मुक्त वस्तु: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Left adjoint to a forgetful functor to sets}}
{{Short description|Left adjoint to a forgetful functor to sets}}
गणित में, '''मुक्त वस्तु''' का विचार अमूर्त बीजगणित की मूल अवधारणाओं में से एक है। अनौपचारिक रूप से, एक [[सेट (गणित)|सेटसमुच्चय (गणित)]] ''A'' पर एक मुक्त वस्तु को ''A'' पर एक सामान्य [[बीजगणितीय संरचना]] के रूप में माना जा सकता है: मुक्त वस्तु के तत्वों के बीच होने वाले एकमात्र समीकरण वे हैं जो बीजगणितीय संरचना के परिभाषित सिद्धांतों से अनुसरण करते हैं। उदाहरणों में [[मुक्त समूह]], टेन्सर बीजगणित, या मुक्त जालक सम्मिलित हैं।
गणित में, '''मुक्त वस्तु''' का विचार अमूर्त बीजगणित की मूल अवधारणाओं में से एक है। अनौपचारिक रूप से, एक [[सेट (गणित)|समुच्चय (गणित)]] ''A'' पर एक मुक्त वस्तु को ''A'' पर एक सामान्य [[बीजगणितीय संरचना]] के रूप में माना जा सकता है: मुक्त वस्तु के तत्वों के बीच होने वाले एकमात्र समीकरण वे हैं जो बीजगणितीय संरचना के परिभाषित सिद्धांतों से अनुसरण करते हैं। उदाहरणों में [[मुक्त समूह]], टेन्सर बीजगणित, या मुक्त जालक सम्मिलित हैं।


अवधारणा इस अर्थ में [[सार्वभौमिक बीजगणित]] का एक भाग है, कि यह सभी प्रकार की बीजगणितीय संरचना ([[अंतिम]] संचालन के साथ) से संबंधित है। [[श्रेणी सिद्धांत]] के संदर्भ में इसका एक सूत्रीकरण भी है, हालांकि यह अभी और अधिक अमूर्त शब्दों में है।
अवधारणा इस अर्थ में [[सार्वभौमिक बीजगणित]] का एक भाग है, कि यह सभी प्रकार की बीजगणितीय संरचना ([[अंतिम]] संचालन के साथ) से संबंधित है। [[श्रेणी सिद्धांत]] के संदर्भ में इसका एक सूत्रीकरण भी है, हालांकि यह अभी और अधिक अमूर्त शब्दों में है।
Line 8: Line 8:
नि: शुल्क वस्तुएं वेक्टर अंतरिक्ष में [[आधार (रैखिक बीजगणित)]] की धारणा के [[श्रेणी (गणित)]] के प्रत्यक्ष सामान्यीकरण हैं। एक रैखिक कार्य {{math|''u'' : ''E''<sub>1</sub> → ''E''<sub>2</sub>}} वेक्टर रिक्त स्थान के बीच पूरी तरह से वेक्टर स्थान के आधार पर इसके मूल्यों द्वारा निर्धारित किया जाता है {{math|''E''<sub>1</sub>.}} निम्नलिखित परिभाषा इसे किसी भी श्रेणी में अनुवादित करती है।
नि: शुल्क वस्तुएं वेक्टर अंतरिक्ष में [[आधार (रैखिक बीजगणित)]] की धारणा के [[श्रेणी (गणित)]] के प्रत्यक्ष सामान्यीकरण हैं। एक रैखिक कार्य {{math|''u'' : ''E''<sub>1</sub> → ''E''<sub>2</sub>}} वेक्टर रिक्त स्थान के बीच पूरी तरह से वेक्टर स्थान के आधार पर इसके मूल्यों द्वारा निर्धारित किया जाता है {{math|''E''<sub>1</sub>.}} निम्नलिखित परिभाषा इसे किसी भी श्रेणी में अनुवादित करती है।


एक [[ठोस श्रेणी]] एक ऐसी श्रेणी है जो सेटसमुच्चय करने के लिए एक वफादार फ़ैक्टर से सुसज्जित है, [[सेट की श्रेणी|सेटसमुच्चय की श्रेणी]]। होने देना {{math|'''C'''}} एक विश्वसनीय कार्यकर्ता के साथ एक ठोस श्रेणी बनें {{math|''f'' : '''C''' → '''Set'''}}. होने देना {{math|''X''}} एक सेटसमुच्चय हो (अर्थात, सेटसमुच्चय में एक वस्तु), जो परिभाषित होने वाली मुक्त वस्तु का ''आधार'' होगा। पर एक मुक्त वस्तु {{mvar|X}} एक वस्तु से मिलकर एक जोड़ी है <math>A=F(X)</math> में {{math|'''C'''}} और एक इंजेक्शन <math>i:X\to f(A)</math> (कैनोनिकल इंजेक्शन कहा जाता है), जो निम्नलिखित [[सार्वभौमिक संपत्ति]] को संतुष्ट करता है:
एक [[ठोस श्रेणी]] एक ऐसी श्रेणी है जो समुच्चय करने के लिए एक वफादार फ़ैक्टर से सुसज्जित है, [[सेट की श्रेणी|समुच्चय की श्रेणी]]। होने देना {{math|'''C'''}} एक विश्वसनीय कार्यकर्ता के साथ एक ठोस श्रेणी बनें {{math|''f'' : '''C''' → '''Set'''}}. होने देना {{math|''X''}} एक समुच्चय हो (अर्थात, समुच्चय में एक वस्तु), जो परिभाषित होने वाली मुक्त वस्तु का ''आधार'' होगा। पर एक मुक्त वस्तु {{mvar|X}} एक वस्तु से मिलकर एक जोड़ी है <math>A=F(X)</math> में {{math|'''C'''}} और एक इंजेक्शन <math>i:X\to f(A)</math> (कैनोनिकल इंजेक्शन कहा जाता है), जो निम्नलिखित [[सार्वभौमिक संपत्ति]] को संतुष्ट करता है:
: किसी वस्तु के लिए {{math|''B''}} में {{math|'''C'''}} और सेटसमुच्चय के बीच कोई नक्शा <math>\varphi:X\to f(B),</math> एक अद्वितीय morphism मौजूद है <math>g:A\to B</math> में {{math|'''C'''}} ऐसा है कि <math>\varphi=f(g)\circ i.</math> यही है, निम्नलिखित कम्यूटेटिव आरेख यात्रा करता है:
: किसी वस्तु के लिए {{math|''B''}} में {{math|'''C'''}} और समुच्चय के बीच कोई नक्शा <math>\varphi:X\to f(B),</math> एक अद्वितीय morphism मौजूद है <math>g:A\to B</math> में {{math|'''C'''}} ऐसा है कि <math>\varphi=f(g)\circ i.</math> यही है, निम्नलिखित कम्यूटेटिव आरेख यात्रा करता है:


::<math>
::<math>
Line 18: Line 18:
\end{array}
\end{array}
</math>
</math>
यदि मुक्त वस्तुएं मौजूद हैं {{math|'''C'''}}, यह सत्यापित करने के लिए सीधा है कि सार्वभौमिक संपत्ति का तात्पर्य है कि दो सेटसमुच्चयों के बीच का प्रत्येक मानचित्र उन पर निर्मित मुक्त वस्तुओं के बीच एक अद्वितीय आकारिकी उत्पन्न करता है, और यह एक फ़नकार को परिभाषित करता है <math>F:\mathbf{Set}\to \mathbf C.</math> यह इस प्रकार है कि, यदि मुक्त वस्तुएँ मौजूद हैं {{math|'''C'''}}, काम करनेवाला {{mvar|F}}, जिसे मुफ्त-ऑब्जेक्ट फ़ंक्टर कहा जाता है, भुलक्कड़ फ़ैक्टर का बायाँ भाग है {{mvar|f}}; अर्थात् आक्षेप होता है
यदि मुक्त वस्तुएं मौजूद हैं {{math|'''C'''}}, यह सत्यापित करने के लिए सीधा है कि सार्वभौमिक संपत्ति का तात्पर्य है कि दो समुच्चयों के बीच का प्रत्येक मानचित्र उन पर निर्मित मुक्त वस्तुओं के बीच एक अद्वितीय आकारिकी उत्पन्न करता है, और यह एक फ़नकार को परिभाषित करता है <math>F:\mathbf{Set}\to \mathbf C.</math> यह इस प्रकार है कि, यदि मुक्त वस्तुएँ मौजूद हैं {{math|'''C'''}}, काम करनेवाला {{mvar|F}}, जिसे मुफ्त-ऑब्जेक्ट फ़ंक्टर कहा जाता है, भुलक्कड़ फ़ैक्टर का बायाँ भाग है {{mvar|f}}; अर्थात् आक्षेप होता है
:<math>\operatorname{Hom}_\mathbf{Set}(X, f(B))\cong \operatorname{Hom}_\mathbf{C}(F(X), B).</math>
:<math>\operatorname{Hom}_\mathbf{Set}(X, f(B))\cong \operatorname{Hom}_\mathbf{C}(F(X), B).</math>




== उदाहरण ==
== उदाहरण ==
मुक्त वस्तुओं का निर्माण दो चरणों में होता है। [[सहयोगी कानून]] के अनुरूप बीजगणित के लिए, पहला कदम [[वर्णमाला (कंप्यूटर विज्ञान)]] से बने सभी संभावित [[स्ट्रिंग (कंप्यूटर विज्ञान)]] के संग्रह पर विचार करना है। फिर शब्दों पर [[तुल्यता संबंध]]ों का एक सेटसमुच्चय लगाया जाता है, जहां संबंध बीजगणितीय वस्तु के परिभाषित संबंध होते हैं। तब मुक्त वस्तु में [[तुल्यता वर्ग]]ों का समूह होता है।
मुक्त वस्तुओं का निर्माण दो चरणों में होता है। [[सहयोगी कानून]] के अनुरूप बीजगणित के लिए, पहला कदम [[वर्णमाला (कंप्यूटर विज्ञान)]] से बने सभी संभावित [[स्ट्रिंग (कंप्यूटर विज्ञान)]] के संग्रह पर विचार करना है। फिर शब्दों पर [[तुल्यता संबंध]]ों का एक समुच्चय लगाया जाता है, जहां संबंध बीजगणितीय वस्तु के परिभाषित संबंध होते हैं। तब मुक्त वस्तु में [[तुल्यता वर्ग]]ों का समूह होता है।


उदाहरण के लिए, एक समूह के दो जनरेटिंग सेटसमुच्चय में मुक्त समूह के निर्माण पर विचार करें। एक पाँच अक्षरों से मिलकर एक वर्णमाला से प्रांरम होता है <math>\{e,a,b,a^{-1},b^{-1}\}</math>. पहले चरण में, अक्षरों को अभी तक कोई नियत अर्थ नहीं दिया गया है <math>a^{-1}</math> या <math>b^{-1}</math>; इन्हें बाद में, दूसरे चरण में दिया जाएगा। इस प्रकार, कोई समान रूप से अच्छी तरह से पाँच अक्षरों में वर्णमाला के साथ प्रांरम कर सकता है <math>S=\{a,b,c,d,e\}</math>. इस उदाहरण में, सभी शब्दों या स्ट्रिंग्स का सेटसमुच्चय <math>W(S)</math> हर संभव क्रम में व्यवस्थित अक्षरों के साथ, एबेसेडे और एबीसी, और इसी तरह, मनमाने ढंग से परिमित लंबाई के तार सम्मिलित होंगे।
उदाहरण के लिए, एक समूह के दो जनरेटिंग समुच्चय में मुक्त समूह के निर्माण पर विचार करें। एक पाँच अक्षरों से मिलकर एक वर्णमाला से प्रांरम होता है <math>\{e,a,b,a^{-1},b^{-1}\}</math>. पहले चरण में, अक्षरों को अभी तक कोई नियत अर्थ नहीं दिया गया है <math>a^{-1}</math> या <math>b^{-1}</math>; इन्हें बाद में, दूसरे चरण में दिया जाएगा। इस प्रकार, कोई समान रूप से अच्छी तरह से पाँच अक्षरों में वर्णमाला के साथ प्रांरम कर सकता है <math>S=\{a,b,c,d,e\}</math>. इस उदाहरण में, सभी शब्दों या स्ट्रिंग्स का समुच्चय <math>W(S)</math> हर संभव क्रम में व्यवस्थित अक्षरों के साथ, एबेसेडे और एबीसी, और इसी तरह, मनमाने ढंग से परिमित लंबाई के तार सम्मिलित होंगे।


अगले चरण में, तुल्यता संबंधों का एक सेटसमुच्चय लगाया जाता है। एक [[समूह (गणित)]] के लिए तुल्यता संबंध पहचान द्वारा गुणन के हैं, <math>ge=eg=g</math>, और व्युत्क्रमों का गुणन: <math>gg^{-1}=g^{-1}g=e</math>. इन संबंधों को ऊपर के तार पर प्रायुक्त करने पर, एक प्राप्त होता है
अगले चरण में, तुल्यता संबंधों का एक समुच्चय लगाया जाता है। एक [[समूह (गणित)]] के लिए तुल्यता संबंध पहचान द्वारा गुणन के हैं, <math>ge=eg=g</math>, और व्युत्क्रमों का गुणन: <math>gg^{-1}=g^{-1}g=e</math>. इन संबंधों को ऊपर के तार पर प्रायुक्त करने पर, एक प्राप्त होता है


:<math>aebecede = aba^{-1}b^{-1},</math>
:<math>aebecede = aba^{-1}b^{-1},</math>
Line 33: Line 33:


:<math>abdc = abb^{-1}a^{-1} = e.</math>
:<math>abdc = abb^{-1}a^{-1} = e.</math>
द्वारा तुल्यता संबंध या [[सर्वांगसमता संबंध]] को नकारना <math>\sim</math>मुक्त वस्तु तब शब्दों के समतुल्य वर्गों का संग्रह है। इस प्रकार, इस उदाहरण में, दो जनरेटर में मुक्त समूह भागफल सेटसमुच्चय है
द्वारा तुल्यता संबंध या [[सर्वांगसमता संबंध]] को नकारना <math>\sim</math>मुक्त वस्तु तब शब्दों के समतुल्य वर्गों का संग्रह है। इस प्रकार, इस उदाहरण में, दो जनरेटर में मुक्त समूह भागफल समुच्चय है


:<math>F_2=W(S)/\sim.</math>
:<math>F_2=W(S)/\sim.</math>
इसे प्राय: इस प्रकार लिखा जाता है <math>F_2=W(S)/E</math> कहाँ <math>W(S) = \{a_1 a_2 \ldots a_n \, \vert \; a_k \in S \, ; \, n \in \mathbb{N}\}</math> सभी शब्दों का सेटसमुच्चय है, और <math>E = \{a_1 a_2 \ldots a_n \, \vert \; e = a_1 a_2 \ldots a_n \, ; \, a_k \in S \, ; \, n \in \mathbb{N}\}</math> एक समूह को परिभाषित करने वाले संबंधों के प्रायुक्त होने के बाद, पहचान का समतुल्य वर्ग है।
इसे प्राय: इस प्रकार लिखा जाता है <math>F_2=W(S)/E</math> कहाँ <math>W(S) = \{a_1 a_2 \ldots a_n \, \vert \; a_k \in S \, ; \, n \in \mathbb{N}\}</math> सभी शब्दों का समुच्चय है, और <math>E = \{a_1 a_2 \ldots a_n \, \vert \; e = a_1 a_2 \ldots a_n \, ; \, a_k \in S \, ; \, n \in \mathbb{N}\}</math> एक समूह को परिभाषित करने वाले संबंधों के प्रायुक्त होने के बाद, पहचान का समतुल्य वर्ग है।


एक सरल उदाहरण [[मुक्त मोनोइड]]्स हैं। एक सेटसमुच्चय एक्स पर मुक्त मोनॉयड, एक्स को वर्णमाला के रूप में उपयोग करने वाले सभी परिमित स्ट्रिंग (कंप्यूटर विज्ञान) का मोनॉयड है, जिसमें स्ट्रिंग्स का संचालन संयोजन होता है। पहचान खाली स्ट्रिंग है। संक्षेप में, मुक्त मोनॉइड केवल सभी शब्दों का समुच्चय है, जिसमें कोई तुल्यता संबंध नहीं लगाया गया है। [[क्लेन स्टार]] पर लेख में इस उदाहरण को और विकसित किया गया है।
एक सरल उदाहरण [[मुक्त मोनोइड]]्स हैं। एक समुच्चय एक्स पर मुक्त मोनॉयड, एक्स को वर्णमाला के रूप में उपयोग करने वाले सभी परिमित स्ट्रिंग (कंप्यूटर विज्ञान) का मोनॉयड है, जिसमें स्ट्रिंग्स का संचालन संयोजन होता है। पहचान खाली स्ट्रिंग है। संक्षेप में, मुक्त मोनॉइड केवल सभी शब्दों का समुच्चय है, जिसमें कोई तुल्यता संबंध नहीं लगाया गया है। [[क्लेन स्टार]] पर लेख में इस उदाहरण को और विकसित किया गया है।


=== सामान्य मामला ===
=== सामान्य मामला ===
सामान्य मामले में, बीजगणितीय संबंधों को साहचर्य होने की आवश्यकता नहीं है, इस मामले में शुरुआती बिंदु सभी शब्दों का सेटसमुच्चय नहीं है, किन्तु कोष्ठकों के साथ विरामित तार हैं, जो अक्षरों के गैर-सहयोगी समूहों को इंगित करने के लिए उपयोग किए जाते हैं। इस तरह की स्ट्रिंग को [[बाइनरी ट्री]] या [[मुक्त मेग्मा]] द्वारा समतुल्य रूप से दर्शाया जा सकता है; पेड़ की पत्तियाँ वर्णमाला के अक्षर हैं।
सामान्य मामले में, बीजगणितीय संबंधों को साहचर्य होने की आवश्यकता नहीं है, इस मामले में शुरुआती बिंदु सभी शब्दों का समुच्चय नहीं है, किन्तु कोष्ठकों के साथ विरामित तार हैं, जो अक्षरों के गैर-सहयोगी समूहों को इंगित करने के लिए उपयोग किए जाते हैं। इस तरह की स्ट्रिंग को [[बाइनरी ट्री]] या [[मुक्त मेग्मा]] द्वारा समतुल्य रूप से दर्शाया जा सकता है; पेड़ की पत्तियाँ वर्णमाला के अक्षर हैं।


तब बीजगणितीय संबंध पेड़ की पत्तियों पर सामान्य [[arity]] या [[अंतिम संबंध]] हो सकते हैं। सभी संभावित कोष्ठकों के संग्रह के साथ प्रांरम करने के अतिरिक्त, हेरब्रांड ब्रह्मांड के साथ प्रांरम करना अधिक सुविधाजनक हो सकता है। प्रश्न में विशेष बीजगणितीय वस्तु के आधार पर, किसी मुक्त वस्तु की सामग्री का उचित वर्णन या गणना करना आसान या कठिन हो सकता है। उदाहरण के लिए, दो जनरेटर में मुक्त समूह का आसानी से वर्णन किया गया है। इसके विपरीत, एक से अधिक जनरेटर में मुक्त हेटिंग बीजगणित की संरचना के बारे में बहुत कम या कुछ भी ज्ञात नहीं है।<ref>Peter T. Johnstone, ''Stone Spaces'', (1982) Cambridge University Press, {{ISBN|0-521-23893-5}}. ''(A treatment of the one-generator free Heyting algebra is given in chapter 1, section 4.11)''</ref> यह निर्धारित करने की समस्या कि क्या दो अलग-अलग तार एक ही तुल्यता वर्ग के हैं, [[शब्द समस्या (गणित)]] के रूप में जानी जाती है।
तब बीजगणितीय संबंध पेड़ की पत्तियों पर सामान्य [[arity]] या [[अंतिम संबंध]] हो सकते हैं। सभी संभावित कोष्ठकों के संग्रह के साथ प्रांरम करने के अतिरिक्त, हेरब्रांड ब्रह्मांड के साथ प्रांरम करना अधिक सुविधाजनक हो सकता है। प्रश्न में विशेष बीजगणितीय वस्तु के आधार पर, किसी मुक्त वस्तु की सामग्री का उचित वर्णन या गणना करना आसान या कठिन हो सकता है। उदाहरण के लिए, दो जनरेटर में मुक्त समूह का आसानी से वर्णन किया गया है। इसके विपरीत, एक से अधिक जनरेटर में मुक्त हेटिंग बीजगणित की संरचना के बारे में बहुत कम या कुछ भी ज्ञात नहीं है।<ref>Peter T. Johnstone, ''Stone Spaces'', (1982) Cambridge University Press, {{ISBN|0-521-23893-5}}. ''(A treatment of the one-generator free Heyting algebra is given in chapter 1, section 4.11)''</ref> यह निर्धारित करने की समस्या कि क्या दो अलग-अलग तार एक ही तुल्यता वर्ग के हैं, [[शब्द समस्या (गणित)]] के रूप में जानी जाती है।
Line 50: Line 50:
== मुक्त सार्वभौमिक बीजगणित ==
== मुक्त सार्वभौमिक बीजगणित ==
{{main|Term algebra}}
{{main|Term algebra}}
होने देना <math>S</math> कोई भी सेटसमुच्चय हो, और रहने दो <math>\mathbf{A}</math> प्रकार की एक बीजगणितीय संरचना हो <math>\rho</math> द्वारा उत्पन्न <math>S</math>. आइए इस बीजगणितीय संरचना के अंतर्निहित सेटसमुच्चय को दें <math>\mathbf{A}</math>, कभी-कभी इसका ब्रह्मांड कहा जाता है, हो <math>A</math>, और जाने <math>\psi: S \to A</math> एक समारोह हो। हम कहते हैं <math>(A, \psi)</math> (या अनौपचारिक रूप से सिर्फ <math>\mathbf{A}</math>) एक मुक्त बीजगणित है (प्रकार का <math>\rho</math>) मंच पर <math>S</math> मुफ्त जनरेटर की, यदि हर बीजगणित के लिए <math>\mathbf{B}</math> प्रकार का <math>\rho</math> और हर समारोह <math>\tau: S \to B</math>, कहाँ <math>B</math> का एक ब्रह्मांड है <math>\mathbf{B}</math>, एक अद्वितीय समरूपता मौजूद है <math>\sigma: A \to B</math> ऐसा है कि <math>\sigma \circ \psi = \tau.</math>
होने देना <math>S</math> कोई भी समुच्चय हो, और रहने दो <math>\mathbf{A}</math> प्रकार की एक बीजगणितीय संरचना हो <math>\rho</math> द्वारा उत्पन्न <math>S</math>. आइए इस बीजगणितीय संरचना के अंतर्निहित समुच्चय को दें <math>\mathbf{A}</math>, कभी-कभी इसका ब्रह्मांड कहा जाता है, हो <math>A</math>, और जाने <math>\psi: S \to A</math> एक समारोह हो। हम कहते हैं <math>(A, \psi)</math> (या अनौपचारिक रूप से सिर्फ <math>\mathbf{A}</math>) एक मुक्त बीजगणित है (प्रकार का <math>\rho</math>) मंच पर <math>S</math> मुफ्त जनरेटर की, यदि हर बीजगणित के लिए <math>\mathbf{B}</math> प्रकार का <math>\rho</math> और हर समारोह <math>\tau: S \to B</math>, कहाँ <math>B</math> का एक ब्रह्मांड है <math>\mathbf{B}</math>, एक अद्वितीय समरूपता मौजूद है <math>\sigma: A \to B</math> ऐसा है कि <math>\sigma \circ \psi = \tau.</math>




== मुफ्त फंक्‍टर==
== मुफ्त फंक्‍टर==
एक मुक्त वस्तु के लिए सबसे सामान्य सेटसमुच्चयिंग श्रेणी सिद्धांत में है, जहां एक [[ऑपरेटर]], फ़्री फ़ैक्टर को परिभाषित करता है, जो भुलक्कड़ फंक्टर के बाईं ओर है।
एक मुक्त वस्तु के लिए सबसे सामान्य समुच्चयिंग श्रेणी सिद्धांत में है, जहां एक [[ऑपरेटर]], फ़्री फ़ैक्टर को परिभाषित करता है, जो भुलक्कड़ फंक्टर के बाईं ओर है।


बीजगणितीय संरचनाओं की श्रेणी C पर विचार करें; वस्तुओं को कुछ कानूनों का पालन करते हुए सेटसमुच्चय प्लस ऑपरेशंस के रूप में सोचा जा सकता है। इस श्रेणी में एक कारक है, <math>U:\mathbf{C}\to\mathbf{Set}</math>, भुलक्कड़ फ़ंक्टर, जो सी से सेटसमुच्चय, सेटसमुच्चय की श्रेणी में वस्तुओं और कार्यों को मैप करता है। भुलक्कड़ फ़ंक्टर बहुत सरल है: यह सभी कार्यों को अनदेखा करता है।
बीजगणितीय संरचनाओं की श्रेणी C पर विचार करें; वस्तुओं को कुछ कानूनों का पालन करते हुए समुच्चय प्लस ऑपरेशंस के रूप में सोचा जा सकता है। इस श्रेणी में एक कारक है, <math>U:\mathbf{C}\to\mathbf{Set}</math>, भुलक्कड़ फ़ंक्टर, जो सी से समुच्चय, समुच्चय की श्रेणी में वस्तुओं और कार्यों को मैप करता है। भुलक्कड़ फ़ंक्टर बहुत सरल है: यह सभी कार्यों को अनदेखा करता है।


मुफ्त फंक्‍टर ''एफ'', जब यह मौजूद होता है, ''यू'' के बगल में बाईं ओर होता है। वह है, <math>F:\mathbf{Set}\to\mathbf{C}</math> सेटसमुच्चय एक्स को 'सेटसमुच्चय' में उनकी संबंधित मुफ्त ऑब्जेक्ट्स एफ (एक्स) श्रेणी 'सी' में ले जाता है। सेटसमुच्चय एक्स को मुफ्त ऑब्जेक्ट एफ (एक्स) के जेनरेटर के सेटसमुच्चय के रूप में माना जा सकता है।
मुफ्त फंक्‍टर ''एफ'', जब यह मौजूद होता है, ''यू'' के बगल में बाईं ओर होता है। वह है, <math>F:\mathbf{Set}\to\mathbf{C}</math> समुच्चय एक्स को 'समुच्चय' में उनकी संबंधित मुफ्त ऑब्जेक्ट्स एफ (एक्स) श्रेणी 'सी' में ले जाता है। समुच्चय एक्स को मुफ्त ऑब्जेक्ट एफ (एक्स) के जेनरेटर के समुच्चय के रूप में माना जा सकता है।


मुक्त फ़ंक्टर के लिए एक बाएँ आसन्न होने के लिए, एक 'सेटसमुच्चय'-मोर्फिज़्म भी होना चाहिए  <math>\eta:X\to U(F(X))\,\!</math>. अधिक स्पष्ट रूप से, एफ, 'सी' में समरूपता तक है, जो निम्नलिखित सार्वभौमिक संपत्ति द्वारा विशेषता है:
मुक्त फ़ंक्टर के लिए एक बाएँ आसन्न होने के लिए, एक 'समुच्चय'-मोर्फिज़्म भी होना चाहिए  <math>\eta:X\to U(F(X))\,\!</math>. अधिक स्पष्ट रूप से, एफ, 'सी' में समरूपता तक है, जो निम्नलिखित सार्वभौमिक संपत्ति द्वारा विशेषता है:
: जब भी A 'C' में एक बीजगणित है, और {{nowrap|''g'' : ''X'' → ''U''(''A'')}} एक फ़ंक्शन (सेटसमुच्चय की श्रेणी में एक रूपवाद) है, तो एक अद्वितीय सी-रूपवाद है {{nowrap|''h'' : ''F''(''X'') → ''A''}} ऐसा है कि {{nowrap|1=''U''(''h''){{Hair space}}∘{{Hair space}}''η'' = ''g''}}.
: जब भी A 'C' में एक बीजगणित है, और {{nowrap|''g'' : ''X'' → ''U''(''A'')}} एक फ़ंक्शन (समुच्चय की श्रेणी में एक रूपवाद) है, तो एक अद्वितीय सी-रूपवाद है {{nowrap|''h'' : ''F''(''X'') → ''A''}} ऐसा है कि {{nowrap|1=''U''(''h''){{Hair space}}∘{{Hair space}}''η'' = ''g''}}.


विशेष रूप से, यह उस सेटसमुच्चय पर मुक्त वस्तु में एक सेटसमुच्चय भेजता है; यह एक आधार का समावेश है। दुरुपयोग संकेतन, <math>X \to F(X)</math> (यह संकेतन का दुरुपयोग करता है क्योंकि एक्स एक सेटसमुच्चय है, जबकि एफ (एक्स) बीजगणित है; सही ढंग से, यह है <math>X \to U(F(X))</math>).
विशेष रूप से, यह उस समुच्चय पर मुक्त वस्तु में एक समुच्चय भेजता है; यह एक आधार का समावेश है। दुरुपयोग संकेतन, <math>X \to F(X)</math> (यह संकेतन का दुरुपयोग करता है क्योंकि एक्स एक समुच्चय है, जबकि एफ (एक्स) बीजगणित है; सही ढंग से, यह है <math>X \to U(F(X))</math>).


[[प्राकृतिक परिवर्तन]] <math>\eta:\operatorname{id}_\mathbf{Set}\to UF</math> [[इकाई (श्रेणी सिद्धांत)]] कहा जाता है; एक साथ देश के साथ <math>\varepsilon:FU\to \operatorname {id}_\mathbf{C}</math>, कोई एक टी-बीजगणित का निर्माण कर सकता है, और इसलिए एक [[मोनाड (श्रेणी सिद्धांत)]]।
[[प्राकृतिक परिवर्तन]] <math>\eta:\operatorname{id}_\mathbf{Set}\to UF</math> [[इकाई (श्रेणी सिद्धांत)]] कहा जाता है; एक साथ देश के साथ <math>\varepsilon:FU\to \operatorname {id}_\mathbf{C}</math>, कोई एक टी-बीजगणित का निर्माण कर सकता है, और इसलिए एक [[मोनाड (श्रेणी सिद्धांत)]]।
Line 71: Line 71:
=== अस्तित्व ===
=== अस्तित्व ===
सामान्य अस्तित्व प्रमेय हैं जो प्रायुक्त होते हैं; उनमें से सबसे मुलभुत इसकी गारंटी देता है
सामान्य अस्तित्व प्रमेय हैं जो प्रायुक्त होते हैं; उनमें से सबसे मुलभुत इसकी गारंटी देता है
: जब भी सी एक किस्म (सार्वभौमिक बीजगणित) है, तो प्रत्येक सेटसमुच्चय 'एक्स' के लिए सी में एक मुक्त वस्तु ''एफ''(''एक्स'') है।
: जब भी सी एक किस्म (सार्वभौमिक बीजगणित) है, तो प्रत्येक समुच्चय 'एक्स' के लिए सी में एक मुक्त वस्तु ''एफ''(''एक्स'') है।


यहाँ, विविधता एक परिमित बीजगणितीय श्रेणी का एक पर्यायवाची है, इस प्रकार इसका अर्थ है कि संबंधों का समुच्चय परिमित संबंध है, और ''बीजगणितीय'' क्योंकि यह सेटसमुच्चय पर मोनाड (श्रेणी सिद्धांत) है।
यहाँ, विविधता एक परिमित बीजगणितीय श्रेणी का एक पर्यायवाची है, इस प्रकार इसका अर्थ है कि संबंधों का समुच्चय परिमित संबंध है, और ''बीजगणितीय'' क्योंकि यह समुच्चय पर मोनाड (श्रेणी सिद्धांत) है।


=== सामान्य मामला ===
=== सामान्य मामला ===
अन्य प्रकार की भुलक्कड़पन भी वस्तुओं को मुक्त वस्तुओं की तरह ही जन्म देती है, जिसमें वे एक भुलक्कड़ फ़नकार के साथ छोड़ दी जाती हैं, जरूरी नहीं कि वे सेटसमुच्चय हों।
अन्य प्रकार की भुलक्कड़पन भी वस्तुओं को मुक्त वस्तुओं की तरह ही जन्म देती है, जिसमें वे एक भुलक्कड़ फ़नकार के साथ छोड़ दी जाती हैं, जरूरी नहीं कि वे समुच्चय हों।


उदाहरण के लिए, सदिश स्थान पर टेन्सर बीजगणित का निर्माण [[साहचर्य बीजगणित]] पर फ़ैक्टर के बाईं ओर है जो बीजगणित संरचना की उपेक्षा करता है। इसलिए इसे अधिकांश [[मुक्त बीजगणित]] भी कहा जाता है। इसी तरह [[सममित बीजगणित]] और [[बाहरी बीजगणित]] एक सदिश स्थान पर मुक्त सममित और विरोधी सममित बीजगणित हैं।
उदाहरण के लिए, सदिश स्थान पर टेन्सर बीजगणित का निर्माण [[साहचर्य बीजगणित]] पर फ़ैक्टर के बाईं ओर है जो बीजगणित संरचना की उपेक्षा करता है। इसलिए इसे अधिकांश [[मुक्त बीजगणित]] भी कहा जाता है। इसी तरह [[सममित बीजगणित]] और [[बाहरी बीजगणित]] एक सदिश स्थान पर मुक्त सममित और विरोधी सममित बीजगणित हैं।
Line 112: Line 112:


== यह भी देखें ==
== यह भी देखें ==
* [[जनरेटिंग सेट|जनरेटिंग सेटसमुच्चय]]
* [[जनरेटिंग सेट|जनरेटिंग समुच्चय]]


==टिप्पणियाँ==
==टिप्पणियाँ==

Revision as of 07:41, 18 February 2023

गणित में, मुक्त वस्तु का विचार अमूर्त बीजगणित की मूल अवधारणाओं में से एक है। अनौपचारिक रूप से, एक समुच्चय (गणित) A पर एक मुक्त वस्तु को A पर एक सामान्य बीजगणितीय संरचना के रूप में माना जा सकता है: मुक्त वस्तु के तत्वों के बीच होने वाले एकमात्र समीकरण वे हैं जो बीजगणितीय संरचना के परिभाषित सिद्धांतों से अनुसरण करते हैं। उदाहरणों में मुक्त समूह, टेन्सर बीजगणित, या मुक्त जालक सम्मिलित हैं।

अवधारणा इस अर्थ में सार्वभौमिक बीजगणित का एक भाग है, कि यह सभी प्रकार की बीजगणितीय संरचना (अंतिम संचालन के साथ) से संबंधित है। श्रेणी सिद्धांत के संदर्भ में इसका एक सूत्रीकरण भी है, हालांकि यह अभी और अधिक अमूर्त शब्दों में है।

परिभाषा

नि: शुल्क वस्तुएं वेक्टर अंतरिक्ष में आधार (रैखिक बीजगणित) की धारणा के श्रेणी (गणित) के प्रत्यक्ष सामान्यीकरण हैं। एक रैखिक कार्य u : E1E2 वेक्टर रिक्त स्थान के बीच पूरी तरह से वेक्टर स्थान के आधार पर इसके मूल्यों द्वारा निर्धारित किया जाता है E1. निम्नलिखित परिभाषा इसे किसी भी श्रेणी में अनुवादित करती है।

एक ठोस श्रेणी एक ऐसी श्रेणी है जो समुच्चय करने के लिए एक वफादार फ़ैक्टर से सुसज्जित है, समुच्चय की श्रेणी। होने देना C एक विश्वसनीय कार्यकर्ता के साथ एक ठोस श्रेणी बनें f : CSet. होने देना X एक समुच्चय हो (अर्थात, समुच्चय में एक वस्तु), जो परिभाषित होने वाली मुक्त वस्तु का आधार होगा। पर एक मुक्त वस्तु X एक वस्तु से मिलकर एक जोड़ी है में C और एक इंजेक्शन (कैनोनिकल इंजेक्शन कहा जाता है), जो निम्नलिखित सार्वभौमिक संपत्ति को संतुष्ट करता है:

किसी वस्तु के लिए B में C और समुच्चय के बीच कोई नक्शा एक अद्वितीय morphism मौजूद है में C ऐसा है कि यही है, निम्नलिखित कम्यूटेटिव आरेख यात्रा करता है:

यदि मुक्त वस्तुएं मौजूद हैं C, यह सत्यापित करने के लिए सीधा है कि सार्वभौमिक संपत्ति का तात्पर्य है कि दो समुच्चयों के बीच का प्रत्येक मानचित्र उन पर निर्मित मुक्त वस्तुओं के बीच एक अद्वितीय आकारिकी उत्पन्न करता है, और यह एक फ़नकार को परिभाषित करता है यह इस प्रकार है कि, यदि मुक्त वस्तुएँ मौजूद हैं C, काम करनेवाला F, जिसे मुफ्त-ऑब्जेक्ट फ़ंक्टर कहा जाता है, भुलक्कड़ फ़ैक्टर का बायाँ भाग है f; अर्थात् आक्षेप होता है


उदाहरण

मुक्त वस्तुओं का निर्माण दो चरणों में होता है। सहयोगी कानून के अनुरूप बीजगणित के लिए, पहला कदम वर्णमाला (कंप्यूटर विज्ञान) से बने सभी संभावित स्ट्रिंग (कंप्यूटर विज्ञान) के संग्रह पर विचार करना है। फिर शब्दों पर तुल्यता संबंधों का एक समुच्चय लगाया जाता है, जहां संबंध बीजगणितीय वस्तु के परिभाषित संबंध होते हैं। तब मुक्त वस्तु में तुल्यता वर्गों का समूह होता है।

उदाहरण के लिए, एक समूह के दो जनरेटिंग समुच्चय में मुक्त समूह के निर्माण पर विचार करें। एक पाँच अक्षरों से मिलकर एक वर्णमाला से प्रांरम होता है . पहले चरण में, अक्षरों को अभी तक कोई नियत अर्थ नहीं दिया गया है या ; इन्हें बाद में, दूसरे चरण में दिया जाएगा। इस प्रकार, कोई समान रूप से अच्छी तरह से पाँच अक्षरों में वर्णमाला के साथ प्रांरम कर सकता है . इस उदाहरण में, सभी शब्दों या स्ट्रिंग्स का समुच्चय हर संभव क्रम में व्यवस्थित अक्षरों के साथ, एबेसेडे और एबीसी, और इसी तरह, मनमाने ढंग से परिमित लंबाई के तार सम्मिलित होंगे।

अगले चरण में, तुल्यता संबंधों का एक समुच्चय लगाया जाता है। एक समूह (गणित) के लिए तुल्यता संबंध पहचान द्वारा गुणन के हैं, , और व्युत्क्रमों का गुणन: . इन संबंधों को ऊपर के तार पर प्रायुक्त करने पर, एक प्राप्त होता है

जहां यह समझ में आया के लिए एक स्टैंड-इन है , और के लिए एक स्टैंड-इन है , जबकि पहचान तत्व है। इसी तरह, एक है

द्वारा तुल्यता संबंध या सर्वांगसमता संबंध को नकारना मुक्त वस्तु तब शब्दों के समतुल्य वर्गों का संग्रह है। इस प्रकार, इस उदाहरण में, दो जनरेटर में मुक्त समूह भागफल समुच्चय है

इसे प्राय: इस प्रकार लिखा जाता है कहाँ सभी शब्दों का समुच्चय है, और एक समूह को परिभाषित करने वाले संबंधों के प्रायुक्त होने के बाद, पहचान का समतुल्य वर्ग है।

एक सरल उदाहरण मुक्त मोनोइड्स हैं। एक समुच्चय एक्स पर मुक्त मोनॉयड, एक्स को वर्णमाला के रूप में उपयोग करने वाले सभी परिमित स्ट्रिंग (कंप्यूटर विज्ञान) का मोनॉयड है, जिसमें स्ट्रिंग्स का संचालन संयोजन होता है। पहचान खाली स्ट्रिंग है। संक्षेप में, मुक्त मोनॉइड केवल सभी शब्दों का समुच्चय है, जिसमें कोई तुल्यता संबंध नहीं लगाया गया है। क्लेन स्टार पर लेख में इस उदाहरण को और विकसित किया गया है।

सामान्य मामला

सामान्य मामले में, बीजगणितीय संबंधों को साहचर्य होने की आवश्यकता नहीं है, इस मामले में शुरुआती बिंदु सभी शब्दों का समुच्चय नहीं है, किन्तु कोष्ठकों के साथ विरामित तार हैं, जो अक्षरों के गैर-सहयोगी समूहों को इंगित करने के लिए उपयोग किए जाते हैं। इस तरह की स्ट्रिंग को बाइनरी ट्री या मुक्त मेग्मा द्वारा समतुल्य रूप से दर्शाया जा सकता है; पेड़ की पत्तियाँ वर्णमाला के अक्षर हैं।

तब बीजगणितीय संबंध पेड़ की पत्तियों पर सामान्य arity या अंतिम संबंध हो सकते हैं। सभी संभावित कोष्ठकों के संग्रह के साथ प्रांरम करने के अतिरिक्त, हेरब्रांड ब्रह्मांड के साथ प्रांरम करना अधिक सुविधाजनक हो सकता है। प्रश्न में विशेष बीजगणितीय वस्तु के आधार पर, किसी मुक्त वस्तु की सामग्री का उचित वर्णन या गणना करना आसान या कठिन हो सकता है। उदाहरण के लिए, दो जनरेटर में मुक्त समूह का आसानी से वर्णन किया गया है। इसके विपरीत, एक से अधिक जनरेटर में मुक्त हेटिंग बीजगणित की संरचना के बारे में बहुत कम या कुछ भी ज्ञात नहीं है।[1] यह निर्धारित करने की समस्या कि क्या दो अलग-अलग तार एक ही तुल्यता वर्ग के हैं, शब्द समस्या (गणित) के रूप में जानी जाती है।

जैसा कि उदाहरण सुझाते हैं, मुक्त वस्तुएँ वाक्य - विन्यास से निर्माण की तरह दिखती हैं; कोई यह कहकर कुछ हद तक उलट सकता है कि सिंटैक्स के प्रमुख उपयोगों को मुक्त वस्तुओं के रूप में समझाया और वर्णित किया जा सकता है, जो स्पष्ट रूप से भारी 'विराम चिह्न' को समझने योग्य (और अधिक यादगार) बनाता है।[clarification needed]


मुक्त सार्वभौमिक बीजगणित

होने देना कोई भी समुच्चय हो, और रहने दो प्रकार की एक बीजगणितीय संरचना हो द्वारा उत्पन्न . आइए इस बीजगणितीय संरचना के अंतर्निहित समुच्चय को दें , कभी-कभी इसका ब्रह्मांड कहा जाता है, हो , और जाने एक समारोह हो। हम कहते हैं (या अनौपचारिक रूप से सिर्फ ) एक मुक्त बीजगणित है (प्रकार का ) मंच पर मुफ्त जनरेटर की, यदि हर बीजगणित के लिए प्रकार का और हर समारोह , कहाँ का एक ब्रह्मांड है , एक अद्वितीय समरूपता मौजूद है ऐसा है कि


मुफ्त फंक्‍टर

एक मुक्त वस्तु के लिए सबसे सामान्य समुच्चयिंग श्रेणी सिद्धांत में है, जहां एक ऑपरेटर, फ़्री फ़ैक्टर को परिभाषित करता है, जो भुलक्कड़ फंक्टर के बाईं ओर है।

बीजगणितीय संरचनाओं की श्रेणी C पर विचार करें; वस्तुओं को कुछ कानूनों का पालन करते हुए समुच्चय प्लस ऑपरेशंस के रूप में सोचा जा सकता है। इस श्रेणी में एक कारक है, , भुलक्कड़ फ़ंक्टर, जो सी से समुच्चय, समुच्चय की श्रेणी में वस्तुओं और कार्यों को मैप करता है। भुलक्कड़ फ़ंक्टर बहुत सरल है: यह सभी कार्यों को अनदेखा करता है।

मुफ्त फंक्‍टर एफ, जब यह मौजूद होता है, यू के बगल में बाईं ओर होता है। वह है, समुच्चय एक्स को 'समुच्चय' में उनकी संबंधित मुफ्त ऑब्जेक्ट्स एफ (एक्स) श्रेणी 'सी' में ले जाता है। समुच्चय एक्स को मुफ्त ऑब्जेक्ट एफ (एक्स) के जेनरेटर के समुच्चय के रूप में माना जा सकता है।

मुक्त फ़ंक्टर के लिए एक बाएँ आसन्न होने के लिए, एक 'समुच्चय'-मोर्फिज़्म भी होना चाहिए . अधिक स्पष्ट रूप से, एफ, 'सी' में समरूपता तक है, जो निम्नलिखित सार्वभौमिक संपत्ति द्वारा विशेषता है:

जब भी A 'C' में एक बीजगणित है, और g : XU(A) एक फ़ंक्शन (समुच्चय की श्रेणी में एक रूपवाद) है, तो एक अद्वितीय सी-रूपवाद है h : F(X) → A ऐसा है कि U(h) ∘ η = g.

विशेष रूप से, यह उस समुच्चय पर मुक्त वस्तु में एक समुच्चय भेजता है; यह एक आधार का समावेश है। दुरुपयोग संकेतन, (यह संकेतन का दुरुपयोग करता है क्योंकि एक्स एक समुच्चय है, जबकि एफ (एक्स) बीजगणित है; सही ढंग से, यह है ).

प्राकृतिक परिवर्तन इकाई (श्रेणी सिद्धांत) कहा जाता है; एक साथ देश के साथ , कोई एक टी-बीजगणित का निर्माण कर सकता है, और इसलिए एक मोनाड (श्रेणी सिद्धांत)

कॉफ़्री फ़ैक्टर भुलक्कड़ फंक्‍टर का सही संलग्‍न है।

अस्तित्व

सामान्य अस्तित्व प्रमेय हैं जो प्रायुक्त होते हैं; उनमें से सबसे मुलभुत इसकी गारंटी देता है

जब भी सी एक किस्म (सार्वभौमिक बीजगणित) है, तो प्रत्येक समुच्चय 'एक्स' के लिए सी में एक मुक्त वस्तु एफ(एक्स) है।

यहाँ, विविधता एक परिमित बीजगणितीय श्रेणी का एक पर्यायवाची है, इस प्रकार इसका अर्थ है कि संबंधों का समुच्चय परिमित संबंध है, और बीजगणितीय क्योंकि यह समुच्चय पर मोनाड (श्रेणी सिद्धांत) है।

सामान्य मामला

अन्य प्रकार की भुलक्कड़पन भी वस्तुओं को मुक्त वस्तुओं की तरह ही जन्म देती है, जिसमें वे एक भुलक्कड़ फ़नकार के साथ छोड़ दी जाती हैं, जरूरी नहीं कि वे समुच्चय हों।

उदाहरण के लिए, सदिश स्थान पर टेन्सर बीजगणित का निर्माण साहचर्य बीजगणित पर फ़ैक्टर के बाईं ओर है जो बीजगणित संरचना की उपेक्षा करता है। इसलिए इसे अधिकांश मुक्त बीजगणित भी कहा जाता है। इसी तरह सममित बीजगणित और बाहरी बीजगणित एक सदिश स्थान पर मुक्त सममित और विरोधी सममित बीजगणित हैं।

मुक्त वस्तुओं की सूची

विशिष्ट प्रकार की मुक्त वस्तुओं में सम्मिलित हैं:

यह भी देखें

टिप्पणियाँ

  1. Peter T. Johnstone, Stone Spaces, (1982) Cambridge University Press, ISBN 0-521-23893-5. (A treatment of the one-generator free Heyting algebra is given in chapter 1, section 4.11)

[Category:Adjoint functo