संवेदनशीलता होती है। सामान्यतः, इस प्रभाव का प्रभाव छोटा होता है, और आईयूपीएसी मानक आइसोमर शिफ्ट को इसके लिए सही किए बिना रिपोर्ट करने की अनुमति देता है।[6]

इस समीकरण का भौतिक अर्थ उदाहरणों का उपयोग करके स्पष्ट किया जा सकता है:

  1. जबकि 57Fe स्पेक्ट्रम में s-इलेक्ट्रॉन घनत्व में वृद्धि नकारात्मक परिवर्तन देती है क्योंकि प्रभावी परमाणु आवेश में परिवर्तन नकारात्मक होता है (Re <Rg के कारण), 119Sn में s-इलेक्ट्रॉन घनत्व में वृद्धि में सकारात्मक परिवर्तन के कारण सकारात्मक परिवर्तन देती है। समग्र परमाणु आवेश में परिवर्तन (Re > Rg के कारण)
  2. ऑक्सीकृत फेरिक आयनों (Fe3+) में फेरस आयनों (Fe2+) की अपेक्षा आइसोमर शिफ्ट अल्प होते हैं, क्योंकि फेरिक आयनों के नाभिक में s-इलेक्ट्रॉन घनत्व d इलेक्ट्रॉनों द्वारा अक्षम स्क्रीनिंग प्रभाव के कारण अधिक होता है।[7]

आइसोमर शिफ्ट ऑक्सीकरण अवस्था, वैधता राज्यों, इलेक्ट्रॉन परिरक्षण और इलेक्ट्रोनगेटिव समूहों की इलेक्ट्रॉन-आरेखण शक्ति का निर्धारण करने के लिए उपयोगी है।[4]

चौगुना विभाजन

चित्र 3: सोडियम नाइट्रोप्रासाइड सामान्य संदर्भ सामग्री है जो क्वाड्रुपोल विभाजन को प्रदर्शित करती है।

चौगुना विभाजन परमाणु ऊर्जा स्तरों और आसपास के विद्युत क्षेत्र प्रवणता (ईएफजी) के मध्य परस्पर क्रिया को दर्शाता है। अन्य-गोलाकार आवेश वितरण वाले राज्यों में नाभिक, अर्थात वे सभी जिनकी स्पिन क्वांटम संख्या (I) 1/2 से अधिक है, परमाणु चतुष्कोणीय क्षण हो सकता है। इस स्थिति में विषम विद्युत क्षेत्र (असममित इलेक्ट्रॉनिक चार्ज वितरण या लिगेंड व्यवस्था द्वारा निर्मित) परमाणु ऊर्जा स्तरों को विभाजित करता है।[4]

I = 3/2 उत्तेजित अवस्था वाले समस्थानिक की स्थिति में, जैसे 57Fe या 119Sn, उत्तेजित अवस्था को दो उप-अवस्थाओं mI = ± 1/2 और mI = ±3/2 में विभाजित किया जाता है। उत्साहित अवस्था संक्रमण स्पेक्ट्रम में दो विशिष्ट शिखरों के रूप में दिखाई देते हैं, जिन्हें कभी-कभी "डबल" के रूप में संदर्भित किया जाता है। चौगुना विभाजन इन दो शिखरों के मध्य विभाजन के रूप में मापा जाता है और नाभिक में विद्युत क्षेत्र के चरित्र को दर्शाता है।

चतुष्कोणीय विखंडन का उपयोग ऑक्सीकरण अवस्था, चक्रण अवस्था, स्थल समरूपता और लिगैंड्स की व्यवस्था के निर्धारण के लिए किया जा सकता है।[4]

चुंबकीय अतिसूक्ष्म विभाजन

ज़ेमान प्रभाव द्वारा वर्णित के रूप में चुंबकीय हाइपरफाइन विभाजन नाभिक और आसपास के किसी भी चुंबकीय क्षेत्र के मध्य परस्पर क्रिया का परिणाम है। स्पिन I वाला नाभिक चुंबकीय क्षेत्र की उपस्थिति में 2I + 1 उप-ऊर्जा स्तरों में विभाजित हो जाता है। उदाहरण के लिए, स्पिन अवस्था I = 3/2मी. के साथ 57Fe नाभिक की प्रथम उत्तेजित अवस्था +3/2, +1/2, -1/2 और -3/2 के mI मानों के साथ 4 अन्य-पतित उप-अवस्थाओं में विभाजित होगी। 10−7eV के क्रम में होने के कारण समान दूरी वाले विभाजनों को हाइपरफाइन कहा जाता है। चुंबकीय द्विध्रुव संक्रमणों के लिए चयन नियम का अर्थ है कि उत्तेजित अवस्था और भूमि अवस्था के मध्य संक्रमण केवल वहीं हो सकता है जहाँ mI 0 या 1 या -1 से परिवर्तित होता है। यह 3/2 से 1/2 संक्रमण के लिए 6 संभव देता है।[4]

विभाजन की सीमा नाभिक में चुंबकीय क्षेत्र के बल के समानुपाती होती है, जो परिवर्तन में नाभिक के इलेक्ट्रॉन वितरण ("रासायनिक वातावरण") पर निर्भर करती है। विभाजन को मापा जा सकता है, उदाहरण के लिए, दोलन स्रोत और फोटॉन संसूचक (चित्र 5 देखें) के मध्य रखे गए प्रतिरूप पन्नी के साथ, जिसके परिणामस्वरूप अवशोषण स्पेक्ट्रम होता है, जैसा कि चित्र 4 में दिखाया गया है। चुंबकीय क्षेत्र के शिखरों के मध्य की दूरी से निर्धारित किया जा सकता है, यदि परमाणु राज्यों के क्वांटम "जी-कारक" ज्ञात हों। कई लोहे के यौगिकों सहित फेरोमैग्नेटिक सामग्रियों में, प्राकृतिक आंतरिक चुंबकीय क्षेत्र अधिक दृढ़ होते हैं और उनके प्रभाव स्पेक्ट्रा पर आच्छादित होते हैं।

सभी का संयोजन

मोसबाउर के तीन पैरामीटर: आइसोमर शिफ्ट, क्वाड्रुपोल स्प्लिटिंग और हाइपरफाइन स्प्लिटिंग का उपयोग प्रायः मानकों के लिए स्पेक्ट्रा की तुलना में किसी विशेष यौगिक की पहचान करने के लिए किया जा सकता है।[8] कुछ स्तिथियों में, मोसबाउर सक्रिय परमाणु के लिए परिसर में से अधिक संभावित स्थिति हो सकती है। उदाहरण के लिए, मैग्नेटाइट की क्रिस्टल संरचना (Fe3O4) लोहे के परमाणुओं के लिए दो भिन्न-भिन्न साइटों का समर्थन करता है। इसके स्पेक्ट्रम में 12 शिखर हैं, प्रत्येक संभावित परमाणु साइट के लिए षट्क, मोसबाउर पैरामीटर के दो समूहों के अनुरूप है।

कई बार सभी प्रभाव : आइसोमर शिफ्ट, चौगुनी विभाजन और चुंबकीय ज़ेमान प्रभाव देखे जाते हैं। ऐसे स्तिथियों में आइसोमर शिफ्ट सभी पंक्तियों के औसत से दिया जाता है। चतुष्कोणीय विखंडन जब सभी चार उत्तेजनीय सबस्टेट्स को समान रूप से शिफ्ट किया जाता है (दो सबस्टेट्स को उठाया जाता है और अन्य दो को उतारा जाता है) आंतरिक चार पंक्तियों के सापेक्ष बाहरी दो पंक्तियों की शिफ्ट द्वारा दिया जाता है (सभी आंतरिक चार पंक्तियाँ सबसे बाहरी दो रेखाओं के विरोध में शिफ्ट होती हैं)। सामान्यतः फिटिंग सॉफ्टवेयर का उपयोग सटीक मूल्यों के लिए किया जाता है।

इसके अतिरिक्त, विभिन्न शिखरों की सापेक्ष तीव्रता प्रतिरूप में यौगिकों की सापेक्ष सांद्रता को दर्शाती है और इसका उपयोग अर्ध-मात्रात्मक विश्लेषण के लिए किया जा सकता है। इसके अतिरिक्त, चूंकि फेरोमैग्नेटिक घटनाएं आकार पर निर्भर होती हैं, कुछ स्तिथियों में स्पेक्ट्रा सामग्री के क्रिस्टलीय आकार और अनाज संरचना में अंतर्दृष्टि प्रदान कर सकता है।

मोसबाउर उत्सर्जन स्पेक्ट्रोस्कोपी

मोसबाउर उत्सर्जन स्पेक्ट्रोस्कोपी मोसबाउर स्पेक्ट्रोस्कोपी का विशेष रूप है जहां उत्सर्जक तत्व जांच प्रतिरूप में है, और अवशोषक तत्व संदर्भ में है। सामान्यतः, प्रौद्योगिकी 57Co/57Fe जोड़ी पर लागू होती है। हाइड्रोडीसल्फराइजेशन में उपयोग किए जाने वाले असफ़ल Co-Mo उत्प्रेरकों में कोबाल्ट साइटों का विशिष्ट अनुप्रयोग विशेषता है। ऐसी स्थिति में, प्रतिरूप को 57Co से डोप किया जाता है।[9]

अनुप्रयोग

प्रौद्योगिकी की अल्पता में गामा किरण स्रोतों की सीमित संख्या और नाभिक की पुनरावृत्ति को समाप्त करने के लिए प्रतिरूप को ठोस होने की आवश्यकता है। मॉसबॉयर स्पेक्ट्रोस्कोपी नाभिक के रासायनिक वातावरण में ऑक्सीकरण राज्य परिवर्तन, विशेष परमाणु पर विभिन्न लिगेंड के प्रभाव और प्रतिरूप के चुंबकीय वातावरण सहित सूक्ष्म परिवर्तनों के प्रति अपनी संवेदनशीलता में अद्वितीय है।

विश्लेषणात्मक उपकरण के रूप में मोसबाउर स्पेक्ट्रोस्कोपी भूविज्ञान के क्षेत्र में उल्कापिंडों और चंद्रमा की चट्टानों सहित लौह युक्त प्रतिरूपों की संरचना की पहचान करने के लिए विशेष रूप से उपयोगी रहा है। मोसबाउर स्पेक्ट्रा के सीटू डेटा संग्रह को मंगल ग्रह पर लौह समृद्ध चट्टानों पर भी किया गया है।[10][11]

अन्य अनुप्रयोग में, मोसबाउर स्पेक्ट्रोस्कोपी का उपयोग लौह उत्प्रेरकों में चरण परिवर्तनों को चिह्नित करने के लिए किया जाता है, उदाहरण के लिए, जो फिशर-ट्रॉप्स संश्लेषण के लिए उपयोग किए जाते हैं। प्रारंभ में हेमेटाइट (Fe2O3) से मिलकर, ये उत्प्रेरक मैग्नेटाइट (Fe3O4) और कई लौह कार्बाइड के मिश्रण में परिवर्तित हो जाते हैं। ऐसा लगता है कि कार्बाइड के निर्माण से उत्प्रेरक गतिविधि में सुधार होता है, लेकिन यह उत्प्रेरक कणों के यांत्रिक विखंडन और घर्षण का कारण भी बन सकता है, जिससे प्रतिक्रिया उत्पादों से उत्प्रेरक के अंतिम पृथक्करण में कठिनाई हो सकती है।[12]

मोसबाउर स्पेक्ट्रोस्कोपी का भी उपयोग ओलेफिन के चयनात्मक ऑक्सीकरण के समय एंटीमनी (Sb) के ऑक्सीकरण राज्य में सापेक्ष एकाग्रता परिवर्तन को निर्धारित करने के लिए किया गया है। कैल्सीनेशन के समय, एंटीमनी युक्त टिन डाइऑक्साइड उत्प्रेरक में सभी Sb आयन +5 ऑक्सीकरण अवस्था में परिवर्तित हो जाते हैं। उत्प्रेरक प्रतिक्रिया के बाद, लगभग सभी Sb आयन +5 से +3 ऑक्सीकरण अवस्था में वापस आ जाते हैं। एंटीमनी न्यूक्लियस के आसपास के रासायनिक वातावरण में महत्वपूर्ण परिवर्तन ऑक्सीकरण राज्य परिवर्तन के समय होता है जिसे मोसबाउर स्पेक्ट्रम में आइसोमर शिफ्ट के रूप में आसानी से मॉनिटर किया जा सकता है।[13]

अधिक उच्च ऊर्जा विभेदन के कारण सापेक्षता के सिद्धांत द्वारा अनुमानित दूसरे क्रम के अनुप्रस्थ डॉपलर प्रभाव का निरीक्षण करने के लिए इस प्रौद्योगिकी का भी उपयोग किया गया है।[14]

जैव अकार्बनिक रसायन

मॉसबाउर स्पेक्ट्रोस्कोपी को व्यापक रूप से जैव अकार्बनिक रसायन विज्ञान में, विशेष रूप से लौह युक्त प्रोटीन और एंजाइम के अध्ययन के लिए लागू किया गया है। प्रौद्योगिकी का उपयोग प्रायः लोहे के ऑक्सीकरण अवस्था को निर्धारित करने के लिए किया जाता है। लौह-सल्फर प्रोटीन, फेरिटिन, और साइटोक्रोमेस सहित हीम प्रमुख लौह-युक्त जैव-अणुओं के उदाहरण हैं। ये अध्ययन प्रायः संबंधित मॉडल परिसरों के विश्लेषण द्वारा पूरक होते हैं।[15][16] विशेष रुचि का क्षेत्र लौह प्रोटीन द्वारा ऑक्सीजन सक्रियण में सम्मिलित मध्यवर्ती का वर्णन है।[17]

57Fe-समृद्ध जैव अणुओं के कंपन स्पेक्ट्रा को परमाणु अनुनाद कंपन स्पेक्ट्रोस्कोपी (एनआरवीएस, NRVS) का उपयोग करके प्राप्त किया जा सकता है, जिसमें प्रतिरूप सिंक्रोट्रॉन-जनित एक्स-रे की श्रृंखला के माध्यम से स्कैन किया जाता है, जो मोसबाउर अवशोषक आवृत्ति पर केंद्रित होता है। स्पेक्ट्रम में स्टोक्स और एंटी-स्टोक्स शिखर अल्प आवृत्ति कंपन के अनुरूप हैं, कई 600 सेमी−1 से नीचे और कुछ 100 सेमी-1 से नीचे हैं।

मोसबाउर स्पेक्ट्रोमीटर

चित्र 5: ट्रांसमिशन-शैली मोसबाउर स्पेक्ट्रोमीटर का योजनाबद्ध दृश्य

मोसबाउर स्पेक्ट्रोमीटर ऐसा उपकरण है जो मोसबाउर स्पेक्ट्रोस्कोपी करता है, या उपकरण जो प्रतिरूप में उपस्थित मोसबाउर नाभिक के रासायनिक वातावरण को निर्धारित करने के लिए मोसबाउर प्रभाव का उपयोग करता है। यह तीन मुख्य भागों से बनता है; स्रोत जो डॉपलर प्रभाव उत्पन्न करने के लिए आगे और पीछे चलता है, संपार्श्विक जो अन्य -समानांतर गामा किरणों और संसूचक को फ़िल्टर करता है।

नासा के मार्स एक्सप्लोरेशन रोवर मिशन में दो रोवर्स द्वारा (एमबी) एमआईएमओएस II नामक लघु मोसबाउर स्पेक्ट्रोमीटर का उपयोग किया गया था।[18]

57Fe मोसबाउर स्पेक्ट्रोस्कोपी

रासायनिक आइसोमर शिफ्ट और चौगुनी विभाजन का मूल्यांकन सामान्यतः संदर्भ सामग्री के संबंध में किया जाता है। उदाहरण के लिए, लोहे के यौगिकों में, लोहे की पन्नी (40 माइक्रोमीटर से अल्प मोटाई) का उपयोग करके मोसबाउर पैरामीटर का मूल्यांकन किया गया था। धात्विक लोहे की पन्नी से छह-पंक्ति स्पेक्ट्रम का केन्द्रक- 0.1 mm/s (कोबाल्ट/रोडियाम स्रोत के लिए) है। अन्य लोहे के यौगिकों में सभी परिवर्तनों की गणना इस- 0.10 mm/s (कमरे के तापमान पर) के सापेक्ष की जाती है, अर्थात, इस स्थिति में आइसोमर परिवर्तन Co/Rh स्रोत के सापेक्ष होते हैं। दूसरे शब्दों में, मोसबाउर स्पेक्ट्रम का केंद्र बिंदु शून्य है। शिफ्ट मान भी 0.0 mm/s के सापेक्ष प्रतिवेदित किए जा सकते हैं; यहाँ, पाली लोहे की पन्नी के सापेक्ष हैं।

छह-पंक्ति वाले लोहे के स्पेक्ट्रम से बाहरी रेखा की दूरी की गणना करने के लिए:

जहाँ c प्रकाश की गति है, Bint धात्विक लोहे (33 T) का आंतरिक चुंबकीय क्षेत्र है, μN परमाणु चुंबकत्व है (3.1524512605×10−8 eV/T), Eγ उत्तेजन ऊर्जा है (14.412497(3) keV[19]), gn भूमि राज्य परमाणु विभाजन कारक है (0.090604/(I), जहां समभारिक प्रचक्रण I =12) और ge
n
57Fe (-0.15532/(I), जहां I =32) का उत्तेजित अवस्था विभाजन कारक है।

उपरोक्त मानों को प्रतिस्थापित करने पर V = 10.6258 mm/s. प्राप्त होगा।

अन्य मूल्यों का उपयोग कभी-कभी लोहे की पन्नी के विभिन्न गुणों को दर्शाने के लिए किया जाता है। सभी स्तिथियों में V में कोई भी परिवर्तन केवल आइसोमर शिफ्ट को प्रभावित करता है न कि चौगुनी विभाजन को। आईबीएएमई के रूप में, मोसबाउर स्पेक्ट्रोस्कोपी के लिए प्राधिकरण, विशेष मूल्य निर्दिष्ट नहीं करता है, 10.60 mm/s से 10.67 mm/s के मध्य कुछ भी उपयोग किया जा सकता है। इस कारण से उपयोग किए गए स्रोत के सापेक्ष आइसोमर शिफ्ट मान प्रदान करने की अत्यधिक अनुशंसा की जाती है, लौह पन्नी के लिए नहीं, स्रोत के विवरण (मुड़ा हुआ स्पेक्ट्रम के गुरुत्वाकर्षण का केंद्र) का उल्लेख करते हुए।

यह भी देखें

संदर्भ

  1. International Board on the Applications of the Mössbauer Effect (IBAME) and Mössbauer Effect Data Center (MEDC), Mössbauer Effect website Accessed June 3, 2010.
  2. गुटलिच, जे.एम.; मोसबाउर प्रभाव का सिद्धांत और मोसबाउर स्पेक्ट्रोमेट्री की बुनियादी अवधारणाएं Archived 2011-11-29 at the Wayback Machine</ रेफ> यह तथ्य मोसबाउर स्पेक्ट्रोस्कोपी को संभव बनाता है, क्योंकि इसका मतलब है कि एक नाभिक द्वारा उत्सर्जित गामा किरणों को एक ही आइसोटोप के नाभिक वाले नमूने द्वारा प्रतिध्वनित रूप से अवशोषित किया जा सकता है, और इस अवशोषण को मापा जा सकता है। Mössbauer अवशोषण के हटना अंश का विश्लेषण परमाणु अनुनाद कंपन स्पेक्ट्रोस्कोपी द्वारा किया जाता है।

    विशिष्ट विधि

    अपने सबसे आम रूप में, मोसबाउर अवशोषण स्पेक्ट्रोस्कोपी, एक ठोस नमूना गामा किरण के बीम के संपर्क में आता है, और एक डिटेक्टर नमूना के माध्यम से प्रेषित बीम की तीव्रता को मापता है। गामा किरणों को उत्सर्जित करने वाले स्रोत में परमाणु उसी समस्थानिक के होने चाहिए, जिस नमूने में परमाणु उन्हें अवशोषित करते हैं।

    यदि उत्सर्जक और अवशोषित नाभिक समान रासायनिक वातावरण में थे, तो परमाणु संक्रमण ऊर्जा बिल्कुल बराबर होगी और दोनों सामग्रियों के साथ गुंजयमान अवशोषण देखा जाएगा। हालाँकि, रासायनिक वातावरण में अंतर, परमाणु ऊर्जा के स्तर को कुछ अलग तरीकों से बदलने का कारण बनता है, जैसा कि नीचे वर्णित है। हालांकि ये ऊर्जा बदलाव छोटे होते हैं (अक्सर एक माइक्रो-इलेक्ट्रॉनवॉल्ट से कम), कुछ रेडियोन्यूक्लाइड्स के लिए गामा किरणों की अत्यंत संकीर्ण वर्णक्रमीय लाइनविड्थ छोटे ऊर्जा बदलाव को अवशोषण में बड़े बदलावों के अनुरूप बनाते हैं। दो नाभिकों को प्रतिध्वनि में वापस लाने के लिए गामा किरण की ऊर्जा को थोड़ा बदलना आवश्यक है, और व्यवहार में यह हमेशा डॉपलर प्रभाव का उपयोग करके किया जाता है।

    Mössbauer अवशोषण स्पेक्ट्रोस्कोपी के दौरान, एक डॉपलर प्रभाव उत्पन्न करने के लिए एक रैखिक मोटर का उपयोग करके स्रोत को वेग की एक श्रृंखला के माध्यम से त्वरित किया जाता है और एक निश्चित सीमा के माध्यम से गामा किरण ऊर्जा को स्कैन करता है। आयरन-57| के लिए वेगों की एक विशिष्ट श्रेणी57Fe, उदाहरण के लिए, ± हो सकता है11 mm/s (1 mm/s = 48.075 neV).<ref name="RSC1">Mössbauer Spectroscopy Group, Royal Society of Chemistry (RSC) website, Introduction to Mössbauer Spectroscopy Part 1 Accessed June 3, 2010

  3. Longworth, G; Window, B, No label or title -- debug: Q56601097, Wikidata Q56601097
  4. 4.0 4.1 4.2 4.3 4.4 Mössbauer Spectroscopy Group, Royal Society of Chemistry (RSC) website, Introduction to Mössbauer Spectroscopy Part 2 Accessed June 3, 2010.
  5. पी. गुटलिच, जे.एम. ग्रेनेचे, एफ.जे. बेरी; Mössbauer स्पेक्ट्रोस्कोपी: वैज्ञानिक अनुसंधान में एक शक्तिशाली उपकरण Archived 2011-11-29 at the Wayback Machine 3 जून 2010 को एक्सेस किया गया।
  6. International Board on the Applications of the Mössbauer Effect (IBAME) and Mössbauer Effect Data Center (MEDC), Mössbauer Effect website Accessed December 20, 2017
  7. Walker, L.; Wertheim, G.; Jaccarino, V. (1961). "Interpretation of the Fe57 Isomer Shift". Physical Review Letters. 6 (3): 98. Bibcode:1961PhRvL...6...98W. doi:10.1103/PhysRevLett.6.98.
  8. Mössbauer Effect Data Center.
  9. Nagy, D. L. (1994). "Trends in Mössbauer emission spectroscopy of 57Co/57Fe". Hyperfine Interactions. 83 (1): 1–19. Bibcode:1994HyInt..83....1N. doi:10.1007/BF02074255. S2CID 95685404.
  10. Klingelhöfer, G., No label or title -- debug: Q29042404, Wikidata Q29042404
  11. Schröder, Christian (2015). "Mössbauer spectroscopy in astrobiology". Spectroscopy Europe. 27 (2): 10. Retrieved 2018-01-08.
  12. Sarkar, A.; et al. (2007). "Fischer–Tropsch Synthesis: Characterization Rb Promoted Iron Catalyst". Catalysis Letters. 121 (1–2): 1–11. doi:10.1007/s10562-007-9288-1. S2CID 94596943.
  13. Burger, K.; Nemes-Vetéssy, Zs.; Vértes, A.; Afanasov, M. I., No label or title -- debug: Q30054185, Wikidata Q30054185
  14. Chen, Y.-L.; Yang, D.-P. (2007). "Recoilless Fraction and Second-Order Doppler Effect". Mössbauer Effect in Lattice Dynamics. John Wiley & Sons. doi:10.1002/9783527611423.ch5. ISBN 978-3-527-61142-3.
  15. Martinho, Marlène; Münck, Eckard (2010). "57Fe Mössbauer Spectroscopy in Chemistry and Biology". Physical Inorganic Chemistry. pp. 39–67. doi:10.1002/9780470602539.ch2. ISBN 9780470602539.
  16. Schuenemann, V.; Paulsen, H. (2007-12-10). "Moessbauer spectroscopy". In Scott, Robert A.; Lukehart, Charles M. (eds.). Applications of Physical Methods to Inorganic and Bioinorganic Chemistry. ISBN 978-0-470-03217-6.
  17. Costas, Miquel; Mehn, Mark P.; Jensen, Michael P.; Que, Lawrence, No label or title -- debug: Q35660894, Wikidata Q35660894
  18. Klingelhöfer, G.; et al. (2002). "The miniaturized Mössbauer spectrometer MIMOS II for extraterrestrial and outdoor terrestrial applications: A status report". Hyperfine Interactions. 144 (1–4): 371–379. Bibcode:2002HyInt.144..371K. doi:10.1023/A:1025444209059. S2CID 94640811.
  19. Mössbauer Effect Data Center 20.08.2013


बाहरी संबंध