वैकल्पिक श्रृंखला परीक्षण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{Short description|Method used to show that an alternating series is convergent}}
{{Short description|Method used to show that an alternating series is convergent}}[[गणितीय विश्लेषण]] में, '''वैकल्पिक श्रृंखला परीक्षण''' वह विधि है जिसका उपयोग यह दिखाने के लिए किया जाता है कि एक वैकल्पिक श्रृंखला [[अभिसरण श्रृंखला]] तक अभिसरण होती है जब इसके पद (1) पूर्ण मूल्य में घटते हैं, और (2) सीमा में शून्य के करीब पहुंचते हैं।
{{Calculus |शृंखला}}
 
[[गणितीय विश्लेषण]] में, '''वैकल्पिक श्रृंखला परीक्षण''' वह विधि है जिसका उपयोग यह दिखाने के लिए किया जाता है कि एक वैकल्पिक श्रृंखला [[अभिसरण श्रृंखला]] तक अभिसरण होती है जब इसके पद (1) पूर्ण मूल्य में घटते हैं, और (2) सीमा में शून्य के करीब पहुंचते हैं।


परीक्षण का उपयोग [[गॉटफ्राइड लीबनिज]] द्वारा किया गया था और इसे कभी-कभी '''लाइबनिज परीक्षण, लाइबनिज नियम''' या '''लाइबनिज मानदंड''' के रूप में जाना जाता है। इस प्रकार परीक्षण केवल पर्याप्त है, आवश्यक नहीं, इसलिए कुछ अभिसरण [[वैकल्पिक श्रृंखला]] परीक्षण के पहले भाग में विफल हो सकती है।
परीक्षण का उपयोग [[गॉटफ्राइड लीबनिज]] द्वारा किया गया था और इसे कभी-कभी '''लाइबनिज परीक्षण, लाइबनिज नियम''' या '''लाइबनिज मानदंड''' के रूप में जाना जाता है। इस प्रकार परीक्षण केवल पर्याप्त है, आवश्यक नहीं, इसलिए कुछ अभिसरण [[वैकल्पिक श्रृंखला]] परीक्षण के पहले भाग में विफल हो सकती है।
Line 77: Line 74:
वैकल्पिक हार्मोनिक श्रृंखला<math display="block">\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots</math>इस प्रकार वैकल्पिक श्रृंखला परीक्षण के लिए दोनों शर्तों को पूरा करता है और अभिसरण करता है।  
वैकल्पिक हार्मोनिक श्रृंखला<math display="block">\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots</math>इस प्रकार वैकल्पिक श्रृंखला परीक्षण के लिए दोनों शर्तों को पूरा करता है और अभिसरण करता है।  


=== एकरसता दिखाने के लिए एक उदाहरण की आवश्यकता है ===
=== एकतानता प्रदर्शित करने के लिए उदाहरण की आवश्यकता ===
निष्कर्ष के सत्य होने के लिए परीक्षण में सभी शर्तें, अर्थात् शून्य और एकरसता में अभिसरण, को पूरा किया जाना चाहिए।
निष्कर्ष के सत्य होने के लिए परीक्षण में सभी शर्तें, अर्थात् शून्य और एकरसता में अभिसरण, को पूरा किया जाना चाहिए।


Line 108: Line 105:
* {{MathWorld | title=Leibniz Criterion | urlname=LeibnizCriterion}}
* {{MathWorld | title=Leibniz Criterion | urlname=LeibnizCriterion}}
*Jeff Cruzan. [http://www.xaktly.com/AlternatingSeries.html "Alternating series"]
*Jeff Cruzan. [http://www.xaktly.com/AlternatingSeries.html "Alternating series"]
{{Gottfried Wilhelm Leibniz}}


{{DEFAULTSORT:Alternating Series Test}}
{{DEFAULTSORT:Alternating Series Test}}

Latest revision as of 16:48, 28 August 2023

गणितीय विश्लेषण में, वैकल्पिक श्रृंखला परीक्षण वह विधि है जिसका उपयोग यह दिखाने के लिए किया जाता है कि एक वैकल्पिक श्रृंखला अभिसरण श्रृंखला तक अभिसरण होती है जब इसके पद (1) पूर्ण मूल्य में घटते हैं, और (2) सीमा में शून्य के करीब पहुंचते हैं।

परीक्षण का उपयोग गॉटफ्राइड लीबनिज द्वारा किया गया था और इसे कभी-कभी लाइबनिज परीक्षण, लाइबनिज नियम या लाइबनिज मानदंड के रूप में जाना जाता है। इस प्रकार परीक्षण केवल पर्याप्त है, आवश्यक नहीं, इसलिए कुछ अभिसरण वैकल्पिक श्रृंखला परीक्षण के पहले भाग में विफल हो सकती है।

औपचारिक वक्तव्य

वैकल्पिक श्रृंखला परीक्षण

प्रपत्र की एक श्रृंखला

जहां या तब सभी an धनात्मक हैं या सभी एn ऋणात्मक हैं, इसे वैकल्पिक श्रृंखला कहा जाता है।

वैकल्पिक श्रृंखला परीक्षण यह गारंटी देता है कि यदि निम्नलिखित दो शर्तें पूरी होती हैं तब एक वैकल्पिक श्रृंखला अभिसरण करती है:

  1. मोनोटोनिक फलन कम हो जाता है[1], अर्थात।, , और

वैकल्पिक श्रृंखला अनुमान प्रमेय

इसके अतिरिक्त, मान लीजिए कि L श्रृंखला के योग को दर्शाता है, फिर आंशिक योग को

अगले छोड़े गए पद से घिरी त्रुटि के साथ L का अनुमान लगाता है:

प्रमाण

मान लीजिए हमें फॉर्म की एक श्रृंखला दी गई है , कहाँ और सभी प्राकृत संख्याओं के लिए n. (मामला ऋणात्मक लेते हुए अनुसरण करता है।)[1]

वैकल्पिक श्रृंखला परीक्षण का प्रमाण

हम सिद्ध करेंगे कि दोनों आंशिक योग हैं विषम संख्या में पदों के साथ, और सम संख्या में पदों के साथ, समान संख्या एल में परिवर्तित हो जाते हैं। इस प्रकार सामान्य आंशिक योग एल में भी अभिसरण होता है।

विषम आंशिक योग एकरस रूप से घटते हैं:

जबकि सम आंशिक राशियाँ एकरस रूप से बढ़ती हैं:

दोनों क्योंकि एn n के साथ नीरस रूप से घटता है।

इसके अतिरिक्त, चूंकि एn धनात्मक हैं, . इस प्रकार हम निम्नलिखित विचारोत्तेजक असमानता बनाने के लिए इन तथ्यों को एकत्र कर सकते हैं:

अब, ध्यान दें कि ए1 − ए2 नीरस रूप से घटते अनुक्रम एस की निचली सीमा है2m+1, मोनोटोन अभिसरण प्रमेय का तात्पर्य यह है कि जैसे-जैसे m अनंत की ओर बढ़ता है, यह क्रम अभिसरण करता है। इसी प्रकार, आंशिक योग का क्रम भी परिवर्तित हो जाता है।

अंततः, उन्हें एक ही संख्या में एकत्रित होना होगा क्योंकि

सीमा L को कॉल करें, फिर मोनोटोन अभिसरण प्रमेय हमें अतिरिक्त जानकारी भी बताता है

किसी भी एम के लिए इसका मतलब यह है कि एक वैकल्पिक श्रृंखला का आंशिक योग भी अंतिम सीमा के ऊपर और नीचे "वैकल्पिक" होता है। इस प्रकार अधिक त्रुटिहीन रूप से, जब पदों की संख्या विषम (सम) होती है, अर्थात अंतिम पद प्लस (माइनस) पद होता है, तब आंशिक योग अंतिम सीमा से ऊपर (नीचे) होता है।

यह समझ तुरंत आंशिक योगों की त्रुटि की ओर ले जाती है, जैसा कि नीचे दिखाया गया है।

वैकल्पिक श्रृंखला अनुमान प्रमेय का प्रमाण

हम दिखाना चाहेंगे दो स्थितियों में विभाजित करके.

जब k = 2m+1, अर्थात विषम, तब

जब k = 2m, अर्थात सम, तब

जैसी इच्छा थी।

दोनों स्थितियों अनिवार्य रूप से पिछले प्रमाण में प्राप्त अंतिम असमानता पर निर्भर करते हैं।

इस प्रकार कॉची के अभिसरण परीक्षण का उपयोग करके वैकल्पिक प्रमाण के लिए, वैकल्पिक श्रृंखला देखें।

सामान्यीकरण के लिए, डिरिचलेट का परीक्षण देखें।

उदाहरण

एक विशिष्ट उदाहरण

वैकल्पिक हार्मोनिक श्रृंखला

इस प्रकार वैकल्पिक श्रृंखला परीक्षण के लिए दोनों शर्तों को पूरा करता है और अभिसरण करता है।

एकतानता प्रदर्शित करने के लिए उदाहरण की आवश्यकता

निष्कर्ष के सत्य होने के लिए परीक्षण में सभी शर्तें, अर्थात् शून्य और एकरसता में अभिसरण, को पूरा किया जाना चाहिए।

इस प्रकार उदाहरण के लिए, श्रृंखला को लीजिए

चिह्न बारी-बारी से होते हैं और पद शून्य की ओर प्रवृत्त होते हैं। चूँकि, एकरसता उपस्तिथ नहीं है और हम परीक्षण क्रियान्वित नहीं कर सकते हैं। इस प्रकार मुख्य रूप से सीरीज भिन्न-भिन्न है. मुख्य रूप से, आंशिक राशि के लिए अपने पास जो हार्मोनिक श्रृंखला के आंशिक योग का दोगुना है, जो अपसारी है। इसलिए मूल श्रृंखला अपसारी है।

परीक्षण केवल पर्याप्त है, आवश्यक नहीं

लीबनिज़ परीक्षण की एकरसता कोई आवश्यक शर्त नहीं है, इस प्रकार परीक्षण स्वयं पर्याप्त है, किन्तु आवश्यक नहीं है। इस प्रकार (परीक्षण का दूसरा भाग सभी श्रृंखलाओं के लिए अभिसरण की आवश्यक शर्त से परिचित है।)

नॉनमोनोटोनिक श्रृंखला के उदाहरण जो अभिसरण करते हैं और

यह भी देखें

  • वैकल्पिक श्रृंखला
  • डिरिक्लेट का परीक्षण

टिप्पणियाँ

^ In practice, the first few terms may increase. What is important is that for all after some point,[2] because the first finite amount of terms would not change a series' convergence/divergence.

संदर्भ

  1. The proof follows the idea given by James Stewart (2012) “Calculus: Early Transcendentals, Seventh Edition” pp. 727–730. ISBN 0-538-49790-4
  2. Dawkins, Paul. "Calculus II - Alternating Series Test". Paul's Online Math टिप्पणियाँ. Lamar University. Retrieved 1 November 2019.

बाहरी संबंध