अगम्य कार्डिनल: Difference between revisions
No edit summary |
m (Sugatha moved page दुर्गम कार्डिनल to अगम्य कार्डिनल) |
(No difference)
|
Revision as of 16:47, 28 August 2023
समुच्चय सिद्धान्त में, एक अगम्य कार्डिनल अगणनीय होता है क्योकि इसे कार्डिनल अंकगणित के सामान्य संचालन द्वारा छोटे कार्डिनल से प्राप्त नहीं किया जा सकता है। अधिक परिशुद्ध रूप से एक कार्डिनल κ अत्यधिक अगम्य होता है यदि यह अगणनीय है तब κ और से छोटे कार्डिनल से कम का योग नहीं हो सकता है।
"अगम्य कार्डिनल" शब्द अस्पष्ट है। लगभग 1950 तक, इसका अर्थ "दुर्बल अगम्य कार्डिनल" था लेकिन तब से इसका अर्थ समान्यतः "प्रबल अगम्य कार्डिनल" है। एक अगणनीय कार्डिनल दुर्बल रूप से अगम्य है यदि यह एक नियमित कार्डिनल दुर्बल सीमा कार्डिनल है। और प्रबल अगम्य है या केवल अगम्य है यदि यह एक नियमित प्रबल सीमा कार्डिनल है तब यह ऊपर दी गई परिभाषा के बराबर होता है। कुछ लेखकों को अगणनीय होने के लिए दुर्बल और प्रबल अगम्य कार्डिनल की आवश्यकता नहीं होती है इस स्थिति में अत्यधिक अगम्य होते है। हॉसडॉर्फ़ (1908) द्वारा दुर्बल रूप से अगम्य कार्डिनलों को प्रस्तुत किया गया था सिएरपिन्स्की & टर्स्की (1930) और ज़र्मेलो (1930) द्वारा प्रबल अगम्य कार्डिनल्स प्रस्तुत किए गए थे।
प्रत्येक प्रबल अगम्य कार्डिनल भी दुर्बल रूप से अगम्य होते है क्योंकि प्रत्येक प्रबल सीमा कार्डिनल भी एक दुर्बल सीमा कार्डिनल है। यदि सामान्यीकृत सातत्य परिकल्पना धारण करती है तो एक कार्डिनल प्रबल रूप से अगम्य होता है यदि केवल यह दुर्बल रूप से अगम्य है।
एक नियमित प्रबल सीमा कार्डिनल है। यदि चयनित कार्डिनल संख्या प्रत्येक दूसरी अपरिमित कार्डिनल संख्या की नियमित या कार्डिनल संख्या सीमा होती है। हालांकि, केवल एक बड़ी कार्डिनल संख्या दोनों हो सकती है और इस प्रकार दुर्बल रूप से अगम्य भी हो सकती है।
क्रमसूचक संख्या एक दुर्बल अगम्य कार्डिनल है यदि केवल यह एक नियमित क्रमसूचक संख्या है और यह नियमित क्रमसूचक संख्या की एक सीमा है। 0, 1 और ω नियमित क्रमसूचक संख्याए हैं लेकिन नियमित क्रमसूचक संख्याओं की सीमा नहीं है। एक कार्डिनल जो दुर्बल रूप से अगम्य है तब एक प्रबल सीमा कार्डिनल भी प्रबल अगम्य होता है।
एक अत्यधिक अगम्य कार्डिनल के अस्तित्व की धारणा को कभी-कभी इस धारणा के रूप में प्रयुक्त किया जाता है कि कोई ग्रोथेंडिक ब्रह्मांड के अंदर कार्य कर सकता है जिसमे दो अवधारणाएँ घनिष्ठ रूप से संबद्ध होती हैं।
मॉडल और संगतता
ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफसी) का तात्पर्य यह है कि वॉन न्यूमैन ब्रह्मांड का स्तर जेडएफसी का एक मॉडल सिद्धांत है जब प्रबल रूप से अगम्य होता है। और जेडएफ का अर्थ है कि गोडेल का रचनात्मक ब्रह्मांड जेडएफसी का एक मॉडल है जिसमे दुर्बल रूप से अगम्य है। इस प्रकार, जेडएफ के साथ मिलकर एक दुर्बल विस्तृत कार्डिनल सम्मिलित है जिसका अर्थ है कि जेडएफसी संगत है। इसलिए अगम्य कार्डिनल एक प्रकार के विस्तृत कार्डिनल होते हैं।
यदि जेडएफसी का एक मानक मॉडल है और में अगम्य है तब ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के अभीष्ट मॉडलों में से एक है और वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धान्त के मेंडेलसन के संस्करण के इच्छित मॉडल में से एक है जिसमें वैश्विक विस्तृत कार्डिनल सम्मिलित नहीं होते है प्रतिस्थापन और सामान्य चयनित कार्डिनल द्वारा आकार की सीमा को परिवर्तित कर दिया गया है और मोर्स-केली समुच्चय सिद्धांत के अभीष्ट मॉडलों में से एक है। यहाँ का Δ0 एक समुच्चय है X के निश्चित उपसमुच्चय के लिए रचनात्मक ब्रह्मांड देखें। हालांकि, को के लिए जेडएफ का मानक मॉडल होने के लिए अगम्य या यहां तक कि एक कार्डिनल संख्या होने की आवश्यकता नहीं होती है।
माना कि जेडएफसी का एक मॉडल है या तो में कोई प्रबल अगम्य कार्डिनल नहीं है या में सबसे छोटा प्रबल अगम्य , जेडएफसी का एक मानक मॉडल है। जिसमें कोई प्रबल कार्डिनल अगम्य योग्य नहीं है। इस प्रकार, जेडएफसी की संगतता का तात्पर्य जेडएफसी की संगतता से है जिसमे कोई प्रबल अगम्यता नहीं है। इसी प्रकार या V इसमें कोई दुर्बल अगम्य या कार्डिनल सम्मिलित नहीं है के किसी भी मानक उप-मॉडल के सापेक्ष दुर्बल रूप से अगम्य है तब जेडएफसी का एक मानक मॉडल है जिसमें कोई दुर्बल पहुंच योग्य नहीं है जेडएफसी की संगतता का तात्पर्य जेडएफसी की संगतता से है इसमें कोई अगम्य कार्डिनल नहीं है। इससे यह पता चलता है कि जेडएफसी एक अगम्य कार्डिनल के अस्तित्व को सिद्ध नहीं कर सकता है, इसलिए जेडएफसी किसी भी अगम्य कार्डिनल्स के अस्तित्व के अनुरूप नहीं होता है।
मुख्य कारण यह है कि क्या जेडएफसी अगम्य कार्डिनल के अस्तित्व के अनुरूप और अधिक सूक्ष्म है। पिछले पैराग्राफ में लिखित प्रमाण जेडएफसी की संगतता का अर्थ है जेडएफसी की संगतता "एक अगम्य कार्डिनल नहीं है" को जेडएफसी में औपचारिक रूप दिया जा सकता है। हालाँकि, यह मानते हुए कि जेडएफसी सुसंगत है, कोई प्रमाण नहीं है कि जेडएफसी की संगतता का तात्पर्य जेडएफसी+ अगम्य कार्डिनल की संगतता से है, जिसे जेडएफसी में औपचारिक रूप दिया जा सकता है। यह गोडेल के दूसरे अपूर्णता प्रमेय का अनुसरण करता है, जो दर्शाता है कि यदि जेडएफसी+ एक अगम्य कार्डिनल के सुसंगत है तो यह अपनी स्वयं की संगतता प्रमाणित नहीं कर सकता है। क्योंकि जेडएफसी + "एक अगम्य कार्डिनल है" जो जेडएफसी की संगतता को सिद्ध करता है यदि जेडएफसी ने प्रमाणित कर दिया कि उसकी स्वयं की संगतता जेडएफसी की संगतता का अर्थ "एक अगम्य कार्डिनल है" तो यह बाद वाला सिद्धांत अपनी स्वयं की स्थिरता सिद्ध करने में सक्षम हो सकता है जिसको पूर्ण रूप से सिद्ध करना असंभव है।
अगम्य कार्डिनल्स के अस्तित्व के लिए तर्क हैं जिन्हें जेडएफसी में औपचारिक रूप नहीं दिया जा सकता है। ऐसा ही एक तर्क हरबेक & जेक (1999, p. 279) ने प्रस्तुत किया है कि समुच्चय सिद्धान्त के किसी विशेष मॉडल M के सभी क्रमसूचक संख्याओं का वर्ग स्वयं एक अगम्य कार्डिनल होगा यदि समुच्चय सिद्धान्त का एक विस्तृत मॉडल M का विस्तार करता है और M के तत्वों के घात समुच्चय को संरक्षित करता है।
अगम्य कार्डिनल्स के उपयुक्त वर्ग का अस्तित्व
समुच्चय सिद्धान्त में कई महत्वपूर्ण सिद्धांत हैं जो कार्डिनल्स के एक उपयुक्त वर्ग के अस्तित्व पर महत्व देते हैं जो ब्याज के निर्धारण को पूर्ण करते हैं। अगम्यता की स्थिति में, संबंधित स्वयंसिद्ध कथन है कि प्रत्येक कार्डिनल μ के लिए, एक अगम्य कार्डिनल κ है जो प्रबल रूप से μ < κ मे विस्तृत है इस प्रकार यह स्वयंसिद्ध अगम्य कार्डिनल्स के एक अपरिमित टॉवर के अस्तित्व की दायित्व करता है और कभी-कभी अगम्य कार्डिनल स्वयंसिद्ध के रूप में संदर्भित किया जा सकता है जैसा कि किसी भी अगम्य कार्डिनल के अस्तित्व की स्थिति में होता है, अगम्य कार्डिनल स्वयंसिद्ध जेडएफसी के स्वयंसिद्धों से अगम्य होता है। जेडएफसी को यह मानते हुए कि अगम्य कार्डिनल स्वयंसिद्ध ग्रोथेंडिक और जीन लुइस वेर्डियर के ब्रह्मांड स्वयंसिद्ध के बराबर है और प्रत्येक समुच्चय ग्रोथेंडिक ब्रह्मांड में समाहित है। ब्रह्माण्ड स्वयंसिद्ध या समतुल्य रूप से अगम्य कार्डिनल स्वयंसिद्ध के साथ जेडएफसी के स्वयंसिद्धों को जेडएफसीयू (यूरेलेमेंट्स के साथ जेडएफसी के साथ भ्रमित न हों) के रूप में प्रदर्शित किया गया है। यह स्वयंसिद्ध प्रणाली यह सिद्ध करने के लिए उपयोगी है कि प्रत्येक श्रेणी (गणित) में एक उपयुक्त योनेदा अंत:स्थापन है।
यह एक अपेक्षाकृत दुर्बल विस्तृत स्वयंसिद्ध कार्डिनल है क्योंकि यह कहने के समान है कि ∞ अगले भाग की भाषा में 1-अगम्य है जहां ∞ सबसे कम क्रमसूचक को दर्शाता है न कि V में प्रदर्शित करता है अर्थात यह मॉडल में सभी क्रमसूचक संख्याओं की श्रेणी को प्रदर्शित करता है।
α-अगम्य कार्डिनल्स और अति-अगम्य योग्य कार्डिनल्स
α-अगम्य कार्डिनल्स शब्द अस्पष्ट है और विभिन्न लेखक असमान परिभाषाओं का उपयोग करते हैं। एक परिभाषा यह है कि एक कार्डिनल κ को α-किसी भी क्रमिक α के लिए अगम्य कहा जाता है यदि κ अगम्य है और प्रत्येक क्रमिक β < α के लिए κ से कम β-अगम्य का समुच्चय κ में असीमित है और इस प्रकार कार्डिनल κ के बाद से κ नियमित है। इस स्थिति में 0-अगम्य कार्डिनल समान रूप से अगम्य कार्डिनल के समान होते हैं। एक अन्य संभावित परिभाषा यह है कि एक कार्डिनल κ को α कहा जाता है यदि दुर्बल रूप से अगम्य κ और नियमित है तो प्रत्येक क्रमिक β <α के लिए β-दुर्बल अगम्यता का समुच्चय κ से कम और असीमित है। इस स्थिति में 0-दुर्बल अगम्य योग्य कार्डिनल नियमित कार्डिनल हैं और 1-दुर्बल अगम्य योग्य कार्डिनल दुर्बल अगम्य योग्य कार्डिनल होते हैं।
α-अगम्य कार्डिनल्स को कार्यों के निश्चित बिंदुओं के रूप में भी वर्णित किया जा सकता है जो निम्न अगम्यों की गणना करते हैं। उदाहरण के लिए, ψ0(λ) द्वारा λवें अगम्य कार्डिनल को निरूपित करते है जो ψ0 के निश्चित बिंदु 1-अगम्य कार्डिनल हैं। ψβ(λ) को λवां β-अगम्य कार्डिनल के लिए ψβ के निश्चित बिंदु (β+1) मे अगम्य कार्डिनल ψβ+1(λ)) हैं। यदि α एक सीमा क्रमसूचक संख्या है तो एक α-अगम्य β < α के लिए प्रत्येक ψβ का एक निश्चित बिंदु है जिसका मान ψα(λ) λवां कार्डिनल है विस्तृत कार्डिनल गुणों की सूची के अध्ययन में क्रमिक रूप से विस्तृत कार्डिनल उत्पन्न करने वाले कार्यों के निश्चित बिंदुओं को लेने की यह प्रक्रिया सामान्यतः समान होती है।
अति-अगम्य शब्द अस्पष्ट है और इसके कम से कम तीन असंगत अर्थ होते हैं। कई लेखक इसका उपयोग अत्यधिक अगम्य कार्डिनल्स (1-अगम्य) की एक नियमित सीमा के अर्थ के लिए करते हैं। अन्य लेखक इसका उपयोग यह अर्थ करने के लिए करते हैं कि κ κ-अगम्य है। यह κ+1-अगम्य कभी नहीं हो सकता है क्योकि ह कभी-कभी कार्डिनल के लिए प्रयोग किया जाता है।
शब्द α-अति-अगम्य भी अस्पष्ट है। कुछ लेखक इसका उपयोग α-अगम्य के अर्थ में करते हैं। अन्य लेखक इस परिभाषा का उपयोग करते हैं किसी भी क्रमिक α के लिए कार्डिनल κ है α अति-अगम्य यदि केवल κ अति-अगम्य है और प्रत्येक क्रमिक β <α के लिए, β-अति-अगम्यता का समुच्चय इससे कम κ में असीमित होता है। अति अगम्य कार्डिनल को इतने पर समान तरीकों से परिभाषित किया जा सकता है जिससे यह शब्द सदैव की तरह अस्पष्ट है। अगम्य के अतिरिक्त दुर्बल अगम्य का उपयोग करके, "दुर्बल α-अगम्य", "दुर्बल अति-अगम्य" और "दुर्बल α-अति-अगम्य" के लिए समान परिभाषाएं बनाई जा सकती हैं।
महलो कार्डिनल अगम्य, अति-अगम्य, अति-अति-अगम्य, ... और इसी प्रकार विभिन्न परिभाषाएं हैं।
अगम्यता के दो मॉडल-सैद्धांतिक लक्षण
सबसे पहले, एक कार्डिनल κ अगम्य है यदि केवल κ में निम्नलिखित परावर्तन सिद्धांत हैं सभी उपसमुच्चय के लिए , सम्मिलित है जो का एक प्राथमिक आधार है वास्तव में α का समुच्चय κ विवृत समुच्चय है समान रूप से सभी n ≥ 0 के लिए अवर्णनीय कार्डिनल है।
जेडएफ में यह सिद्ध किया जा सकता है कि ∞ कुछ दुर्बल परावर्तन गुण को संतुष्ट करता है, जहां संरचना सूत्रों के परिमित समुच्चय के संबंध में केवल 'प्रारंभिक' होना आवश्यक होता है। अंततः इस दुर्बल कार्डिनल का कारण मॉडल-सैद्धांतिक संतुष्टि संबंध ⊧ है अर्थात नहीं हो सकता है जिसको टार्स्की के सिद्धान्त के कारण परिभाषित किया जा सकता है।
दूसरे, जेडएफसी के अंतर्गत यह प्रदर्शित जा सकता है कि अगम्य योग्य नहीं है यदि केवल दूसरे क्रम का तर्क जेडएफसी का एक मॉडल है। इस इस स्थिति में, परावर्तन गुण संपत्ति द्वारा, वहाँ सम्मिलित होता है जैसे कि जेडएफसी का एक मानक मॉडल है। इसलिए, जेडएफसी के सकर्मक मॉडल के अस्तित्व की तुलना में अगम्य कार्डिनल का अस्तित्व एक प्रबल कार्डिनल होता है।
यह भी देखें
- भौतिक कार्डिनल, एक दुर्बल धारणा
- महलो कार्डिनल, एक प्रबल धारणा
- विवृत समुच्चय
- आंतरिक मॉडल
- वॉन न्यूमैन ब्रह्मांड
- रचनात्मक ब्रह्मांड
कार्य उद्धृत
- Drake, F. R. (1974), Set Theory: An Introduction to Large Cardinals, Studies in Logic and the Foundations of Mathematics, vol. 76, Elsevier Science, ISBN 0-444-10535-2
- Hausdorff, Felix (1908), "Grundzüge einer Theorie der geordneten Mengen", Mathematische Annalen, 65 (4): 435–505, doi:10.1007/BF01451165, hdl:10338.dmlcz/100813, ISSN 0025-5831, S2CID 119648544
- Hrbáček, Karel; Jech, Thomas (1999), Introduction to set theory (3rd ed.), New York: Dekker, ISBN 978-0-8247-7915-3
- Kanamori, Akihiro (2003), The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings (2nd ed.), Springer, ISBN 3-540-00384-3
- Sierpiński, Wacław; Tarski, Alfred (1930), "Sur une propriété caractéristique des nombres inaccessibles" (PDF), Fundamenta Mathematicae, 15: 292–300, doi:10.4064/fm-15-1-292-300, ISSN 0016-2736
- Zermelo, Ernst (1930), "Über Grenzzahlen und Mengenbereiche: neue Untersuchungen über die Grundlagen der Mengenlehre" (PDF), Fundamenta Mathematicae, 16: 29–47, doi:10.4064/fm-16-1-29-47, ISSN 0016-2736. अंग्रेजी अनुवाद: Ewald, William B. (1996), "On boundary numbers and domains of sets: new investigations in the foundations of set theory", From Immanuel Kant to David Hilbert: A Source Book in the Foundations of Mathematics, Oxford University Press, pp. 1208–1233, ISBN 978-0-19-853271-2.