शीफ कोहोलॉजी
गणित में, शीफ कोहोलॉजी टोपोलॉजिकल स्पेस पर शीफ (गणित) के वैश्विक वर्गों का विश्लेषण करने के लिए होमोलॉजिकल बीजगणित का अनुप्रयोग है। व्यापक रूप से बोलते हुए, शीफ कोहोलॉजी विश्व स्तर पर ज्यामितीय समस्या को समाधान करने के लिए बाधाओं का वर्णन करती है, जब इसे स्थानीय रूप से समाधान किया जा सकता है। शेफ कॉहोलॉजी के अध्ययन के लिए केंद्रीय कार्य ग्रोथेंडिक का 1957 तोहोकू पेपर है।
ऑस्ट्रिया में ऑफलाग XVII-A के युद्ध शिविर के कैदी में जॉन लेरे द्वारा शेव्स, शीफ कोहोलॉजी और वर्णक्रमीय अनुक्रम प्रस्तुत किए गए थे।[1] 1940 से 1945 तक, लेरे और अन्य कैदियों ने शिविर में विश्वविद्यालय का आयोजन किया था।
1950 के दशक में लेरे की परिभाषाओं को सरल और स्पष्ट किया गया था। यह स्पष्ट हो गया कि शेफ सह-समरूपता न केवल बीजगणितीय टोपोलॉजी में कोहोलॉजी के लिए नया दृष्टिकोण था, किन्तु जटिल विश्लेषणात्मक ज्यामिति और बीजगणितीय ज्यामिति में भी शक्तिशाली विधि थी। इन विषयों में अधिकांश निर्दिष्ट स्थानीय गुणों के साथ वैश्विक कार्य (गणित) का निर्माण करना सम्मिलित होता है, और शेफ कोहोलॉजी आदर्श रूप से ऐसी समस्याओं के अनुकूल होती है। रीमैन-रोच प्रमेय और हॉज सिद्धांत जैसे पहले के कई परिणाम शीफ कोहोलॉजी का उपयोग करके सामान्यीकृत या उत्तम समझे गए हैं।
परिभाषा
टोपोलॉजिकल स्पेस X पर एबेलियन समूहों के शेवों की श्रेणी एक एबेलियन श्रेणी है, और इसलिए यह पूछने में समझ में आता है कि कब मोर्फिज्म f: B → C का शेव्स इंजेक्शन (एकरूपता) या विशेषण (अधिरूपता) है। उत्तर यह है कि f अंतःक्षेपी (क्रमशः विशेषण) है यदि और केवल यदि शीफ (शीफ) Bx → Cx पर संबंधित समरूपता X में प्रत्येक बिंदु x के लिए अंतःक्षेपी फलन (क्रमशः आच्छादन फलन) है। यह अनुसरण करता है कि f अंतःक्षेपी है यदि और केवल यदि U पर वर्गों का समरूपता B(U) → C(U) X में प्रत्येक खुले समुच्चय U के लिए अंतःक्षेपी है। प्रक्षेपकता अधिक सूक्ष्म है, चूंकि: मोर्फिज्म एफ विशेषण है यदि और केवल यदि X में प्रत्येक खुले समुच्चय U के लिए, U के ऊपर सी के प्रत्येक खंड, और U में हर बिंदु X, X का खुला निकटतम (गणित) V है U में ऐसा है कि V तक सीमित है, V के ऊपर B के कुछ खंड की छवि है। (शब्दों में: C का प्रत्येक खंड स्थानीय रूप से B के अनुभागों के लिए लिफ्ट करता है।)
परिणामस्वरूप, सवाल उठता है: शेवों के B → C और X के ऊपर C के एक खंड को देखते हुए, X के ऊपर B के एक खंड की छवि कब है? यह ज्यामिति में सभी प्रकार के स्थानीय-बनाम-वैश्विक प्रश्नों के लिए एक मॉडल है। शेफ कोहोलॉजी संतोषजनक सामान्य उत्तर देता है। अर्थात्, A को प्रक्षेपण B → C का कर्नेल (श्रेणी सिद्धांत) होने दें, जो X पर संक्षिप्त त्रुटिहीन अनुक्रम देता है
फिर एबेलियन समूहों का लंबा त्रुटिहीन क्रम होता है, जिसे शीफ कोहोलॉजी समूह कहा जाता है:
जहां H0(X,A) X पर A के वैश्विक अनुभागों का समूह A(X) है। उदाहरण के लिए, यदि समूह H1(X,A) शून्य है, तो इस त्रुटिहीन अनुक्रम का तात्पर्य है कि C का प्रत्येक वैश्विक खंड B के वैश्विक खंड को उठाता है। अधिक सामान्यतः, त्रुटिहीन अनुक्रम उच्च कोहोलॉजी समूहों के ज्ञान को लक्षित करने के लिए मौलिक उपकरण बनाता है। शेवों के वर्गों को समझें।
शेफ कोहोलॉजी की अलेक्जेंडर ग्रोथेंडिक की परिभाषा, जो अब मानक है, होमोलॉजिकल बीजगणित की भाषा का उपयोग करती है। आवश्यक बिंदु यह है कि टोपोलॉजिकल स्पेस X को ठीक किया जाए और कोहोलॉजी को X पर एबेलियन समूहों के शेव से लेकर एबेलियन समूहों तक ऑपरेटर के रूप में सोचा जाए। अधिक विस्तार से, X पर एबेलियन समूहों के शेवों से एबेलियन समूहों के लिए फंक्शनल E ↦ E (X) से प्रारंभ करें। यह त्रुटिहीन कारक छोड़ दिया गया है, किन्तु सामान्यतः सही त्रुटिहीन नहीं है। फिर समूह Hi(X,E) पूर्णांकों के लिए i को फ़ैक्टर E ↦ E(X) के सही व्युत्पन्न फ़ैक्टर के रूप में परिभाषित किया गया है। यह इसे स्वचालित बनाता है कि Hi(X,E) i < 0 के लिए शून्य है, और वह H0(X,E) वैश्विक वर्गों का समूह E(X) है। ऊपर दिया गया लंबा त्रुटिहीन क्रम भी इस परिभाषा से सीधा है।
व्युत्पन्न फलन की परिभाषा का उपयोग करता है कि किसी भी टोपोलॉजिकल स्पेस X पर एबेलियन समूहों के शेवों की श्रेणी में पर्याप्त इंजेक्शन हैं; अर्थात्, प्रत्येक शीफ E के लिए इंजेक्शन E → I के साथ इंजेक्शन शीफ I है।[2] यह इस प्रकार है कि प्रत्येक शीफ E में इंजेक्शन संकल्प (बीजगणित) होता है:
फिर शीफ कोहोलॉजी समूह Hi(X,E) एबेलियन समूहों की श्रृंखला परिसर के कोहोलॉजी समूह (समरूपता मॉडुलो का कर्नेल पिछले की छवि) हैं:
होमोलॉजिकल बीजगणित में मानक तर्कों का अर्थ है कि ये कोहोलॉजी समूह ई कोलाई के इंजेक्शन संकल्प की पसंद से स्वतंत्र हैं।
शेफ कोहोलॉजी की गणना करने के लिए परिभाषा का उपयोग संभवतः ही कभी सीधे किया जाता है। यह फिर भी शक्तिशाली है, क्योंकि यह महान सामान्यता में काम करता है (किसी भी टोपोलॉजिकल स्पेस पर एबेलियन समूहों का कोई भी शीफ), और यह आसानी से शीफ कोहोलॉजी के औपचारिक गुणों को दर्शाता है, जैसे कि ऊपर दी गई लंबी त्रुटिहीन अनुक्रम। विशिष्ट वर्गों के स्पेस या शेवों के लिए, शीफ कोहोलॉजी की गणना के लिए कई उपकरण हैं, जिनमें से कुछ की चर्चा नीचे की गई है।
कार्यात्मकता
टोपोलॉजिकल स्पेस के किसी भी निरंतर माप f: X → Y और Y पर एबेलियन समूहों के किसी भी शीफ E के लिए, 'पुलबैक होमोमोर्फिज्म' होता है।
प्रत्येक पूर्णांक j के लिए, जहाँ f*(E) प्रतिलोम छवि शीफ या 'पुलबैक शीफ' को दर्शाता है।[3] यदि f, Y के उप-स्थान टोपोलॉजी X का समावेश है, तो f*(E) E से X का 'प्रतिबंध' है, जिसे अधिकांश फिर से E कहा जाता है, और Y से X तक खंड s के पुलबैक को प्रतिबंध s|X कहा जाता है।
पुलबैक समरूपता का उपयोग मेयर-विएटोरिस अनुक्रम में किया जाता है, जो महत्वपूर्ण कम्प्यूटेशनल परिणाम है। अर्थात्, X को टोपोलॉजिकल स्पेस होने दें जो दो खुले उपसमुच्चय U और V का मिलन है, और E को X पर शीफ होने दें। फिर एबेलियन समूहों का लंबा त्रुटिहीन क्रम है:[4]
निरंतर गुणांकों के साथ शीफ कोहोलॉजी
टोपोलॉजिकल स्पेस X और एबेलियन समूह A के लिए, निरंतर शीफ AX का अर्थ ए में मूल्यों के साथ स्थानीय रूप से निरंतर कार्यों का शीफ है। निरंतर गुणांक वाले शीफ कोहोलॉजी समूह Hj(X,AX) निरंतर गुणांक के साथ अधिकांश Hj(X,A) के रूप में लिखा जाता है, जब तक कि यह कोहोलॉजी के दूसरे संस्करण जैसे एकवचन कोहोलॉजी के साथ भ्रम उत्पन्न न करे।
निरंतर माप f: X → Y और एबेलियन समूह A के लिए, पुलबैक शीफ़ f*(AY) AX के लिए आइसोमोर्फिक है। परिणामस्वरूप, पुलबैक होमोमोर्फिज्म टोपोलॉजिकल स्पेस से एबेलियन समूहों के लिए प्रतिपरिवर्ती संचालिका में निरंतर गुणांक के साथ शीफ कोहोलॉजी बनाता है।
किसी भी स्थान X और Y और किसी भी एबेलियन समूह A के लिए, X से Y तक के दो होमोटोपिक माप f और g, शीफ कोहोलॉजी पर समान समरूपता को प्रेरित करते हैं:[5]
यह इस प्रकार है कि दो होमोटॉपी समकक्ष स्पेस में निरंतर गुणांक वाले आइसोमोर्फिक शीफ कॉहोलॉजी हैं।
X को पैराकॉम्पैक्ट स्पेस हॉसडॉर्फ स्पेस होने दें, जो स्थानीय रूप से सिकुड़ा हुआ है, यहां तक कि कमजोर अर्थों में भी कि बिंदु x के प्रत्येक खुले निकटतम U में x का खुला निकटतम V होता है, जैसे कि समावेशन V → U स्थिर माप के लिए होमोटोपिक है। फिर एबेलियन समूह ए में गुणांक वाले X के एकवचन कोहोलॉजी समूह निरंतर गुणांक, H* (X, AX) के साथ शीफ कोहोलॉजी के लिए आइसोमॉर्फिक हैं।[6] उदाहरण के लिए, यह X के लिए टोपोलॉजिकल मैनिफोल्ड या सीडब्ल्यू जटिल है।
परिणामस्वरूप, निरंतर गुणांक वाले शीफ कोहोलॉजी की कई मूलभूत गणना एकवचन कोहोलॉजी की गणना के समान हैं। गोले, प्रोजेक्टिव स्पेस, तोरी और सतहों के कोहोलॉजी के लिए कोहोलॉजी पर लेख देखें।
स्वैच्छिक विधि से टोपोलॉजिकल स्पेस के लिए, एकवचन कोहोलॉजी और शीफ कोहोलॉजी (निरंतर गुणांक के साथ) अलग-अलग हो सकते हैं। यह H0 के लिए भी होता है। एकवचन कोहोलॉजी H0(X,'Z') X के पथ घटकों के समुच्चय से पूर्णांक 'Z' तक सभी कार्यों का समूह है, जबकि शीफ कोहोलॉजी H0(X,'Z'X) X से 'Z' तक स्थानीय रूप से स्थिर कार्यों का समूह है। ये भिन्न हैं, उदाहरण के लिए, जब X कैंटर समुच्चय है। वास्तविक में, शीफ कोहोलॉजी H0(X,'Z'X) उस स्थिति में गणनीय एबेलियन समूह है, जबकि एकवचन कोहोलॉजी H0(X,'Z') X से 'Z' तक के सभी कार्यों का समूह है, जिसमें प्रमुखता है।
पैराकॉम्पैक्ट हॉसडॉर्फ स्पेस X और X पर एबेलियन समूहों के किसी भी शेफ ई के लिए, कोहोलॉजी समूह Hj(X,E) X के आवरण आयाम से बड़े j के लिए शून्य हैं।[7] (यह एकवचन कोहोलॉजी के लिए समान सामान्यता में नहीं है: उदाहरण के लिए, यूक्लिडियन स्पेस R3 का कॉम्पैक्ट जगह सबसमुच्चय है जिसमें असीमित रूप से कई डिग्री में शून्येतर एकवचन कोहोलॉजी है।[8] कवरिंग आयाम टोपोलॉजिकल मैनिफोल्ड या CW जटिल के लिए आयाम की सामान्य धारणा से सहमत है।
परतदार और मुलायम शेव
टोपोलॉजिकल स्पेस X पर एबेलियन समूहों के शीफ E को 'एसाइक्लिक' कहा जाता है यदि Hj(X,E) = 0 सभी j > 0 के लिए। शीफ कोहोलॉजी के लंबे त्रुटिहीन अनुक्रम द्वारा, किसी भी शेफ के कोहोलॉजी की गणना E के किसी भी एसाइक्लिक रिज़ॉल्यूशन (इंजेक्शन रिज़ॉल्यूशन के अतिरिक्त) से की जा सकती है। इंजेक्टिव शीव्स एसाइक्लिक हैं, किन्तु कम्प्यूटेशंस के लिए एसाइक्लिक शेव्स के अन्य उदाहरणों के लिए यह उपयोगी है।
X पर शीफ ई को 'फ्लैबी' (फ्रेंच: फ्लास्क) कहा जाता है यदि X के खुले उपसमुच्चय पर ई के प्रत्येक खंड को X के सभी पर ई के खंड तक फैलाया जाता है। फ्लैबी शीव्स चक्रीय हैं।[9] रोजर गॉडमेंट ने शीफ कोहोलॉजी को किसी भी शीफ के देव संकल्प के माध्यम से परिभाषित किया; चूँकि पिलपिला शेव एसाइक्लिक है, गोडेमेंट की परिभाषा उपरोक्त शीफ कोहोलॉजी की परिभाषा से सहमत है।[10]
पैराकॉम्पैक्ट हौसडॉर्फ स्पेस X पर शीफ ई को 'सॉफ्ट' कहा जाता है, यदि X के बंद उपसमुच्चय के लिए ई के प्रतिबंध का प्रत्येक खंड X के सभी पर ई के खंड तक फैला हुआ है। प्रत्येक सॉफ्ट शीफ एसाइक्लिक है।[11]
सॉफ्ट शेव के कुछ उदाहरण हैं किसी भी पैराकॉम्पैक्ट हॉउसडॉर्फ स्पेस पर वास्तविक संख्या-मूल्यवान निरंतर कार्यों का शीफ, या स्मूथ फलन का शीफ (C)∞) किसी भी स्मूथ मैनीफोल्ड पर काम करता है।[12] सामान्यतः, सॉफ्ट रिंग वाली जगह पर मॉड्यूल का कोई भी शीफ सॉफ्ट होता है; उदाहरण के लिए, स्मूथ मैनिफोल्ड के ऊपर सदिश बंडल के स्मूथ सेक्शन का शीफ सॉफ्ट होता है।[13]
उदाहरण के लिए, ये परिणाम डी रम के प्रमेय के प्रमाण का भाग हैं। स्मूथ मैनिफोल्ड X के लिए, पॉइनकेयर लेम्मा कहती है कि डी रहम जटिल निरंतर शीफ 'RX' का रेजोल्यूशन है।:
जहां ΩXj स्मूथ डिफरेंशियल j-रूपों का शीफ है और मैप ΩXj → ΩXj+1 बाह्य व्युत्पन्न d है। उपरोक्त परिणामों से, शेव ΩXj मुलायम होते हैं और इसलिए एसाइक्लिक होते हैं। यह इस प्रकार है कि वास्तविक गुणांक वाले X के शीफ कॉहोलॉजी X के डी रम कॉहोलॉजी के लिए आइसोमोर्फिक है, जिसे वास्तविक सदिश स्पेस के परिसर के कॉहोलॉजी के रूप में परिभाषित किया गया है:
डी राम के प्रमेय का दूसरा भाग वास्तविक गुणांकों के साथ शीफ कोहोलॉजी और X के एकवचन कोहोलॉजी की पहचान करना है; जैसा कि ऊपर चर्चा की गई है, अधिक व्यापकता में है।
चेक कोहोलॉजी
चेक कोहोलॉजी शीफ कोहोलॉजी का अनुमान है जो अधिकांश संगणना के लिए उपयोगी होता है। अर्थात्, मान लो टोपोलॉजिकल स्पेस X का खुला आवरण हो, और E को X पर एबेलियन समूहों का समूह होने दें। एक सेट I के तत्वों i के लिए Ui के रूप में कवर में खुले सेट लिखें, और I का क्रम तय करें। फिर चेक कोहोलॉजी जेवें समूह के साथ एबेलियन समूहों के स्पष्ट परिसर के कोहोलॉजी के रूप में परिभाषित किया गया है
प्राकृतिक समरूपता है . इस प्रकार चेक कोहोलॉजी खुले समुच्चय Ui के परिमित चौराहों पर E के केवल खंडों का उपयोग करके शीफ कोहोलॉजी का अनुमान है।
यदि खुले का प्रत्येक परिमित चौराहा V अंदर समुच्चय होता है ई में गुणांक के साथ कोई उच्च कोहोलॉजी नहीं है, जिसका अर्थ है कि एचj(V,E) = 0 सभी j > 0 के लिए, फिर चेक कोहोलॉजी से समरूपता शीफ कोहोलॉजी के लिए समरूपता है।[14]
शेफ कोहोलॉजी से सीच कोहोलॉजी से संबंधित अन्य दृष्टिकोण इस प्रकार है। चेक कोहोलॉजी समूह की प्रत्यक्ष सीमा के रूप में परिभाषित किया गया है सभी खुले आवरणों पर X का (जहां शोधन (टोपोलॉजी) द्वारा खुले कवर का आदेश दिया जाता है)। समरूपता है चेक कोहोलॉजी से शीफ कोहोलॉजी तक, जो जे ≤ 1 के लिए आइसोमोर्फिज्म है। स्वैच्छिक विधि से टोपोलॉजिकल स्पेस के लिए, चेक कोहोलॉजी उच्च डिग्री में शीफ कोहोलॉजी से भिन्न हो सकती है। आसानी से, चूंकि, सीच कोहोलॉजी पैराकॉम्पैक्ट हौसडॉर्फ स्पेस पर किसी भी शीफ के लिए शीफ कोहोलॉजी के लिए आइसोमॉर्फिक है।[15]
समरूपता H1(X,E) का वर्णन करता है टोपोलॉजिकल स्पेस X पर एबेलियन समूहों के किसी भी शेफ E के लिए: यह समूह आइसोमोर्फिज्म तक X के ऊपर E-'टॉर्सर्स' (जिसे प्रिंसिपल ई-बंडल भी कहा जाता है) को वर्गीकृत करता है। (यह कथन समूह G के किसी भी समूह के लिए सामान्यीकरण करता है, गैर-अबेलियन कोहोलॉजी समुच्चय H1(X,G) का उपयोग करके आवश्यक रूप से एबेलियन नहीं है।) परिभाषा के अनुसार, X के ऊपर ई-टॉर्सर, X पर E की समूह क्रिया (गणित) के साथ समुच्चय का शीफ S है, जैसे कि X में प्रत्येक बिंदु पर खुला निकटतम है जो S, E के लिए समरूपी है, जिसमें E अनुवाद के द्वारा स्वयं पर कार्य करता है। उदाहरण के लिए, एक चक्राकार स्थान पर (X,OX), यह इस प्रकार है कि X पर उल्टे शीशों का पिकार्ड समूह शीफ कोहोलॉजी समूह H1(X,OX*) के लिए आइसोमॉर्फिक है, जहां OX* OX में इकाईयों (वलय सिद्धांत) का शीफ है।
सापेक्ष कोहोलॉजी
टोपोलॉजिकल स्पेस एक्स के एक उपसमुच्चय वाई और एक्स पर एबेलियन समूहों के एक शेफ ई के लिए, पूर्णांक j के लिए सापेक्ष कोहोलॉजी समूह परिभाषित कर सकते हैं।[16]
अन्य नाम Y में 'समर्थन' के साथ X की कोहोलॉजी हैं, या (जब Y X में बंद है) 'स्थानीय कोहोलॉजी लंबा त्रुटिहीन अनुक्रम सामान्य अर्थों में शीफ कोहोलॉजी के सापेक्ष कोहोलॉजी से संबंधित है:
जब Y X में बंद हो जाता है, तो Y में समर्थन के साथ सह-विज्ञान को फ़ैक्टर के व्युत्पन्न फ़ंक्टर के रूप में परिभाषित किया जा सकता है
E के वर्गों का समूह जो वाई पर समर्थित हैं।
कई समरूपताएँ हैं जिन्हें 'एक्ससाइसिन प्रमेय' के रूप में जाना जाता है। उदाहरण के लिए, यदि X उप-स्थानों Y और U के साथ स्थलीय स्थान है, जैसे कि Y का समापन U के आंतरिक भाग में समाहित है, और E, X पर शीफ है, तो प्रतिबंध
समरूपता है।[17] (तो बंद उपसमुच्चय Y में समर्थन के साथ कोहोलॉजी केवल Y के पास स्थान X और शीफ E के व्यवहार पर निर्भर करती है।) इसके अतिरिक्त, यदि X पैराकॉम्पैक्ट हौसडॉर्फ स्थान है जो बंद उपसमुच्चय A और B का मिलन है, और E है X पर शीफ, फिर प्रतिबंध
समरूपता है।[18]
कॉम्पैक्ट समर्थन के साथ कोहोलॉजी
बता दें कि X स्थानीय रूप से कॉम्पैक्ट टोपोलॉजिकल स्पेस है। (इस लेख में, स्थानीय रूप से कॉम्पैक्ट स्पेस को हॉसडॉर्फ समझा जाता है।) X पर एबेलियन समूहों के शेफ E के लिए, कोई 'कॉम्पैक्ट समर्थन के साथ कोहोलॉजी' Hcj(X,E) को परिभाषित कर सकता है।[19] इन समूहों को कॉम्पैक्ट रूप से समर्थित अनुभागों के फ़ंक्टर के व्युत्पन्न फ़ंक्टर के रूप में परिभाषित किया गया है:
एक प्राकृतिक समरूपता Hcj(X,E) → Hj(X,E) है, जो X कॉम्पैक्ट के लिए एक समरूपता है।
स्थानीय रूप से कॉम्पैक्ट स्पेस X पर शीफ E के लिए, E के पुलबैक में गुणांक के साथ X × 'R' के कॉम्पैक्ट रूप से समर्थित कोहोलॉजी X के कॉम्पैक्ट रूप से समर्थित कोहोलॉजी का एक बदलाव है:[20]
यह इस प्रकार है, उदाहरण के लिए, कि Hcj(Rn,Z) Z के लिए तुल्याकारी है यदि j = n और अन्यथा शून्य है।
स्वैच्छिक विधि से निरंतर मापों के संबंध में कॉम्पैक्ट रूप से समर्थित कोहोलॉजी क्रियात्मक नहीं है। एक उचित माप के लिए f: Y → X स्थानीय रूप से कॉम्पैक्ट स्पेस और X पर शीफ E, चूंकि, कॉम्पैक्ट रूप से समर्थित कोहोलॉजी पर पुलबैक समरूपता है
इसके अतिरिक्त, स्थानीय रूप से कॉम्पैक्ट स्पेस X के खुले उपसमुच्चय U और X पर शीफ E के लिए, पुशफॉरवर्ड समरूपता है जिसे 'शून्य से विस्तार' के रूप में जाना जाता है:[21]
स्थानीय रूप से कॉम्पैक्ट स्पेस X और बंद उपसमुच्चय Y के लिए, कॉम्पैक्ट रूप से समर्थित कोहोलॉजी के लिए दोनों समरूपताएं लंबे त्रुटिहीन स्थानीयकरण अनुक्रम में होती हैं:[22]
कप उत्पाद
टोपोलॉजिकल स्पेस एक्स पर एबेलियन समूहों के किसी भी ए और बी के लिए, सभी i और j के लिए कप उत्पाद Z का एक बिलिनियर मैप है।[23]
यहाँ A⊗B 'Z' के ऊपर टेन्सर उत्पाद को दर्शाता है, किन्तु यदि A और B कुछ शीफ OX के ऊपर मॉड्यूल के शेव हैं क्रमविनिमेय वलयों का, तो कोई Hi+j(X,A⊗ZB) to Hi+j(X,A⊗OXB) से आगे का माप बना सकता है। विशेष रूप से, शेफ ओ के लिए X क्रमविनिमेय वलयों का, कप उत्पाद प्रत्यक्ष योग बनाता है
वर्गीकृत-कम्यूटेटिव वलय में, जिसका अर्थ है
कि Hj में सभी u के लिए V और Hj में v होता है।[24]
शेवों का परिसर
व्युत्पन्न फ़ैक्टर के रूप में शीफ कोहोलॉजी की परिभाषा टोपोलॉजिकल स्पेस X के कोहोलॉजी को परिभाषित करने के लिए फैली हुई है, जो किसी भी चेन जटिल ई ऑफ शीव्स में गुणांक के साथ है:
विशेष रूप से, यदि जटिल ई नीचे घिरा हुआ है (शेफ Ej j के लिए शून्य पर्याप्त रूप से ऋणात्मक है), तो E के पास 'इंजेक्शन रिज़ॉल्यूशन' I होता है जैसे कि एकल पूला करता है। (परिभाषा के अनुसार, I श्रृंखला का नक्शा E → I के साथ इंजेक्टिव शेव्स के नीचे का बाउंडेड जटिल है जो अर्ध-समरूपता है।) फिर कोहोलॉजी समूह Hj(X,E) को एबेलियन समूहों के परिसर के कोहोलॉजी के रूप में परिभाषित किया गया है
शीशों के परिसर में गुणांक वाले स्थान के कोहोलॉजी को पहले हाइपरकॉहोलॉजी कहा जाता था, किन्तु सामान्यतः अब केवल कोहोलॉजी कहा जाता है।
अधिक सामान्यतः, अंतरिक्ष X पर शेव E के किसी भी परिसर के लिए (आवश्यक नहीं कि नीचे बाध्य हो), कोहोलॉजी समूह Hj(X,E) को X पर शेवों की व्युत्पन्न श्रेणी में आकारिकी के समूह के रूप में परिभाषित किया गया है:
जहां ZX पूर्णांकों से जुड़ा स्थिर शीफ है, और E[j] का अर्थ है जटिल E ने j चरणों को बाईं ओर स्थानांतरित कर दिया है।
पोंकारे द्वैत और सामान्यीकरण
टोपोलॉजी में केंद्रीय परिणाम पोंकारे द्वैत प्रमेय है: मैनीफोल्ड बंद उन्मुखता जुड़ा हुआ स्थान टोपोलॉजिकल मैनिफोल्ड X ऑफ आयाम n और फील्ड (गणित) k, समूह H के लिए 'n(X,k) k और कप उत्पाद के लिए आइसोमॉर्फिक है
सभी पूर्णांक j के लिए आदर्श युग्म है। अर्थात् Hj(X,k) से परिणामी माप दोहरी स्थान Hn−j(X,k)* के लिए तुल्याकारिता है। विशेष रूप से, सदिश स्पेस HJ(X, के) और Hn−j(X,k)* का ही (परिमित) आयाम (सदिश स्पेस) है।
शेफ कॉहोलॉजी की भाषा का उपयोग करके कई सामान्यीकरण संभव हैं। यदि X उन्मुख एन-मैनीफोल्ड है, आवश्यक नहीं कि कॉम्पैक्ट या जुड़ा हुआ है, और के क्षेत्र है, तो कोहोलॉजी कॉम्पैक्ट समर्थन के साथ कोहोलॉजी का दोहरा है:
किसी भी मैनीफोल्ड XX X पर और फील्ड के लिए, शीफ है, उन्मुखीकरण शीफ', जो स्थानीय रूप से (किन्तु संभवतः वैश्विक रूप से नहीं) निरंतर शीफ के लिए आइसोमॉर्फिक है। स्वैच्छिक विधि से n-मैनीफोल्ड X के लिए पॉइनकेयर द्वंद्व का संस्करण समरूपता है:[25]
अधिक सामान्यतः, यदि ई n-मैनिफोल्ड X पर के-सदिश स्पेस का स्थानीय रूप से स्थिर शीफ है और E के शीफ में परिमित आयाम है, तो समरूपता है
क्षेत्र के अतिरिक्त स्वैच्छिक विधि से कम्यूटेटिव रिंग में गुणांक के साथ, पॉइनकेयर द्वैत स्वाभाविक रूप से कोहोलॉजी से बोरेल-मूर समरूपता के रूप में समरूपता के रूप में तैयार किया जाता है।
वर्डियर द्वैत एक विशाल सामान्यीकरण है। परिमित आयाम के किसी भी स्थानीय रूप से कॉम्पैक्ट स्पेस X और किसी भी क्षेत्र k के लिए, X पर शेवों की व्युत्पन्न श्रेणी D(X) में एक वस्तु DX होती है जिसे ड्यूलाइज़िंग कॉम्प्लेक्स (k में गुणांक के साथ) कहा जाता है। वर्डियर द्वैत का एक स्थिति समरूपता है:[26]
n-मैनिफोल्ड X के लिए, दोहरीकरण जटिल DX शिफ्ट oX[n] के लिए आइसोमोर्फिक है ओरिएंटेशन शीफ का। परिणामस्वरूप, वर्डियर द्वैत में विशेष स्थिति के रूप में पोंकारे द्वैत सम्मिलित है।
'अलेक्जेंडर द्वैत' पोंकारे द्वैत का और उपयोगी सामान्यीकरण है। उन्मुख n-मैनीफोल्ड M और किसी भी क्षेत्र k के किसी भी बंद उपसमुच्चय X के लिए, समरूपता है:[27]
यह पहले से ही X के लिए एम = 'आर' का कॉम्पैक्ट उपसमुच्चय दिलचस्प हैn, जहां यह कहता है (सामान्यतः बोलना) कि 'आर' का कोहोलॉजीn−X, X के शीफ कोहोलॉजी का दोहरा है। इस कथन में, एकवचन कोहोलॉजी के अतिरिक्त शीफ कोहोलॉजी पर विचार करना आवश्यक है, जब तक कि कोई X पर अतिरिक्त अनुमान नहीं लगाता है जैसे कि स्थानीय संकुचन।
उच्च प्रत्यक्ष चित्र और लेरे स्पेक्ट्रल अनुक्रम
मान लो f: X → Y सांस्थितिकीय स्पेस का सतत नक्शा है, और E को X पर एबेलियन समूहों का समूह होने दें। प्रत्यक्ष छवि शीफ f*E द्वारा परिभाषित Y पर शीफ है
Y के किसी भी खुले उपसमुच्चय U के लिए। उदाहरण के लिए, यदि f, X से बिंदु तक का नक्शा है, तो f*E वैश्विक वर्गों के समूह ई (X) के अनुरूप बिंदु पर ई है।
X पर शेव से लेकर Y पर शेव तक फंक्टर f* त्रुटिहीन छोड़ दिया जाता है, किन्तु सामान्यतः सही सटीक नहीं होता है। वाई पर उच्च प्रत्यक्ष छवि शीव Rif*E को फ़ंक्टर f* के सही व्युत्पन्न फ़ंक्टर के रूप में परिभाषित किया गया है। एक अन्य विवरण यह है कि Rif*E प्रीशेफ Z पर Y से जुड़ा शीफ है।[28]
इस प्रकार, उच्च प्रत्यक्ष छवि शीव सामान्यतः बोलने वाले वाई में छोटे खुले समुच्चयों की उलटी छवियों के कोहोलॉजी का वर्णन करते हैं।
'लेरे वर्णक्रमीय अनुक्रम ' X पर कोहोलॉजी से Y पर कोहोलॉजी से संबंधित है। अर्थात्, किसी भी निरंतर माप f: X → Y और X पर किसी भी शीफ E के लिए, स्पेक्ट्रल अनुक्रम है
यह बहुत ही सामान्य परिणाम है। विशेष स्थिति जहां f कंपन है और E स्थिर शीफ है, होमोटोपी सिद्धांत में सेर्रे वर्णक्रमीय अनुक्रम के नाम से महत्वपूर्ण भूमिका निभाता है। उस स्थिति में, उच्च प्रत्यक्ष छवि वाले शीव स्थानीय रूप से स्थिर होते हैं, शीफ के साथ f के तंतुओं के कोहोलॉजी समूह होते हैं, और इसलिए सेर्रे वर्णक्रमीय अनुक्रम को इस रूप में लिखा जा सकता है
एबेलियन समूह ए के लिए
लेरे स्पेक्ट्रल अनुक्रम का सरल किन्तु उपयोगी स्थिति यह है कि टोपोलॉजिकल स्पेस Y के किसी भी बंद उपसमुच्चय X और X पर किसी भी शीफ ई के लिए, f: X → वाई को सम्मिलित करने के लिए, समरूपता है[29]
परिणामस्वरूप, बंद उप-स्थान पर शीफ कोहोलॉजी के बारे में किसी भी प्रश्न का परिवेश स्थान पर प्रत्यक्ष छवि शीफ के बारे में प्रश्न में अनुवाद किया जा सकता है।
कोहोलॉजी की परिमितता
शीफ कोहोलॉजी पर मजबूत परिमितता परिणाम है। मान लें कि X कॉम्पैक्ट हॉउसडॉर्फ स्पेस है, और R प्रमुख आदर्श डोमेन है, उदाहरण के लिए फ़ील्ड या पूर्णांकों का वलय 'Z'। मान लो E को X पर R-मॉड्यूल का एक शीफ हो, और मान लें कि E ने स्थानीय रूप से अंतिम रूप से कोहोलॉजी उत्पन्न की है, जिसका अर्थ है कि X में प्रत्येक बिंदु X के लिए, प्रत्येक पूर्णांक J, और X के प्रत्येक खुले निकटतम यू, खुला निकटतम V ⊂ U का x ऐसा है कि Hj(U,E) → Hj(V,E) की छवि एक अंतिम रूप से उत्पन्न R-मॉड्यूल है। फिर कोहोलॉजी समूह Hj(X,E) सूक्ष्म रूप से उत्पन्न R-मॉड्यूल हैं।[30]
उदाहरण के लिए, कॉम्पैक्ट हॉसडॉर्फ स्पेस X के लिए जो स्थानीय रूप से सिकुड़ा हुआ है (कमजोर अर्थ में शीफ कोहोलॉजी # शीफ कोहोलॉजी पर निरंतर गुणांक के साथ चर्चा की गई है), शीफ कोहोलॉजी समूह Hj(X,'Z') प्रत्येक पूर्णांक j के लिए अंतिम रूप से उत्पन्न होता है।
स्थिति जहां परिमितता परिणाम लागू होता है वह निर्माण योग्य शीफ का होता है। बता दें कि X स्थैतिक रूप से स्तरीकृत स्थान है। विशेष रूप से, X बंद उपसमुच्चय के अनुक्रम के साथ आता है
ऐसा है कि प्रत्येक अंतर Xi-Xi−1 आयाम i का सामयिक मैनीफोल्ड है। X पर आर-मॉड्यूल का शीफ E दिए गए स्तरीकरण के संबंध में 'संरचनात्मक' है यदि प्रत्येक स्तर Xi−Xi−1के लिए ई का प्रतिबंध स्थानीय रूप से स्थिर रूप से उत्पन्न आर-मॉड्यूल शीफ के साथ स्थिर है। X पर एक शीफ ई जो दिए गए स्तरीकरण के संबंध में रचनात्मक है, स्थानीय रूप से अंतिम रूप से कोहोलॉजी उत्पन्न करता है।[31] यदि X कॉम्पैक्ट है, तो यह अनुसरण करता है कि एक रचनात्मक शीफ में गुणांक वाले X के कोहोलॉजी समूह Hj(X,E) अंतिम रूप से उत्पन्न होते हैं।
अधिक सामान्यतः, मान लें कि X कॉम्पैक्ट करने योग्य है, जिसका अर्थ है कि कॉम्पैक्ट स्तरीकृत स्थान W है जिसमें X खुले उपसमुच्चय के रूप में है, W-X स्ट्रैटा के जुड़े घटकों (टोपोलॉजी) का एक संघ है। फिर, X पर R-मॉड्यूल के किसी भी रचनात्मक शीफ ई के लिए, R-मॉड्यूल Hj(X,E) और Hcj(X,E) अंतिम रूप से उत्पन्न होते हैं।[32] उदाहरण के लिए, कोई भी जटिल बीजगणितीय किस्म X, अपने पारंपरिक (यूक्लिडियन) टोपोलॉजी के साथ, इस अर्थ में कॉम्पैक्ट करने योग्य है।
सुसंगत शीशों का कोहोलॉजी
बीजगणितीय ज्यामिति और जटिल विश्लेषणात्मक ज्यामिति में, सुसंगत शेव विशेष ज्यामितीय महत्व के शेवों का वर्ग है। उदाहरण के लिए, बीजगणितीय सदिश बंडल (नोएदरियन योजना पर) या होलोमॉर्फिक सदिश बंडल (जटिल विश्लेषणात्मक स्थान पर) को सुसंगत शीफ के रूप में देखा जा सकता है, किन्तु सुसंगत शेवों को सदिश बंडलों पर लाभ होता है कि वे एबेलियन श्रेणी बनाते हैं। योजना पर, अर्ध-सुसंगत शेवों पर विचार करना भी उपयोगी है, जिसमें अनंत रैंक के स्थानीय रूप से मुक्त शेव सम्मिलित हैं।
सुसंगत शीफ में गुणांक के साथ योजना या जटिल विश्लेषणात्मक स्थान के कोहोलॉजी समूहों के बारे में बहुत कुछ जाना जाता है। यह सिद्धांत बीजगणितीय ज्यामिति में महत्वपूर्ण तकनीकी उपकरण है। मुख्य प्रमेयों में विभिन्न स्थितियों में कोहोलॉजी के लुप्त होने के परिणाम हैं, सुसंगत शीफ कोहोलॉजी और एकवचन कोहोलॉजी जैसे हॉज सिद्धांत और रीमैन रोच प्रमेय जैसे सुसंगत शीफ कोहोलॉजी में यूलर विशेषताओं पर सूत्र के बीच कोहोलॉजी तुलना की परिमित-आयामीता पर परिणाम हैं।
साइट पर शेव
1960 के दशक में, ग्रोथेंडिक ने साइट की धारणा को परिभाषित किया, जिसका अर्थ है ग्रोथेंडिक टोपोलॉजी से लैस श्रेणी। साइट 'सी' आकारिकी 'वी' के समुच्चय की धारणा को स्वयंसिद्ध करती हैα → C में U, U का आवरण है। टोपोलॉजिकल स्पेस X प्राकृतिक तरीके से साइट का निर्धारण करता है: श्रेणी C में X के खुले उपसमुच्चय हैं, जिसमें morphisms सम्मिलित हैं, और morphisms V के समुच्चय के साथα → U को U का आवरण कहा जा रहा है यदि और केवल यदि U खुले उपसमुच्चय V का मिलन हैα. उस स्थिति से परे ग्रोथेंडिक टोपोलॉजी का प्रेरक उदाहरण योजनाओं पर ईटेल टोपोलॉजी था। तब से, बीजगणितीय ज्यामिति में कई अन्य ग्रोथेंडिक टोपोलॉजी का उपयोग किया गया है: एफपीक्यूसी टोपोलॉजी, निस्नेविच टोपोलॉजी, और इसी तरह।
शेफ की परिभाषा किसी भी साइट पर काम करती है। तो एक साइट पर सेट के एक पूले के बारे में बात कर सकते हैं, एक साइट पर एबेलियन समूहों के एक समूह, और इसी प्रकार। एक व्युत्पन्न फ़ैक्टर के रूप में शीफ कोहोलॉजी की परिभाषा साइट पर भी काम करती है। तो किसी के पास साइट के किसी ऑब्जेक्ट X और एबेलियन समूहों के किसी भी शेफ E के लिए शेफ कोहोलॉजी समूह Hj(X, E) है। ईटेल टोपोलॉजी के लिए, यह ईटेल कोहोलॉजी की धारणा देता है, जिसके कारण वेइल अनुमानों का प्रमाण मिला था। बीजगणितीय ज्यामिति में क्रिस्टलीय कोहोलॉजी और कई अन्य कोहोलॉजी सिद्धांतों को भी एक उपयुक्त साइट पर शीफ कोहोलॉजी के रूप में परिभाषित किया गया है।
टिप्पणियाँ
- ↑ (Miller 2000)
- ↑ (Iversen 1986, Theorem II.3.1.)
- ↑ (Iversen 1986, II.5.1.)
- ↑ (Iversen 1986, II.5.10.)
- ↑ (Iversen 1986, Theorem IV.1.1.)
- ↑ (Bredon 1997, Theorem III.1.1.)
- ↑ (Godement 1973, II.5.12.)
- ↑ (Barratt & Milnor 1962)
- ↑ (Iversen 1986, Theorem II.3.5.)
- ↑ (Iversen 1986, II.3.6.)
- ↑ (Bredon 1997, Theorem II.9.11.)
- ↑ (Bredon 1997, Example II.9.4.)
- ↑ (Bredon 1997, Theorem II.9.16.)
- ↑ (Godement 1973, section II.5.4.)
- ↑ (Godement 1973, section II.5.10.)
- ↑ (Bredon 1997, section II.12.)
- ↑ (Bredon 1997, Theorem II.12.9.)
- ↑ (Bredon 1997, Corollary II.12.5.)
- ↑ (Iversen 1986, Definition III.1.3.)
- ↑ (Bredon 1997, Theorem II.15.2.)
- ↑ (Iversen 1986, II.7.4.)
- ↑ (Iversen 1986, II.7.6.)
- ↑ (Iversen 1986, II.10.1.)
- ↑ (Iversen 1986, II.10.3.)
- ↑ (Iversen 1986, Theorem V.3.2.)
- ↑ (Iversen 1986, IX.4.1.)
- ↑ (Iversen 1986, Theorem IX.4.7 and section IX.1.)
- ↑ (Iversen 1986, Proposition II.5.11.)
- ↑ (Iversen 1986, II.5.4.)
- ↑ (Bredon 1997, Theorem II.17.4), (Borel 1984, V.3.17.)
- ↑ (Borel 1984, Proposition V.3.10.)
- ↑ (Borel 1984, Lemma V.10.13.)
संदर्भ
- Barratt, M. G.; Milnor, John (1962), "An example of anomalous singular homology", Proceedings of the American Mathematical Society, 13 (2): 293–297, doi:10.1090/S0002-9939-1962-0137110-9, MR 0137110
- Borel, Armand (1984), Intersection Cohomology, Birkhäuser, ISBN 0-8176-3274-3, MR 0788171
- Bredon, Glen E. (1997) [1967], Sheaf Theory, Graduate Texts in Mathematics, vol. 170 (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-0647-7, ISBN 978-0-387-94905-5, MR 1481706
- Godement, Roger (1973) [1958], Topologie algébrique et théorie des faisceaux, Paris: Hermann, MR 0345092
- Griffiths, Phillip; Harris, Joseph (1994) [1978], Principles of Algebraic Geometry, Wiley Classics Library, New York: John Wiley & Sons, doi:10.1002/9781118032527, ISBN 978-0-471-05059-9, MR 1288523
- Grothendieck, A. (1957), "Sur quelques points d'algèbre homologique", Tôhoku Mathematical Journal, (2), 9 (2): 119–221, doi:10.2748/tmj/1178244839, MR 0102537. English translation.
- Hartshorne, Robin (1977), Algebraic Geometry, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157, OCLC 13348052
- Iversen, Birger (1986), Cohomology of Sheaves, Universitext, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-82783-9, ISBN 978-3-540-16389-3, MR 0842190
- Miller, Haynes (2000). "Leray in Oag XVIIA: The origins of sheaf theory, sheaf cohomology, and spectral sequences" (PDF). S2CID 13024093.