बीजगणितीय विविधता: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (20 revisions imported from alpha:बीजगणितीय_विविधता) |
(No difference)
|
Revision as of 16:32, 21 November 2022
बीजगणितीय विविधता या बीजगणितीय ज्यामिति, गणित के उप-क्षेत्र में अध्ययन की केंद्रीय वस्तुएं हैं। मूल रूप से, एक बीजीय विविधता को वास्तविक संख्या या जटिल संख्या पर बहुपद समीकरणों की एक प्रणाली के समाधान समुच्चय के रूप में परिभाषित किया जाता है। आधुनिक परिभाषाएँ इस अवधारणा को कई अलग-अलग विधियों का उपयोग करके इसे सामान्य बनाती हैं, मूल परिभाषा के पीछे ज्यामितीय अंतर्ज्ञान को संरक्षित करने का प्रयास करते हुए।[1]: 58
बीजगणितीय विविधता की परिभाषा के संबंध में पद्धतियां थोड़ी भिन्न होती हैं। उदाहरण के लिए, कुछ परिभाषाओं के लिए एक बीजीय विवधता को अलघुकरणीय होने की आवश्यकता होती है, जिसका अर्थ है कि यह दो छोटे समुच्चय(गणित) का संघ(समुच्चय सिद्धांत) नहीं है जो ज़ारिस्की टोपोलॉजी में बंद समुच्चय हैं। इस परिभाषा के तहत, गैर-अपूरणीय बीजगणितीय विवधता को बीजगणितीय समुच्चय कहा जाता है। अन्य सम्मेलनों में अप्रासंगिकता की आवश्यकता नहीं होती है।
बीजगणित का मौलिक प्रमेय बीजगणित और ज्यामिति के बीच एक सम्बन्ध स्थापित करता है, जिसमें दिखाया गया है कि जटिल संख्या के गुणांक वाले वैरिएबल में एक मोनिक बहुपद के जटिल तल में एक ज्यामितीय वस्तु के समुच्चय द्वारा निर्धारित किया जाता है। इस परिणाम का सामान्यीकरण करते हुए, हिल्बर्ट का नलस्टेलेंसैट्ज बहुपद वलय और बीजगणितीय समुच्चयों के आदर्शों के बीच एक मौलिक पत्राचार प्रदान करता है। 'नलस्टेलनसैट्ज और संबंधित परिणामों का उपयोग करते हुए, गणितज्ञों ने बीजगणितीय समुच्चयों और रिंग थ्योरी के प्रश्नों के बीच एक मजबूत पत्राचार स्थापित किया है। यह पत्राचार बीजगणितीय ज्यामिति की एक परिभाषित विशेषता है।
कई बीजगणितीय विवधता कई गुना होती हैं, लेकिन एक बीजगणितीय विविधता में एकवचन बिंदु हो सकते हैं जबकि कई गुना नहीं हो सकते। बीजगणितीय विवधता को उनके आयाम द्वारा चित्रित किया जा सकता है। आयाम एक की बीजगणितीय विवधता को बीजीय वक्र कहा जाता है और आयाम दो की बीजगणितीय विवधता को बीजीय सतह कहा जाता है।
आधुनिक योजना (गणित) सिद्धांत के संदर्भ में, एक क्षेत्र पर एक बीजगणितीय विविधता उस क्षेत्र पर एक अभिन्न (अखंडनीय और कम) योजना है जिसकी संरचना आकारिकी अलग और परिमित प्रकार की होती है।
अवलोकन और परिभाषाएं
एक बीजगणितीय रूप से बंद क्षेत्र पर एक संबधित विविधता अवधारणात्मक रूप से परिभाषित करने के लिए विविधता का सबसे सरल प्रकार है, जो इस भाग में किया जाएगा। अगला, एक समान तरीके से प्रक्षेपीय और अर्ध-प्रक्षेपीय विवधता को परिभाषित कर सकता है। एक विवधता की सबसे सामान्य परिभाषा छोटी अर्ध-प्रक्षेपी विविधताओं को एक साथ जोड़कर प्राप्त की जाती है। यह स्पष्ट नहीं है कि कोई इस तरह से वास्तव में विविधताओं के नए उदाहरण बना सकता है, लेकिन न्यायमूर्ति नागता ने 1950 के दशक में ऐसी ही एक नई विविधता का उदाहरण दिया।
सजातीय विविधता
बीजगणितीय रूप से बंद फ़ील्ड K और प्राकृतिक संख्या n के लिए, An को K पर एक n-स्पेस ओवर होने दें, जिसे सजातीय निर्देशांक प्रणाली की पसंद के माध्यम से से पहचाना जाता है। वलय K[x1, ..., xn] में बहुपद f को An के बिंदुओं पर f का मूल्यांकन करके An पर K-मूल्यवान फलन के रूप में देखा जा सकता है, अर्थात् प्रत्येक xi के लिए K में मान चुनकर।K[x1, ..., xn] में बहुपदों के प्रत्येक समुच्चय S के लिए, शून्य-बिंदु Z(S) को An में बिंदुओं के समूहों में परिभाषित करें जो S फंक्शन में एक साथ निहित हो जाता है, कहने का मतलब है
An के उपसमुच्चय V को सजातीय बीजीय समुच्चय कहा जाता है यदि कुछ S के लिए V = Z(S)। यदि इसे दो उचित बीजीय समुच्चयों के मिलन के रूप में नहीं लिखा जा सकता है।[1]: 2 एक अलघुकरणीय सजातीय बीजीय सबसमुच्चय को सजातीय विविधता भी कहा जाता है।[1]: 3 कई लेखक किसी भी सजातीय बीजगणितीय समुच्चय को संदर्भित करने के लिए सजातीय विवधता वाक्यांश का उपयोग करते हैं, इरेड्यूसबल या नहीं [note 1])
बंद समुच्चयों को ठीक सजातीय बीजीय समुच्चय घोषित करके सजातीय विवधता को प्राकृतिक टोपोलॉजी दी जा सकती है। इस टोपोलॉजी को ज़ारिस्की टोपोलॉजी कहा जाता है।[1]: 2
An के उपसमुच्चय V को देखते हुए, हम I(V) को V पर लुप्त होने वाले सभी बहुपद फलनों का आदर्श मानते हैं:
किसी भी सजातीय बीजगणितीय समुच्चय वी के लिए, वी की समन्वय रिंग या संरचना इस आदर्श द्वारा बहुपद रिंग का भागफल वलय है।[1]: 4
प्रक्षेपीय विविधता और अर्ध-प्रक्षेपीय विविधता
मान लीजिए k एक बीजगणितीय रूप से बंद क्षेत्र है और Pn को k के ऊपर प्रक्षेपी n-स्पेस होने दें। मान लीजिए f में k[x0, ..., xn] घात d का एक समांगी बहुपद है। सजातीय निर्देशांक में Pn में बिंदुओं पर f का मूल्यांकन करना अच्छी तरह से परिभाषित नहीं है। चूंकि, f सजातीय है, जिसका अर्थ है कि f (λx0, ..., λxn) = λd f (x0, ..., xn), यह पूछने के लिए समझ में आता है क्या f बिंदु [x0 : ... : xn] पर लुप्त हो जाता है। सजातीय बहुपदों के प्रत्येक एस के लिए, Pn में बिंदुओं के समुच्चय के रूप में S के शून्य-बिंदु को परिभाषित करें जिस पर S में कार्य गायब हो जाते हैं:
Pn के उपसमुच्चय V को प्रक्षेपी बीजगणितीय समुच्चय कहा जाता है यदि कुछ S के लिए V = Z(S)[1]: 9 एक अलघुकरणीय प्रक्षेपी बीजगणितीय समुच्चय को प्रक्षेपी विवधता कहा जाता है।[1]: 10 सभी बीजीय समुच्चयों को बंद करने की घोषणा करके प्रक्षेपीय विविधताओं को ज़ारिस्की टोपोलॉजी से भी लैस किया गया है।
अर्ध-प्रक्षेपीय विविधता प्रक्षेपीय विविधता के लिए ज़ारिस्की का एक खुला उपसमुच्चय है। ध्यान दें कि प्रत्येक सजातीय विवधता अर्ध-प्रक्षेपीय है।[2] यह भी ध्यान दें कि एक सजातीय वैरायटी में एक बीजगणितीय समुच्चय का पूरक एक अर्ध-प्रक्षेपीय विविधता है; सजातीय विवधता के संदर्भ में, ऐसी अर्ध-प्रक्षेपी विविधता को साधारणतयः विविधता नहीं बल्कि एक रचनात्मक समुच्चय कहा जाता है।
अमूर्त उपसमष्टि
मूल बीजगणितीय ज्यामिति में, सभी विवधता परिभाषा के अनुसार अर्ध-प्रक्षेपी विवधता थीं, जिसका अर्थ है कि वे प्रक्षेप्य स्थान की बंद उप-विवधता की खुली उप-विवधता थीं। उदाहरण के लिए, हार्टशोर्न के अध्याय 1 में एक बीजगणितीय रूप से बंद क्षेत्र में विविधता को अर्ध-प्रक्षेपी विविधता के रूप में परिभाषित किया गया है,[1]: 15 लेकिन अध्याय 2 के बाद से, शब्द विविधता (जिसे अमूर्त विवधता भी कहा जाता है) जो एक अधिक सामान्य वस्तु को संदर्भित करता है, जो स्थानीय रूप से एक अर्ध-प्रक्षेपी विवधता है, लेकिन जब समग्र रूप से देखा जाए तो जरूरी नहीं कि अर्ध-प्रक्षेपी हो; यानी इसमें प्रक्षेपीय स्पेस में अंत:स्थापन नहीं हो सकती है।[1]: 105 तो मूल रूप से बीजगणितीय विविधता की परिभाषा को प्रक्षेपीय स्पेस में अंत:स्थापन की आवश्यकता होती है, और विविधता पर टोपोलॉजी और विविधता पर नियमित कार्यों को परिभाषित करने के लिए इस अंत:स्थापन का उपयोग किया गया था। इस तरह की परिभाषा से हानि यह है कि सभी विविधिताएँ प्राकृतिक अंत:स्थापन के साथ प्रक्षेप्य स्थान में नहीं आती हैं। उदाहरण के लिए, इस परिभाषा के तहत, उत्पाद P1 × P1 एक विवधता नहीं है जब तक यह प्रक्षेपीय स्पेस में एम्बेड नहीं किया जाता है; यह साधारणतयः सेग्रे अंत:स्थापन द्वारा किया जाता है। चूँकि, कोई भी विवधता जो किसी को प्रक्षेपीय स्पेस में एम्बेड करने की अनुमति देती है, वेरोनीज़ अंत:स्थापन के साथ अंत:स्थापन की रचना करके कई अन्य लोगों को स्वीकार करती है। परिणामस्वरूप, कई धारणाएं जो आंतरिक होनी चाहिए, जैसे नियमित कार्य की अवधारणा स्पष्ट रूप से ऐसा नहीं है।
एक अंत:स्थापन के बिना, एक बीजगणितीय विविधता को सारगर्भित रूप से परिभाषित करने का सबसे पहला सफल प्रयास एंड्रे वेइल द्वारा किया गया था। बीजगणितीय ज्यामिति की अपनी नींव में, वेइल ने मूल्यांकन (बीजगणित) का उपयोग करके एक अमूर्त बीजगणितीय विविधता को परिभाषित किया। क्लाउड शेवेली ने एक योजना की परिभाषा दी, जिसने एक समान उद्देश्य पूरा किया, लेकिन अधिक सामान्य था। चूंकि, अलेक्जेंडर ग्रोथेंडिक की एक योजना की परिभाषा अभी भी अधिक सामान्य है और इसे सबसे व्यापक स्वीकृति प्राप्त हुई है। ग्रोथेंडिक की भाषा में, एक सार बीजगणितीय विविधता को साधारणतयः एक बीजगणितीय रूप से बंद क्षेत्र पर परिमित प्रकार की एक अभिन्न, अलग योजना के रूप में परिभाषित किया जाता है,[1]: 104–105 चूंकि कुछ लेखक इरेड्यूसिबिलिटी या रिड्यूसनेस या अलगाव की स्थिति को छोड़ देते हैं या अंतर्निहित क्षेत्र को बीजगणितीय रूप से बंद नहीं होने देते हैं।[note 2] मूल बीजगणितीय विविधता बीजगणितीय रूप से बंद क्षेत्र पर क्वासिप्रक्षेपीय समाकलित वियुक्त परिमित प्रकार की योजनाएं हैं।
गैर-अर्धप्रक्षेपीय संक्षेपित बीजीय विवधता का अस्तित्व
एक गैर-अद्र्धप्रक्षेपी बीजगणितीय विवधता के शुरुआती उदाहरणों में से एक नगाटा द्वारा दिया गया था।[3] नागाटा का उदाहरण पूर्ण नहीं था (सघनता का अनुरूप), लेकिन बाद में उन्हें एक बीजगणितीय सतह मिली जो पूर्ण और गैर-प्रक्षेपी थी।[1]: Remark 4.10.2 p.105 तब से इसके अन्य उदाहरण पाए गए हैं; उदाहरण के लिए, एक टोरिक विविधता का निर्माण करना सीधा है जो अर्ध-प्रक्षेपी नहीं है लेकिन पूर्ण है।[4]
उदाहरण
उपवर्ग
उप-विविधता एक ऐसी विविधता का सबसमुच्चय है जो स्वयं एक विविधता है (परिवेश विविधता से प्रेरित संरचना के संबंध में)। उदाहरण के लिए, एक विविधता का हर खुले उपसमुच्चय की एक विविधता है। इसके लिएबंद विसर्जन भी देखें।
हिल्बर्ट के नलस्टेलेंसत्ज़ का कहना है कि एक सजातीय या प्रक्षेपी विवधता की बंद उप-विविधताएँ एक दूसरे से पत्राचार में प्रमुख आदर्शों या विविधता के समन्वय रिंग के सजातीय प्रमुख आदर्शों के साथ होती हैं।
सजातीय विवधता
उदाहरण 1
'होने देना k = C', और A2 C के ऊपर द्वि-आयामी एफ़िन स्पेस हो। रिंग C[x, y] में बहुपदों को A पर जटिल मूल्यवान फ़ंक्शन के रूप में देखा जा सकता है इसके बिंदुओं पर मूल्यांकन करके
माना 'C'[x, y] के उपसमुच्चय S में एक ही अवयव है f (x, y):
का शून्य-ठिकाना f (x, y) A . में बिंदुओं का समुच्चय है जिस पर यह फ़ंक्शन गायब हो जाता है: यह सम्मिश्र संख्याओं (x, y) के सभी युग्मों का समुच्चय इस प्रकार है कि y = 1 - x। इसे सजातीय प्लेन में एक लाइन (ज्यामिति) कहा जाता है। ('शास्त्रीय टोपोलॉजी' में जटिल संख्याओं पर टोपोलॉजी से आ रही है, एक जटिल रेखा आयाम दो का वास्तविक कई गुना है।) यह समुच्चय है Z( f ):
इस प्रकार उपसमुच्चय V = Z( f ) A2 एक बीजीय विवधता है सजातीय विवधता। समुच्चय V रिक्त नहीं है। यह अपरिवर्तनीय है, क्योंकि इसे दो उचित बीजीय समुच्चयों के मिलन के रूप में नहीं लिखा जा सकता है। इस प्रकार यह एक सजातीय बीजीय विवधता है।
उदाहरण 2
होने देना k = C, और A2 C के ऊपर द्वि-आयामी सजातीय स्पेस हो। रिंग C[x, y] में बहुपदों को A पर जटिल मूल्यवान फ़ंक्शन के रूप में देखा जा सकता है A2 के बिंदुओं पर मूल्यांकन करके माना 'C'[x, y] के उपसमुच्चय S में एक ही अवयव g(x, y) है:
g(x, y) का शून्य-लोकस 'A2' में बिंदुओं का समूह है जिस पर यह फ़ंक्शन गायब हो जाता है, वह अंक (x, y) का समुच्चय है जैसे कि x2 + और2 = 1. चूँकि g(x, y) एक पूर्णतया अपरिष्कृत बहुपद है, यह एक बीजीय विवधता है। इसके वास्तविक बिंदुओं का समुच्चय (अर्थात वह बिंदु जिसके लिए x और y वास्तविक संख्याएँ हैं), इकाई वृत्त के रूप में जाना जाता है; यह नाम अधिकांशतः पूरी विवधता को भी दिया जाता है।
उदाहरण 3
निम्नलिखित उदाहरण में न तो हाइपरसफेस है, न ही सदिश स्थल , न ही कोई बिंदु। चलो A3 C के ऊपर त्रि-आयामी सजातीय स्पेस बनता हैं। बिंदुओं का समुच्चय (x, x)2, x3) के लिए x in 'C' एक बीजीय विविधता है, और अधिकांशतः इसमें एक बीजीय वक्र होता है जो किसी भी तल में निहित नहीं रहता है।[note 3] यह ऊपर की आकृति में दिखाया गया घन है। इसे समीकरणों द्वारा परिभाषित किया जा सकता है
इस बीजगणितीय समुच्चय की अप्रासंगिकता को एक प्रमाण की आवश्यकता होती है। इस परिस्थिति में एक दृष्टिकोण यह जांचना है कि प्रक्षेपण (x, y, z) → (x, y) समाधान के समुच्चय पर इंजेक्शन समारोह है और इसका प्रतिबिम्ब एक अपरिवर्तनीय समतल पर वक्र के रूप में दिखता है।
अधिक कठिन उदाहरणों के लिए, एक समान प्रमाण हमेशा दिया जा सकता है, लेकिन एक कठिन गणना का अर्थ हो सकता है: पहले आयाम की गणना करने के लिए ग्रोबनर आधार गणना, उसके बाद वैरिएबल के यादृच्छिक रैखिक परिवर्तन (हमेशा आवश्यक नहीं); फिर प्रक्षेपण की गणना करने के लिए एक और एकपदी आदेश के लिए ग्रोबनर आधार गणना और यह साबित करने के लिए कि यह सामान्य संपत्ति इंजेक्शन है और इसकी छवि एक हाइपरसर्फेस है, और अंत में छवि की अपरिवर्तनीयता साबित करने के लिए एक बहुपद कारक है।
सामान्य रैखिक समूह
आधार क्षेत्र k पर n-by-n आव्यूहों के समुच्चय को सजातीय n . से पहचाना जा सकता है2-स्पेस निर्देशांक के साथ ऐसा है कि मैट्रिक्स की (i, j) -वीं प्रविष्टि है . एक मैट्रिक्स का निर्धारक तब एक बहुपद है और इस प्रकार हाइपरसर्फेस को परिभाषित करता है में . का पूरक तब का एक खुला उपसमुच्चय है जिसमें सभी व्युत्क्रमणीय n-by-n आव्यूह होते हैं, सामान्य रैखिक समूह . यह एक सजातीय विवधता है, क्योंकि सामान्य तौर पर, सजातीय विवधता में हाइपरसर्फ़ का पूरक सजातीय होता है। स्पष्ट रूप से, विचार करें जहां सजातीय लाइन को कोऑर्डिनेट टी दिया गया है। फिर शून्य-लोकस के बराबर है बहुपद का :
अर्थात्, आव्यूह A का समुच्चय ऐसा है कि एक समाधान है। यह बीजगणितीय रूप से सबसे अच्छी तरह से देखा जाता है: का निर्देशांक वलय स्थानीयकरण है (कम्यूटेटिव बीजगणित) , जिसे से पहचाना जा सकता है .
गुणक समूह kआधार फ़ील्ड k का ** वही है और इस प्रकार एक सजातीय विवधता है। इसका एक परिमित उत्पाद एक बीजीय टोरस है, जो फिर से एक सजातीय विवधता है।
एक सामान्य रेखीय समूह एक रैखिक बीजगणितीय समूह का एक उदाहरण है, एक सजातीय विवधता जिसमें एक समूह (गणित) की संरचना होती है, इस तरह समूह संचालन विवधता के रूपवाद होते हैं।
प्रक्षेपी विविधता
एक प्रक्षेपीय विवधता एक प्रक्षेपीय स्पेस की एक बंद उप-विविधता है। यही है, यह सजातीय बहुपद के एक समुच्चय का शून्य स्थान है जो एक प्रमुख आदर्श उत्पन्न करता है।
उदाहरण 1
एक समतल प्रक्षेप्य वक्र तीन अनिश्चित में एक अलघुकरणीय सजातीय बहुपद का शून्य स्थान है। प्रक्षेप्य रेखा P1 प्रक्षेपी वक्र का एक उदाहरण है; इसे प्रक्षेप्य तल में वक्र के रूप में देखा जा सकता है P2 = {[x, y, z]} द्वारा परिभाषित x = 0. एक अन्य उदाहरण के लिए, पहले सजातीय क्यूबिक वलय पर विचार करें
2-आयामी सजातीय स्पेस में (विशेषता के क्षेत्र में दो नहीं)। इसमें संबंधित घन सजातीय बहुपद समीकरण है:
जो P2 में एक वक्र को परिभाषित करता है को अण्डाकार वक्र कहा जाता है। वक्र में जीनस वन (सूत्र टाइप करें ) है; विशेष रूप से, यह प्रक्षेपी रेखा P1 के समरूपी नहीं है, जिसका जीनस जीरो है। घटता को अलग करने के लिए जीनस का उपयोग करना बहुत ही बुनियादी है: वास्तव में, जीनस पहला अपरिवर्तनीय है जो घटता वर्गीकृत करने के लिए उपयोग करता है (बीजीय वक्रों के मॉड्यूल का निर्माण भी देखें)।
उदाहरण 2: ग्रासमैनियन
मान लीजिए V एक परिमित-विमीय सदिश समष्टि है। ग्रासमैनियन विवधता जीn(V) जहाँ V के सभी n-विमा के सबस्पेस का समुच्चय है। यह एक प्रक्षेपीय विवधता है: इसे प्लकर अंत:स्थापन के माध्यम से प्रक्षेपीय स्पेस में लागू किया गया है:
जहां बीiV में रैखिकतः स्वतंत्र सदिशों का कोई समुच्चय है, V की n-th बाहरी शक्ति है, और ब्रैकेट [w] का अर्थ है गैर-शून्य वेक्टर w द्वारा फैली हुई रेखा।
ग्रासमैनियन विवधता एक प्राकृतिक वेक्टर बंडल (या अन्य शब्दावली में स्थानीय रूप से मुक्त शीफ ) के साथ आती है जिसे टॉटोलॉजिकल बंडल कहा जाता है, जो कि चेर्न क्लास जैसे विशिष्ट वर्गों के अध्ययन में महत्वपूर्ण है।
जैकोबियन विवधता
मान लीजिए C एक चिकना पूर्ण वक्र है और इसका पिकार्ड समूह ; यानी, सी पर लाइन बंडलों के आइसोमोर्फिज्म वर्गों का समूह। चूंकि सी चिकना है, C के भाजक वर्ग समूह के रूप में पहचाना जा सकता है और इस प्रकार समरूपता की डिग्री होती है . जैकोबियन विवधता सी का इस डिग्री मानचित्र का कर्नेल है; यानी, डिग्री शून्य के सी पर भाजक वर्गों का समूह। एक जैकोबियन विवधता एक अबेलियन विवधता का एक उदाहरण है, एक पूरी विवधता जिस पर एक संगत एबेलियन समूह संरचना है (नाम एबेलियन इसलिए नहीं है क्योंकि यह एक एबेलियन समूह है)। एक एबेलियन विवधता प्रक्षेपी हो जाती है (बीजीय समुच्चयिंग में थीटा फंक्शन एक अंत:स्थापन देता है); इस प्रकार, एक प्रक्षेपी विवधता है। करने के लिए स्पर्शरेखा स्थान पहचान तत्व पर स्वाभाविक रूप से आइसोमॉर्फिक है [5] इसलिए, का आयाम का वंश है .
एक बिंदु ठीक करें पर . प्रत्येक पूर्णांक के लिए , एक प्राकृतिक रूपवाद है[6]
जहाँ पर C के लिए n प्रतियों का गुणनफल है (अर्थात, C एक अण्डाकार वक्र है), उपरोक्त समरूपता के लिए एक समरूपता को प्रर्दशित करता है;[7]: Ch. IV,उदाहरण 1.3.7. विशेष रूप से, एक अण्डाकार वक्र एक अबेलियन विवधता है।
मोडुली विविधिता
एक पूर्णांक दिया गया , जीनस के चिकने पूर्ण वक्रों के समरूपता वर्गों का समुच्चय जीनस के वक्रों का मॉड्यूल कहा जाता है और के रूप में निरूपित किया जाता है . यह दिखाने के कुछ तरीके हैं कि इस मॉड्यूल में संभावित रूप से कमजोर बीजीय विवधता की संरचना है; उदाहरण के लिए, एक तरीका ज्यामितीय अपरिवर्तनीय सिद्धांत का उपयोग करना है जो सुनिश्चित करता है कि आइसोमोर्फिज्म वर्गों के एक समुच्चय में एक (कम करने योग्य) अर्ध-प्रक्षेपीय विवधता संरचना है।[8] मोडुली जैसे कि निश्चित जीनस के वक्रों के मॉड्यूल साधारणतयः एक प्रक्षेपी विवधता नहीं होते हैं; मूलतः इसका कारण यह है कि एक चिकने वक्र का अध: पतन (सीमा) गैर-चिकना या कम करने योग्य होता है। यह जीनस के एक स्थिर वक्र की धारणा की ओर जाता है , एक गैर-जरूरी-चिकनी पूर्ण वक्र जिसमें कोई बहुत खराब विलक्षणता नहीं है और इतना बड़ा ऑटोमोर्फिज्म समूह नहीं है। स्थिर वक्रों का मापांक , जीनस के स्थिर वक्रों के समरूपता वर्गों का समुच्चय , तब एक प्रक्षेपी विवधता है जिसमें एक खुले उपसमुच्चय के रूप में। तब से सीमा बिंदुओं को जोड़कर प्राप्त किया जाता है , बोलचाल की भाषा में का एक संघनन (बीजगणितीय ज्यामिति) कहा जाता है . ऐतिहासिक रूप से ममफोर्ड और डेलिग्ने का एक पेपर[9] दिखाने के लिए एक स्थिर वक्र की धारणा पेश की जब .
घटता का मॉड्यूल एक सामान्य स्थिति का उदाहरण देता है: अच्छी वस्तुओं का एक मॉड्यूल प्रक्षेपीय नहीं होता है बल्कि केवल अर्ध-प्रक्षेपीय होता है। एक अन्य मामला एक वक्र पर सदिश बंडलों का एक मापांक है। यहाँ, एक चिकने पूर्ण वक्र पर स्थिर और अर्धस्थिर वेक्टर बंडलों की धारणाएँ हैं। किसी दिए गए रैंक और एक दी गई डिग्री (बंडल के निर्धारक की डिग्री) के स्थिर वेक्टर बंडल का मापांक तब , जिसमें रैंक और डिग्री एक खुले उपसमुच्चय के रूप में।[10] चूंकि एक लाइन बंडल स्थिर है, इस तरह के मॉड्यूल के जेकोबियन विविधता का एक सामान्यीकरण है।
सामान्यतः, वक्रों के मोडुली की स्थिति के विपरीत, एक मोडुली का एक संघनन अद्वितीय नहीं होना चाहिए और कुछ स्थितियों में, अलग-अलग विधियों का उपयोग करके और अलग-अलग लेखकों द्वारा अलग-अलग गैर-समतुल्य संघनन का निर्माण किया जाता है। एक उदाहरण ओवर संकुचित करने की समस्या है , एक परिबद्ध सममित डोमेन का भागफल अंकगणित असतत समूह की एक क्रिया द्वारा .[11] का एक मूल उदाहरण कब है , सीगल का ऊपरी आधा स्थान और अनुरूपता (समूह सिद्धांत) के साथ ; उस परिस्थिति में, के रूप में एक व्याख्या है आयाम की मुख्य रूप से ध्रुवीकृत जटिल एबेलियन विवधता की (एक प्रमुख ध्रुवीकरण अपने दोहरे के साथ एक अबेलियन विवधता की पहचान करता है)। टोरिक विवधता (या टोरस अंत:स्थापन) का सिद्धांत कॉम्पैक्ट करने का एक पद्धति देता है , इसका एक टॉरॉयडल संघनन ।[12][13] लेकिन संकुचित करने के अन्य तरीके भी हैं ; उदाहरण के लिए, का न्यूनतम संघनन है बेली और बोरेल के कारण: यह मॉड्यूलर रूपों द्वारा गठित परियोजना निर्माण है (सीगल परिस्थिति में, सीगल मॉड्यूलर फॉर्म [14]) संघनन की गैर-विशिष्टता उन संघनन की मॉड्यूली व्याख्याओं की कमी के कारण है; अर्ताथ (श्रेणी-सिद्धांत अर्थानुसार) किसी भी प्राकृतिक मोडुली समस्या का प्रतिनिधित्व नहीं करते हैं या, सबसे सही भाषा में, कोई प्राकृतिक मोडुली स्टैक नहीं होता है जो स्थिर वक्रों के मोडुलि स्टैक का एक एनालॉग होगा।
गैर-सजातीय और गैर-प्रक्षेपीय उदाहरण
एक बीजगणितीय विविधता न तो संबधित हो सकती है और न ही प्रक्षेपी। एक उदाहरण देने के लिए, X = P1 × A1 और p: X → A1 प्रक्षेपण दें। यह एक बीजगणितीय विवधता है क्योंकि यह विवधता का एक उत्पाद है। चूंकि P1, X की एक बंद उप-विवधता है (p के शून्य स्थान के रूप में), यह परिशोधित नहीं है। लेकिन एक संबधित विवधता में एक बंद उप-विवधता के रूप में सकारात्मक आयाम की अनुमानित विविधता नहीं हो सकती है।
यह प्रक्षेपी भी नहीं है, क्योंकि X पर एक गैर-निरंतर नियमित कार्य है; अर्थात्, पी। गैर-संबंधी गैर-प्रक्षेपी विवधता का एक अन्य उदाहरण है X = A2 − (0, 0) (cf. विविधिता का आकृतिवाद उदाहरण § Notes )
गैर-उदाहरण
के ऊपर सजातीय लाइन पर विचार करें। सर्कल का पूरक एक बीजगणितीय नहीं है विविधता (बीजगणितीय समुच्चय भी नहीं)। ध्यान दें कि में बहुपद नहीं है (यद्यपि वास्तविक वैरिएबल ।) दूसरी ओर, में मूल का पूरक है एक बीजगणितीय (सजातीय) विवधता, क्योंकि मूल का शून्य-बिंदु है। इसे इस प्रकार समझाया जा सकता है: सजातीय रेखा का आयाम एक होता है और इसलिए स्वयं के अतिरिक्त इसकी किसी भी उप-विवधता का निश्चित रूप से कम आयाम होना चाहिए अर्थात्, शून्य।
समान कारणों से, एक एकात्मक समूह (जटिल संख्याओं पर) एक बीजगणितीय विविधता नहीं है, जबकि विशेष रैखिक समूह की एक बंद उप-विवधता है , का शून्य-बिंदु। (एक भिन्न आधार क्षेत्र में, एक एकात्मक समूह को विभिन्न प्रकार की संरचना दी जा सकती है।)
मूल परिणाम
- एक सजातीय बीजगणितीय समुच्चय V एक विविधता है अगर और केवल अगर I(V) एक प्रमुख आदर्श है; समतुल्य, V एक विविधता है अगर और केवल अगर इसकी समन्वय रिंग एक इंटीग्रल डोमेन.[15]: 52 [1]: 4
- प्रत्येक गैर-रिक्त सजातीय बीजगणितीय समुच्चय को विशिष्ट रूप से बीजगणितीय विवधता के परिमित संघ के रूप में लिखा जा सकता है (जहां अपघटन में कोई भी विवधता किसी अन्य की उप-विवधता नहीं है)।[1]: 5
- विविधता के आयाम को विभिन्न समकक्ष विधियों से परिभाषित किया जा सकता है। विवरण के लिए एक बीजगणितीय विविधता का आयाम देखें।
- बहुत से बीजगणितीय विवधता का उत्पाद (बीजगणितीय रूप से बंद क्षेत्र पर) एक बीजगणितीय विविधता है। सजातीय विवधता का एक परिमित उत्पाद सजातीय है[16] और प्रक्षेपी विवधता का एक परिमित उत्पाद प्रक्षेपी है।
बीजीय विवधता का समरूपता
बता दें कि V1, V2 बीजगणितीय विवधता हैं। हम कहते हैं कि V1 और V2 समरूपी हैं, और V1 ≅ V2 लिखते हैं, यदि नियमित ग्राफ समरूपता φ : V1 → V2 और ψ : V2 → V1 हैं जैसे कि संयोजन(गणित) ψ ∘ φ और φ ∘ ψ क्रमशः V1 और V2 पर पहचान ग्राफ हैं .
वैरिएबल्चा और सामान्यीकरण
This section includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (March 2013) (Learn how and when to remove this template message) |
ऊपर दी गई बुनियादी परिभाषाएँ और तथ्य शास्त्रीय बीजगणितीय ज्यामिति को करने में सक्षम बनाते हैं। अधिक करने में सक्षम होने के लिए - उदाहरण के लिए, बीजगणितीय रूप से बंद नहीं होने वाले खेतों की विवधता से निपटने के लिए - कुछ मूलभूत परिवर्तनों की आवश्यकता है। विविधता की आधुनिक धारणा उपरोक्त की तुलना में काफी अधिक सारगर्भित है, चूंकि बीजगणितीय रूप से बंद क्षेत्रों पर विवधता की स्थिति में समतुल्य। एक सार बीजगणितीय विविधता एक विशेष प्रकार की योजना है; ज्यामितीय पक्ष पर योजनाओं के लिए सामान्यीकरण ऊपर वर्णित पत्राचार के एक व्यापक वर्ग के छल्ले के विस्तार को सक्षम बनाता है। एक योजना एकस्थानीय रूप से रिंग की गई जगह है जैसे कि प्रत्येक बिंदु का एक पड़ोस है, जो कि स्थानीय रूप से चक्राकार स्थान के रूप में, एक रिंग के एक स्पेक्ट्रम के लिए आइसोमॉर्फिक है। मूल रूप से, k से अधिक विविधता एक ऐसी योजना है जिसका संरचना शीफ (गणित) संपत्ति के साथ k-बीजगणित का एक शीफ है कि जो वलय R ऊपर होते हैं वे सभी अभिन्न डोमेन हैं और सभी अंतिम रूप से उत्पन्न k-बीजगणित हैं, अर्थात, वे प्रधान आदर्शों द्वारा बहुपद बीजगणित के भागफल हैं।
यह परिभाषा किसी भी क्षेत्र k पर काम करती है। यह आपको चिंता किए बिना सजातीय विवधता (आम खुले समुच्चयों के साथ) को गोंद करने की अनुमति देता है क्या परिणामी वस्तु को किसी प्रक्षेपी स्थान में रखा जा सकता है। यह भी कठिनाइयों का कारण बनता है क्योंकि कोई कुछ रोग संबंधी वस्तुओं को पेश कर सकता है, उदा. शून्य के साथ एक सजातीय लाइन दोगुनी हो गई। ऐसी वस्तुओं को साधारणतयः विविधिता नहीं माना जाता है, और विभिन्न प्रकार की अंतर्निहित योजनाओं को अलग करने की आवश्यकता के द्वारा समाप्त कर दिया जाता है। (कठोरता से बोलना, एक तीसरी शर्त भी है, अर्थात्, उपरोक्त परिभाषा में किसी को केवल सूक्ष्म रूप से कई सजातीय पैच की आवश्यकता होती है।)
कुछ आधुनिक शोधकर्ता अभिन्न डोमेन सजातीय चार्ट वाले विभिन्न प्रकार के प्रतिबंध को भी हटा देते हैं, और विविधता के बारे में बात करते समय केवल यह आवश्यक होता है कि सजातीय चार्ट में तुच्छ नील-मूल हो।
एक पूर्ण विविधता एक ऐसी विविधता है जिसमें एक गैर-एकवचन वक्र के एक खुले उपसमुच्चय से किसी मानचित्र को विशिष्ट रूप से संपूर्ण वक्र तक विस्तारित किया जा सकता है। प्रत्येक अनुमानित विविधता पूर्ण है, लेकिन इसके विपरीत नहीं।
इन विविधिताओं को "सेरे के अर्थ में विविधता" कहा गया है, क्योंकि सेरे का फाउंडेशनल पेपर एफएसी[17] शीफ कोहोलॉजी पर उनके लिए लिखा गया था। वे बीजगणितीय ज्यामिति में अध्ययन शुरू करने के लिए विशिष्ट वस्तु बने रहते हैं, भले ही सहायक तरीके से अधिक सामान्य वस्तुओं का भी उपयोग किया जाता है।
एक तरीका जो सामान्यीकरण की ओर जाता है, वह है कम करने योग्य बीजगणितीय समुच्चय (और फ़ील्ड k जो बीजगणितीय रूप से बंद नहीं हैं) की अनुमति देना है। अतः वलय R पूर्णांकीय प्रांत नहीं हो सकते हैं। एक अधिक महत्वपूर्ण संशोधन रिंगों के शीफ में निलपोटेंट्स की अनुमति देना है, जो कि रिंग्स हैं जो कम नहीं होते हैं। यह मूल रूप से बीजगणितीय ज्यामिति के कई सामान्यीकरणों में से एक है जो ग्रोथेंडिक के योजनाओं के सिद्धांत में निर्मित हैं।
रिंग में निलपोटेंट तत्वों को अनुमति देना बीजगणितीय ज्यामिति में "बहुगुण" का ट्रैक रखने से संबंधित है। उदाहरण के लिए, x2 = 0 द्वारा परिभाषित रेखा की बंद उपयोजना x = 0 (मूल) द्वारा परिभाषित उपयोजना से भिन्न है। अधिकांशतः वाई के बिंदु पर योजनाओं को X → Y के आकार का फाइबर गैर-कम हो सकता है, भले ही X और Y कम हो जाएं। ज्यामितीय रूप से, यह कहता है कि अच्छे मैपिंग के तंतुओं में गैर-तुच्छ "अनंत" संरचना हो सकती है।
और भी सामान्यीकरण हैं जिन्हें बीजगणितीय रिक्त स्थान और ढेर कहा जाता है।
बीजीय मैनिफोल्ड
एक बीजगणितीय गुणक बीजगणितीय विविधता के रूप में होता है जो एक एम-आयामी के समान कई गुना होता है, और इसलिए हर पर्याप्त छोटे स्थानीय पैच किमी के लिए आइसोमोर्फिक है। समान रूप से, विविधता सुचारू कार्य है। जब k का मान वास्तविक होता है तब R बीजगणितीय गुणक नैश मैनिफोल्ड के लिए कई गुना होता हैं। बीजगणितीय मैनिफोल्ड को विश्लेषणात्मक बीजगणितीय कार्यों के लिए सीमित संग्रह के शून्य समूह के रूप में परिभाषित किया जाता है। प्रक्षेपीय बीजीय मैनिफोल्ड प्रक्षेपीय विविधताओं के लिए समान परिभाषित होता है। रीमैन क्षेत्र इसका एक उदाहरण है।
यह भी देखें
- विविधता (बहुविकल्पी) — कई गणितीय अर्थों को सूचीबद्ध करना
- बीजीय विविधता का कार्य क्षेत्र
- बायरेशनल ज्यामिति
- एबेलियन विविधता
- मकसद (बीजगणितीय ज्यामिति)
- विश्लेषणात्मक विविधता
- ज़ारिस्की-रिमेंन स्पेस
- अर्ध-बीजीय समुच्चय
टिप्पणियाँ
संदर्भ
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 Hartshorne, Robin (1977). Algebraic Geometry. Springer-Verlag. ISBN 0-387-90244-9.
- ↑ Hartshorne, Exercise I.2.9, p.12
- ↑ Nagata, Masayoshi (1956). "On the imbedding problem of abstract varieties in projective varieties". Memoirs of the College of Science, University of Kyoto. Series A: Mathematics. 30: 71–82. doi:10.1215/kjm/1250777138. MR 0088035.
- ↑ In page 65 of Fulton, William (1993), Introduction to toric varieties, Princeton University Press, ISBN 978-0-691-00049-7, a remark describes a complete toric variety that has no non-trivial line bundle; thus, in particular, it has no ample line bundle.
- ↑ Milne 2008, Proposition 2.1.
- ↑ Milne 2008, The beginning of § 5.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedहार्टशोर्न
- ↑ MFK 1994, Theorem 5.11.
- ↑ Deligne, Pierre; Mumford, David (1969). "दिए गए जीनस के वक्रों के स्थान की अपरिवर्तनीयता" (PDF). Publications Mathématiques de l'IHÉS. 36: 75–109. CiteSeerX 10.1.1.589.288. doi:10.1007/bf02684599. S2CID 16482150.
- ↑ MFK 1994, Appendix C to Ch. 5.
- ↑ Mark Goresky. Compactifications and cohomology of modular varieties. In Harmonic analysis, the trace formula, and Shimura varieties, volume 4 of Clay Math. Proc., pages 551–582. Amer. Math. Soc., Providence, RI, 2005.
- ↑ Ash, A.; Mumford, David; Rapoport, M.; Tai, Y. (1975), Smooth compactification of locally symmetric varieties (PDF), Brookline, Mass.: Math. Sci. Press, ISBN 978-0-521-73955-9, MR 0457437
- ↑ Namikawa, Yukihiko (1980). सीगल रिक्त स्थान का टोरॉयडल कॉम्पैक्टीफिकेशन. Lecture Notes in Mathematics. Vol. 812. doi:10.1007/BFb0091051. ISBN 978-3-540-10021-8.
- ↑ Chai, Ching-Li (1986). "Siegel Moduli Schemes and Their Compactifications over ". अंकगणित ज्यामिति. pp. 231–251. doi:10.1007/978-1-4613-8655-1_9. ISBN 978-1-4613-8657-5.
- ↑ Harris, Joe (1992). Algebraic Geometry - A first course. Graduate Texts in Mathematics. Vol. 133. Springer-Verlag. doi:10.1007/978-1-4757-2189-8. ISBN 0-387-97716-3.
- ↑ बीजगणितीय ज्यामिति I. Encyclopaedia of Mathematical Sciences. Vol. 23. 1994. doi:10.1007/978-3-642-57878-6. ISBN 978-3-540-63705-9.
- ↑ Serre, Jean-Pierre (1955). "सुसंगत बीजीय शीव्स" (PDF). Annals of Mathematics. 61 (2): 197–278. doi:10.2307/1969915. JSTOR 1969915.
<ref>
tag with name "Nagata57" defined in <references>
is not used in prior text.
स्रोत
- Cox, David; John Little; Don O'Shea (1997). आदर्श, किस्में और एल्गोरिदम (second ed.). Springer-Verlag. ISBN 0-387-94680-2.
- Eisenbud, David (1999). बीजगणितीय ज्यामिति की ओर एक दृष्टिकोण के साथ कम्यूटेटिव बीजगणित. Springer-Verlag. ISBN 0-387-94269-6.
- Milne, James S. (2008). "बीजीय ज्यामिति". Retrieved 2009-09-01.
- मिल्ने जे., जैकोबियन वेरायटीज, अंकगणित ज्यामिति के अध्याय VII के रूप में प्रकाशित (स्टोर्स, कॉन।, 1984), 167–212, स्प्रिंगर, न्यू यॉर्क, 1986।
- Mumford, David; Fogarty, John; Kirwan, Frances (1994). ज्यामितीय अपरिवर्तनीय सिद्धांत. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Vol. 34 (3rd ed.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-56963-3. MR 1304906.
- बीजीय ज्यामिति और अंकगणितीय वक्र /. Oxford science publications. Oxford University Press. 2006. ISBN 978-0-19-154780-5.
This article incorporates material from Isomorphism of varieties on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License. वर्ग:बीजगणितीय ज्यामिति श्रेणी:बीजीय विवधता