सबमैनिफोल्ड: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Subset of a manifold that is a manifold itself; an injective immersion into a manifold}} Image:immersedsubmanifold selfintersection.jpg|thumb|160px|स...")
 
No edit summary
Line 1: Line 1:
{{Short description|Subset of a manifold that is a manifold itself; an injective immersion into a manifold}}
{{Short description|Subset of a manifold that is a manifold itself; an injective immersion into a manifold}}
[[Image:immersedsubmanifold selfintersection.jpg|thumb|160px|स्व-प्रतिच्छेदन के साथ विसर्जित कई गुना सीधी रेखा]]गणित में, [[ कई गुना ]] ''एम'' का एक सबमैनिफोल्ड एक उपसमुच्चय ''एस'' है, जिसमें स्वयं मैनिफोल्ड की संरचना होती है, और जिसके लिए [[समावेशन मानचित्र]] होता है {{nowrap|''S'' → ''M''}} कुछ गुणों को संतुष्ट करता है। वास्तव में किन गुणों की आवश्यकता है, इसके आधार पर विभिन्न प्रकार के सबमैनिफोल्ड होते हैं। अलग-अलग लेखकों की अक्सर अलग-अलग परिभाषाएँ होती हैं।
[[Image:immersedsubmanifold selfintersection.jpg|thumb|160px|स्व-प्रतिच्छेदन के साथ विसर्जित कई गुना सीधी रेखा]][[गणित]] में, मैनिफोल्ड ''M'' का एक [[सबमैनिफोल्ड]] एक उप[[समुच्चय (गणित)|समुच्चय]] ''S'' है जिसमें मैनिफोल्ड की संरचना स्वयं होती है, और जिसके लिए समावेशन प्रतिचित्र {{nowrap|''S'' → ''M''}} कुछ गुणों को संतुष्ट करता है। वास्तव में किन गुणों की आवश्यकता है, इसके आधार पर विभिन्न प्रकार के सबमैनिफोल्ड होते हैं। अलग-अलग लेखकों की अक्सर अलग-अलग परिभाषाएँ होती हैं।


==औपचारिक परिभाषा==
==औपचारिक परिभाषा==


निम्नलिखित में हम मानते हैं कि सभी मैनिफोल्ड, अवकलनीयता वर्ग सी के भिन्न-भिन्न मैनिफोल्ड हैं<sup>r</sup>एक निश्चित के लिए {{nowrap|''r'' ≥ 1}}, और सभी आकारिकी वर्ग सी से भिन्न हैं<sup></sup>.
निम्नलिखित में हम मानते हैं कि सभी मैनिफ़ोल्ड एक निश्चित r ≥ 1 के लिए वर्ग ''C<sup>r</sup>'' के भिन्न-भिन्न मैनिफ़ोल्ड हैं, और सभी आकारिकी वर्ग ''C<sup>r</sup>'' के भिन्न-भिन्न हैं।


===विसर्जित उपमान===
===विसर्जित उपमान===
[[Image:immersedsubmanifold nonselfintersection.jpg|thumb|150px|खुले अंतराल की यह छवि (तीर द्वारा चिह्नित सिरों से पहचाने गए सीमा बिंदुओं के साथ) एक डूबे हुए सबमैनिफोल्ड है।]]मैनिफोल्ड ''एम'' का एक डूबा हुआ सबमैनफोल्ड एक [[विसर्जन (गणित)]] मानचित्र की छवि ''एस'' है {{nowrap|''f'' : ''N'' → ''M''}}; सामान्य तौर पर यह छवि एक उपसमुच्चय के रूप में एक उपमान नहीं होगी, और एक विसर्जन मानचित्र को [[ इंजेक्शन ]] (एक-से-एक) होने की भी आवश्यकता नहीं है - इसमें स्व-प्रतिच्छेदन हो सकते हैं।<ref>{{harvnb|Sharpe|1997|page=26}}.</ref>
[[Image:immersedsubmanifold nonselfintersection.jpg|thumb|150px|विवृत अंतराल की यह इमेज (तीर द्वारा चिह्नित सिरों से पहचाने गए सीमा बिंदुओं के साथ) एक निमज्जित हुए सबमैनिफोल्ड है।]]मैनिफोल्ड ''M'' का एक निमज्जित हुआ सबमैनफोल्ड एक [[विसर्जन (गणित)]] प्रतिचित्र की इमेज ''S'' है {{nowrap|''f'' : ''N'' → ''M''}}; सामान्य तौर पर यह इमेज एक उपसमुच्चय के रूप में एक उपमान नहीं होगी, और एक विसर्जन प्रतिचित्र को इंजेक्शन (एक-से-एक) होने की भी आवश्यकता नहीं है - इसमें स्व-प्रतिच्छेदन हो सकते हैं।<ref>{{harvnb|Sharpe|1997|page=26}}.</ref>
अधिक संकीर्ण रूप से, किसी को मानचित्र की आवश्यकता हो सकती है {{nowrap|''f'' : ''N'' → ''M''}} एक इंजेक्शन (एक-से-एक) बनें, जिसमें हम इसे एक इंजेक्शन विसर्जन (गणित) कहते हैं, और एक [[टोपोलॉजी (संरचना)]] और [[विभेदक संरचना]] जैसे छवि उपसमुच्चय '' एस '' के रूप में एक डूबे हुए उपमान को परिभाषित करते हैं वह ''एस'' एक मैनिफोल्ड है और समावेशन ''एफ'' एक भिन्नरूपता है: यह सिर्फ ''एन'' पर टोपोलॉजी है, जो सामान्य तौर पर उपसमुच्चय टोपोलॉजी से सहमत नहीं होगा: सामान्य तौर पर उपसमुच्चय '' उपसमुच्चय टोपोलॉजी में S'', ''M'' का उपमान नहीं है।


किसी भी इंजेक्शन विसर्जन को देखते हुए {{nowrap|''f'' : ''N'' → ''M''}} एम में एन की [[छवि (गणित)]] को विशिष्ट रूप से एक डूबे हुए सबमैनिफोल्ड की संरचना दी जा सकती है ताकि {{nowrap|''f'' : ''N'' → ''f''(''N'')}} एक भिन्नरूपता है। इससे यह पता चलता है कि विसर्जित सबमैनिफोल्ड्स वास्तव में इंजेक्शन विसर्जन की छवियां हैं।


डूबे हुए सबमैनिफोल्ड पर सबमैनिफोल्ड टोपोलॉजी को एम से विरासत में मिली [[सबस्पेस टोपोलॉजी]] होने की आवश्यकता नहीं है। सामान्य तौर पर, यह सबस्पेस टोपोलॉजी की तुलना में [[बेहतर टोपोलॉजी]] होगी (यानी इसमें अधिक खुले सेट होंगे)।
अधिक संकीर्ण रूप से, किसी को प्रतिचित्र की आवश्यकता हो सकती है {{nowrap|''f'' : ''N'' → ''M''}} एक इंजेक्शन (एक-से-एक) बनें, जिसमें हम इसे एक इंजेक्शन विसर्जन (गणित) कहते हैं, और एक टोपोलॉजी (संरचना) और [[विभेदक संरचना]] जैसे इमेज उपसमुच्चय ''S'' के रूप में एक निमज्जित हुए उपमान को परिभाषित करते हैं वह S एक मैनिफोल्ड है और समावेशन ''एफ'' एक भिन्नरूपता है: यह सिर्फ ''N'' पर टोपोलॉजी है, जो सामान्य तौर पर उपसमुच्चय टोपोलॉजी से सहमत नहीं होगा: सामान्य तौर पर ''उपसमुच्चय टोपोलॉजी में S'', ''M'' का उपमान नहीं है।


डूबे हुए सबमैनिफोल्ड लाई समूहों के सिद्धांत में होते हैं जहां लाई उपसमूह स्वाभाविक रूप से डूबे हुए सबमैनिफोल्ड होते हैं। वे [[ पत्तियों से सजाना ]] के अध्ययन में भी दिखाई देते हैं जहां डूबे हुए सबमैनिफोल्ड्स फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी) को साबित करने के लिए सही संदर्भ प्रदान करते हैं।
किसी भी इंजेक्शन विसर्जन को देखते हुए {{nowrap|''f'' : ''N'' → ''M''}} ''M'' में ''N'' की [[छवि (गणित)|इमेज (गणित)]] को विशिष्ट रूप से एक निमज्जित हुए सबमैनिफोल्ड की संरचना दी जा सकती है ताकि {{nowrap|''f'' : ''N'' → ''f''(''N'')}} एक भिन्नरूपता है। इससे यह पता चलता है कि विसर्जित सबमैनिफोल्ड्स वास्तव में इंजेक्शन विसर्जन की इमेज हैं।
 
निमज्जित हुए सबमैनिफोल्ड पर सबमैनिफोल्ड टोपोलॉजी को एम से विरासत में मिली [[सबस्पेस टोपोलॉजी]] होने की आवश्यकता नहीं है। सामान्य तौर पर, यह सबस्पेस टोपोलॉजी की तुलना में बेहतर टोपोलॉजी होगी (यानी इसमें अधिक विवृत समुच्चय होंगे)।
 
निमज्जित हुए सबमैनिफोल्ड लाई समूहों के सिद्धांत में होते हैं जहां लाई उपसमूह स्वाभाविक रूप से निमज्जित हुए सबमैनिफोल्ड होते हैं। वे [[ पत्तियों से सजाना | पत्तियों से सजाना]] के अध्ययन में भी दिखाई देते हैं जहां निमज्जित हुए सबमैनिफोल्ड्स फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी) को साबित करने के लिए सही संदर्भ प्रदान करते हैं।


===एंबेडेड सबमैनिफोल्ड्स===
===एंबेडेड सबमैनिफोल्ड्स===


एक एम्बेडेड सबमैनिफोल्ड (जिसे रेगुलर सबमैनिफोल्ड भी कहा जाता है), एक डूबा हुआ सबमैनिफोल्ड है जिसके लिए समावेशन मानचित्र एक टोपोलॉजिकल [[एम्बेडिंग]] है। अर्थात्, ''एस'' पर सबमैनिफोल्ड टोपोलॉजी सबस्पेस टोपोलॉजी के समान है।
एक एम्बेडेड सबमैनिफोल्ड (जिसे रेगुलर सबमैनिफोल्ड भी कहा जाता है), एक डूबा हुआ सबमैनिफोल्ड है जिसके लिए समावेशन प्रतिचित्र एक टोपोलॉजिकल [[एम्बेडिंग]] है। अर्थात्, Sपर सबमैनिफोल्ड टोपोलॉजी सबस्पेस टोपोलॉजी के समान है।


किसी भी एम्बेडिंग को देखते हुए {{nowrap|''f'' : ''N'' → ''M''}}एम में मैनिफोल्ड एन की छवि एफ(एन) में स्वाभाविक रूप से एक एम्बेडेड सबमैनिफोल्ड की संरचना होती है। अर्थात्, एम्बेडेड सबमैनिफोल्ड्स बिल्कुल एम्बेडिंग की छवियां हैं।
किसी भी एम्बेडिंग को देखते हुए {{nowrap|''f'' : ''N'' → ''M''}}एम में मैनिफोल्ड N की इमेज एफ(N) में स्वाभाविक रूप से एक एम्बेडेड सबमैनिफोल्ड की संरचना होती है। अर्थात्, एम्बेडेड सबमैनिफोल्ड्स बिल्कुल एम्बेडिंग की इमेजयां हैं।


एम्बेडेड सबमैनिफोल्ड की एक आंतरिक परिभाषा है जो अक्सर उपयोगी होती है। मान लीजिए कि M एक n-आयामी मैनिफ़ोल्ड है, और मान लीजिए कि k एक पूर्णांक है {{nowrap|0 ≤ ''k'' ≤ ''n''}}. एम का एक के-आयामी एम्बेडेड सबमैनिफोल्ड एक उपसमुच्चय है {{nowrap|''S'' ⊂ ''M''}} ऐसा कि हर बिंदु के लिए {{nowrap|''p'' ∈ ''S''}} एक चार्ट मौजूद है (टोपोलॉजी) {{nowrap|(''U'' ⊂ ''M'', ''φ'' : ''U'' → '''R'''<sup>''n''</sup>)}} जिसमें p इस प्रकार है {{nowrap|''φ''(''S'' ∩ ''U'')}} φ(U) के साथ एक k-आयामी विमान (गणित) का प्रतिच्छेदन है। जोड़े {{nowrap|(''S'' ∩ ''U'', ''φ''{{!}}<sub>''S'' ∩ ''U''</sub>)}} एस पर विभेदक संरचना के लिए एक [[एटलस (टोपोलॉजी)]] बनाएं।
एम्बेडेड सबमैनिफोल्ड की एक आंतरिक परिभाषा है जो अक्सर उपयोगी होती है। मान लीजिए कि M एक n-आयामी मैनिफ़ोल्ड है, और मान लीजिए कि k एक पूर्णांक है {{nowrap|0 ≤ ''k'' ≤ ''n''}}. एम का एक के-आयामी एम्बेडेड सबमैनिफोल्ड एक उपसमुच्चय है {{nowrap|''S'' ⊂ ''M''}} ऐसा कि हर बिंदु के लिए {{nowrap|''p'' ∈ ''S''}} एक चार्ट मौजूद है (टोपोलॉजी) {{nowrap|(''U'' ⊂ ''M'', ''φ'' : ''U'' → '''R'''<sup>''n''</sup>)}} जिसमें p इस प्रकार है {{nowrap|''φ''(''S'' ∩ ''U'')}} φ(U) के साथ एक k-आयामी विमान (गणित) का प्रतिच्छेदन है। जोड़े {{nowrap|(''S'' ∩ ''U'', ''φ''{{!}}<sub>''S'' ∩ ''U''</sub>)}} Sपर विभेदक संरचना के लिए एक [[एटलस (टोपोलॉजी)]] बनाएं।


अलेक्जेंडर का प्रमेय और स्कोनफ्लाइज़ प्रमेय|जॉर्डन-स्कोनफ्लाइज़ प्रमेय सुचारू एम्बेडिंग के अच्छे उदाहरण हैं।
अलेक्जेंडर का प्रमेय और स्कोनफ्लाइज़ प्रमेय|जॉर्डन-स्कोनफ्लाइज़ प्रमेय सुचारू एम्बेडिंग के अच्छे उदाहरण हैं।
Line 28: Line 30:
===अन्य विविधताएँ===
===अन्य विविधताएँ===


साहित्य में प्रयुक्त उपमानों की कुछ अन्य विविधताएँ भी हैं। एक [[ साफ-सुथरा सबमैनिफोल्ड ]] एक ऐसा मैनिफोल्ड है जिसकी सीमा संपूर्ण मैनिफोल्ड की सीमा से मेल खाती है।<ref>{{harvnb|Kosinski|2007|page=27}}.</ref> शार्प (1997) एक प्रकार के सबमैनिफोल्ड को परिभाषित करता है जो एक एम्बेडेड सबमैनिफोल्ड और एक डूबे हुए सबमैनिफोल्ड के बीच कहीं स्थित होता है।
साहित्य में प्रयुक्त उपमानों की कुछ अन्य विविधताएँ भी हैं। एक [[ साफ-सुथरा सबमैनिफोल्ड ]] एक ऐसा मैनिफोल्ड है जिसकी सीमा संपूर्ण मैनिफोल्ड की सीमा से मेल खाती है।<ref>{{harvnb|Kosinski|2007|page=27}}.</ref> शार्प (1997) एक प्रकार के सबमैनिफोल्ड को परिभाषित करता है जो एक एम्बेडेड सबमैनिफोल्ड और एक निमज्जित हुए सबमैनिफोल्ड के बीच कहीं स्थित होता है।


कई लेखक टोपोलॉजिकल सबमैनिफोल्ड्स को भी परिभाषित करते हैं। ये C के समान हैं<sup>आर</sup>सबमैनिफोल्ड्स के साथ {{nowrap|1=''r'' = 0}}.<ref>{{harvnb|Lang|1999|pages=25–26}}. {{harvnb|Choquet-Bruhat|1968|page=11}}</ref> एम्बेडिंग का विस्तार करने वाले प्रत्येक बिंदु पर एक स्थानीय चार्ट के अस्तित्व के अर्थ में एक एम्बेडेड टोपोलॉजिकल सबमैनिफोल्ड आवश्यक रूप से नियमित नहीं है। प्रतिउदाहरणों में [[जंगली चाप]] और [[जंगली गांठ]]ें शामिल हैं।
कई लेखक टोपोलॉजिकल सबमैनिफोल्ड्स को भी परिभाषित करते हैं। ये C के समान हैं<sup>आर</sup>सबमैनिफोल्ड्स के साथ {{nowrap|1=''r'' = 0}}.<ref>{{harvnb|Lang|1999|pages=25–26}}. {{harvnb|Choquet-Bruhat|1968|page=11}}</ref> एम्बेडिंग का विस्तार करने वाले प्रत्येक बिंदु पर एक स्थानीय चार्ट के अस्तित्व के अर्थ में एक एम्बेडेड टोपोलॉजिकल सबमैनिफोल्ड आवश्यक रूप से नियमित नहीं है। प्रतिउदाहरणों में [[जंगली चाप]] और [[जंगली गांठ]]ें शामिल हैं।
Line 34: Line 36:
==गुण==
==गुण==


एम के किसी भी डूबे हुए सबमैनफोल्ड एस को देखते हुए, एस में एक बिंदु पी के [[स्पर्शरेखा स्थान]] को स्वाभाविक रूप से एम में पी के स्पर्शरेखा स्थान के एक रैखिक उप-स्थान के रूप में माना जा सकता है। यह इस तथ्य से पता चलता है कि समावेशन मानचित्र एक विसर्जन है और एक प्रदान करता है इंजेक्शन
एम के किसी भी निमज्जित हुए सबमैनफोल्ड Sको देखते हुए, Sमें एक बिंदु पी के [[स्पर्शरेखा स्थान]] को स्वाभाविक रूप से एम में पी के स्पर्शरेखा स्थान के एक रैखिक उप-स्थान के रूप में माना जा सकता है। यह इस तथ्य से पता चलता है कि समावेशन प्रतिचित्र एक विसर्जन है और एक प्रदान करता है इंजेक्शन
: <math>i_{\ast}: T_p S \to T_p M.</math>
: <math>i_{\ast}: T_p S \to T_p M.</math>
मान लीजिए कि S, M का एक डूबा हुआ सबमैनिफोल्ड है। यदि समावेशन मानचित्र {{nowrap|''i'' : ''S'' → ''M''}} [[बंद नक्शा]] है तो एस वास्तव में एम का एक एम्बेडेड सबमैनिफोल्ड है। इसके विपरीत, यदि एस एक एम्बेडेड सबमैनिफोल्ड है जो एक [[बंद उपसमुच्चय]] भी है तो समावेशन नक्शा बंद है। समावेशन मानचित्र i : S → M बंद है यदि और केवल यदि यह एक [[उचित मानचित्र]] है (अर्थात [[कॉम्पैक्ट सेट]] की व्युत्क्रम छवियां कॉम्पैक्ट हैं)। यदि i बंद है तो S को M का 'क्लोज्ड एम्बेडेड सबमैनिफोल्ड' कहा जाता है। बंद एम्बेडेड सबमैनिफोल्ड्स सबमैनिफोल्ड्स का सबसे अच्छा वर्ग बनाते हैं।
मान लीजिए कि S, M का एक डूबा हुआ सबमैनिफोल्ड है। यदि समावेशन प्रतिचित्र {{nowrap|''i'' : ''S'' → ''M''}} [[बंद नक्शा]] है तो Sवास्तव में एम का एक एम्बेडेड सबमैनिफोल्ड है। इसके विपरीत, यदि Sएक एम्बेडेड सबमैनिफोल्ड है जो एक [[बंद उपसमुच्चय]] भी है तो समावेशन नक्शा बंद है। समावेशन प्रतिचित्र i : S → M बंद है यदि और केवल यदि यह एक [[उचित मानचित्र|उचित प्रतिचित्र]] है (अर्थात [[कॉम्पैक्ट सेट|कॉम्पैक्ट समुच्चय]] की व्युत्क्रम इमेजयां कॉम्पैक्ट हैं)। यदि i बंद है तो S को M का 'क्लोज्ड एम्बेडेड सबमैनिफोल्ड' कहा जाता है। बंद एम्बेडेड सबमैनिफोल्ड्स सबमैनिफोल्ड्स का सबसे अच्छा वर्ग बनाते हैं।


==[[वास्तविक समन्वय स्थान]] के उपमानव==
==[[वास्तविक समन्वय स्थान]] के उपमानव==

Revision as of 16:58, 8 July 2023

स्व-प्रतिच्छेदन के साथ विसर्जित कई गुना सीधी रेखा

गणित में, मैनिफोल्ड M का एक सबमैनिफोल्ड एक उपसमुच्चय S है जिसमें मैनिफोल्ड की संरचना स्वयं होती है, और जिसके लिए समावेशन प्रतिचित्र SM कुछ गुणों को संतुष्ट करता है। वास्तव में किन गुणों की आवश्यकता है, इसके आधार पर विभिन्न प्रकार के सबमैनिफोल्ड होते हैं। अलग-अलग लेखकों की अक्सर अलग-अलग परिभाषाएँ होती हैं।

औपचारिक परिभाषा

निम्नलिखित में हम मानते हैं कि सभी मैनिफ़ोल्ड एक निश्चित r ≥ 1 के लिए वर्ग Cr के भिन्न-भिन्न मैनिफ़ोल्ड हैं, और सभी आकारिकी वर्ग Cr के भिन्न-भिन्न हैं।

विसर्जित उपमान

विवृत अंतराल की यह इमेज (तीर द्वारा चिह्नित सिरों से पहचाने गए सीमा बिंदुओं के साथ) एक निमज्जित हुए सबमैनिफोल्ड है।

मैनिफोल्ड M का एक निमज्जित हुआ सबमैनफोल्ड एक विसर्जन (गणित) प्रतिचित्र की इमेज S है f : NM; सामान्य तौर पर यह इमेज एक उपसमुच्चय के रूप में एक उपमान नहीं होगी, और एक विसर्जन प्रतिचित्र को इंजेक्शन (एक-से-एक) होने की भी आवश्यकता नहीं है - इसमें स्व-प्रतिच्छेदन हो सकते हैं।[1]


अधिक संकीर्ण रूप से, किसी को प्रतिचित्र की आवश्यकता हो सकती है f : NM एक इंजेक्शन (एक-से-एक) बनें, जिसमें हम इसे एक इंजेक्शन विसर्जन (गणित) कहते हैं, और एक टोपोलॉजी (संरचना) और विभेदक संरचना जैसे इमेज उपसमुच्चय S के रूप में एक निमज्जित हुए उपमान को परिभाषित करते हैं वह S एक मैनिफोल्ड है और समावेशन एफ एक भिन्नरूपता है: यह सिर्फ N पर टोपोलॉजी है, जो सामान्य तौर पर उपसमुच्चय टोपोलॉजी से सहमत नहीं होगा: सामान्य तौर पर उपसमुच्चय टोपोलॉजी में S, M का उपमान नहीं है।

किसी भी इंजेक्शन विसर्जन को देखते हुए f : NM M में N की इमेज (गणित) को विशिष्ट रूप से एक निमज्जित हुए सबमैनिफोल्ड की संरचना दी जा सकती है ताकि f : Nf(N) एक भिन्नरूपता है। इससे यह पता चलता है कि विसर्जित सबमैनिफोल्ड्स वास्तव में इंजेक्शन विसर्जन की इमेज हैं।

निमज्जित हुए सबमैनिफोल्ड पर सबमैनिफोल्ड टोपोलॉजी को एम से विरासत में मिली सबस्पेस टोपोलॉजी होने की आवश्यकता नहीं है। सामान्य तौर पर, यह सबस्पेस टोपोलॉजी की तुलना में बेहतर टोपोलॉजी होगी (यानी इसमें अधिक विवृत समुच्चय होंगे)।

निमज्जित हुए सबमैनिफोल्ड लाई समूहों के सिद्धांत में होते हैं जहां लाई उपसमूह स्वाभाविक रूप से निमज्जित हुए सबमैनिफोल्ड होते हैं। वे पत्तियों से सजाना के अध्ययन में भी दिखाई देते हैं जहां निमज्जित हुए सबमैनिफोल्ड्स फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी) को साबित करने के लिए सही संदर्भ प्रदान करते हैं।

एंबेडेड सबमैनिफोल्ड्स

एक एम्बेडेड सबमैनिफोल्ड (जिसे रेगुलर सबमैनिफोल्ड भी कहा जाता है), एक डूबा हुआ सबमैनिफोल्ड है जिसके लिए समावेशन प्रतिचित्र एक टोपोलॉजिकल एम्बेडिंग है। अर्थात्, Sपर सबमैनिफोल्ड टोपोलॉजी सबस्पेस टोपोलॉजी के समान है।

किसी भी एम्बेडिंग को देखते हुए f : NMएम में मैनिफोल्ड N की इमेज एफ(N) में स्वाभाविक रूप से एक एम्बेडेड सबमैनिफोल्ड की संरचना होती है। अर्थात्, एम्बेडेड सबमैनिफोल्ड्स बिल्कुल एम्बेडिंग की इमेजयां हैं।

एम्बेडेड सबमैनिफोल्ड की एक आंतरिक परिभाषा है जो अक्सर उपयोगी होती है। मान लीजिए कि M एक n-आयामी मैनिफ़ोल्ड है, और मान लीजिए कि k एक पूर्णांक है 0 ≤ kn. एम का एक के-आयामी एम्बेडेड सबमैनिफोल्ड एक उपसमुच्चय है SM ऐसा कि हर बिंदु के लिए pS एक चार्ट मौजूद है (टोपोलॉजी) (UM, φ : URn) जिसमें p इस प्रकार है φ(SU) φ(U) के साथ एक k-आयामी विमान (गणित) का प्रतिच्छेदन है। जोड़े (SU, φ|SU) Sपर विभेदक संरचना के लिए एक एटलस (टोपोलॉजी) बनाएं।

अलेक्जेंडर का प्रमेय और स्कोनफ्लाइज़ प्रमेय|जॉर्डन-स्कोनफ्लाइज़ प्रमेय सुचारू एम्बेडिंग के अच्छे उदाहरण हैं।

अन्य विविधताएँ

साहित्य में प्रयुक्त उपमानों की कुछ अन्य विविधताएँ भी हैं। एक साफ-सुथरा सबमैनिफोल्ड एक ऐसा मैनिफोल्ड है जिसकी सीमा संपूर्ण मैनिफोल्ड की सीमा से मेल खाती है।[2] शार्प (1997) एक प्रकार के सबमैनिफोल्ड को परिभाषित करता है जो एक एम्बेडेड सबमैनिफोल्ड और एक निमज्जित हुए सबमैनिफोल्ड के बीच कहीं स्थित होता है।

कई लेखक टोपोलॉजिकल सबमैनिफोल्ड्स को भी परिभाषित करते हैं। ये C के समान हैंआरसबमैनिफोल्ड्स के साथ r = 0.[3] एम्बेडिंग का विस्तार करने वाले प्रत्येक बिंदु पर एक स्थानीय चार्ट के अस्तित्व के अर्थ में एक एम्बेडेड टोपोलॉजिकल सबमैनिफोल्ड आवश्यक रूप से नियमित नहीं है। प्रतिउदाहरणों में जंगली चाप और जंगली गांठें शामिल हैं।

गुण

एम के किसी भी निमज्जित हुए सबमैनफोल्ड Sको देखते हुए, Sमें एक बिंदु पी के स्पर्शरेखा स्थान को स्वाभाविक रूप से एम में पी के स्पर्शरेखा स्थान के एक रैखिक उप-स्थान के रूप में माना जा सकता है। यह इस तथ्य से पता चलता है कि समावेशन प्रतिचित्र एक विसर्जन है और एक प्रदान करता है इंजेक्शन

मान लीजिए कि S, M का एक डूबा हुआ सबमैनिफोल्ड है। यदि समावेशन प्रतिचित्र i : SM बंद नक्शा है तो Sवास्तव में एम का एक एम्बेडेड सबमैनिफोल्ड है। इसके विपरीत, यदि Sएक एम्बेडेड सबमैनिफोल्ड है जो एक बंद उपसमुच्चय भी है तो समावेशन नक्शा बंद है। समावेशन प्रतिचित्र i : S → M बंद है यदि और केवल यदि यह एक उचित प्रतिचित्र है (अर्थात कॉम्पैक्ट समुच्चय की व्युत्क्रम इमेजयां कॉम्पैक्ट हैं)। यदि i बंद है तो S को M का 'क्लोज्ड एम्बेडेड सबमैनिफोल्ड' कहा जाता है। बंद एम्बेडेड सबमैनिफोल्ड्स सबमैनिफोल्ड्स का सबसे अच्छा वर्ग बनाते हैं।

वास्तविक समन्वय स्थान के उपमानव

स्मूथ मैनिफोल्ड्स को कभी-कभी वास्तविक समन्वय स्थान 'आर' के एम्बेडेड सबमैनिफोल्ड्स के रूप में परिभाषित किया जाता है।n, कुछ n के लिए। यह दृष्टिकोण सामान्य, अमूर्त दृष्टिकोण के बराबर है, क्योंकि, व्हिटनी एम्बेडिंग प्रमेय द्वारा, किसी भी दूसरे-गणनीय स्थान | दूसरे-गणनीय चिकनी (अमूर्त) एम-मैनिफोल्ड को 'आर' में आसानी से एम्बेड किया जा सकता है।2 मी.

टिप्पणियाँ

  1. Sharpe 1997, p. 26.
  2. Kosinski 2007, p. 27.
  3. Lang 1999, pp. 25–26. Choquet-Bruhat 1968, p. 11


संदर्भ

  • Choquet-Bruhat, Yvonne (1968). Géométrie différentielle et systèmes extérieurs. Paris: Dunod.
  • Kosinski, Antoni Albert (2007) [1993]. Differential manifolds. Mineola, New York: Dover Publications. ISBN 978-0-486-46244-8.
  • Lang, Serge (1999). Fundamentals of Differential Geometry. Graduate Texts in Mathematics. New York: Springer. ISBN 978-0-387-98593-0.
  • Lee, John (2003). Introduction to Smooth Manifolds. Graduate Texts in Mathematics 218. New York: Springer. ISBN 0-387-95495-3.
  • Sharpe, R. W. (1997). Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. New York: Springer. ISBN 0-387-94732-9.
  • Warner, Frank W. (1983). Foundations of Differentiable Manifolds and Lie Groups. New York: Springer. ISBN 0-387-90894-3.