बैंडविड्थ (सिग्नल प्रोसेसिंग): Difference between revisions
No edit summary |
|||
Line 3: | Line 3: | ||
[[Image:Baseband.svg|right|300px|thumb|आयाम (ए) बनाम आवृत्ति (एफ) [[ बेसबैंड ]] बैंडविड्थ को दर्शाने वाला ग्राफ। यहां बैंडविड्थ ऊपरी आवृत्ति के बराबर है।]] | [[Image:Baseband.svg|right|300px|thumb|आयाम (ए) बनाम आवृत्ति (एफ) [[ बेसबैंड ]] बैंडविड्थ को दर्शाने वाला ग्राफ। यहां बैंडविड्थ ऊपरी आवृत्ति के बराबर है।]] | ||
'''बैंडविड्थ''' आवृत्तियों के निरंतर [[ आवृत्ति बैंड |आवृत्ति बैंड]] में ऊपरी और निचली आवृत्तियों के बीच का अंतराल है। इसे | '''बैंडविड्थ''' आवृत्तियों के निरंतर [[ आवृत्ति बैंड |आवृत्ति बैंड]] में ऊपरी और निचली आवृत्तियों के बीच का अंतराल है। इसे सामान्यतः [[ हेटर्स |हेटर्स]] में मापा जाता है, और संदर्भ के आधार पर, यह विशेष रूप से ''[[ पासबैंड |पासबैंड]]'' बैंडविड्थ या बेसबैंड बैंडविड्थ को संदर्भित कर सकता है। पासबैंड बैंडविड्थ ऊपरी और निचले कटऑफ [[ आवृत्ति |आवृत्तियों]] के बीच का अंतर है, उदाहरण के लिए, एक [[ बंदपास छननी |बैंड-पास फ़िल्टर]], एक संचार चैनल, या एक[[ सिग्नल स्पेक्ट्रम | सिग्नल स्पेक्ट्रम]] । बेसबैंड बैंडविड्थ [[ लो पास फिल्टर |लो पास फिल्टर]] या बेसबैंड सिग्नल पर क्रियान्वित होता है; बैंडविड्थ इसकी ऊपरी कटऑफ आवृत्ति के बराबर है। | ||
हर्ट्ज़ में बैंडविड्थ [[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] , [[ सूचना सिद्धांत ]], डिजिटल संचार, [[ रेडियो संचार ]], [[ संकेत का प्रक्रमण ]] और [[ स्पेक्ट्रोस्कोपी ]] सहित कई क्षेत्रों में एक केंद्रीय अवधारणा है और किसी दिए गए संचार चैनल की क्षमता के निर्धारकों में से एक है। | हर्ट्ज़ में बैंडविड्थ [[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] , [[ सूचना सिद्धांत ]], डिजिटल संचार, [[ रेडियो संचार ]], [[ संकेत का प्रक्रमण ]] और [[ स्पेक्ट्रोस्कोपी ]] सहित कई क्षेत्रों में एक केंद्रीय अवधारणा है और किसी दिए गए संचार चैनल की क्षमता के निर्धारकों में से एक है। | ||
Line 11: | Line 11: | ||
== अवलोकन == | == अवलोकन == | ||
कई [[ दूरसंचार ]] अनुप्रयोगों में बैंडविड्थ एक महत्वपूर्ण अवधारणा है। उदाहरण के लिए, [[ रेडियो |रेडियो]] संचार में, बैंडविड्थ एक संग्राहक [[ वाहक संकेत ]]द्वारा व्याप्त आवृत्ति रेंज है। एक एफएम रेडियो रिसीवर का[[ ट्यूनर (रेडियो) ]] आवृत्तियों की एक सीमित सीमा तक फैला होता है। एक सरकारी एजेंसी (जैसे संयुक्त राज्य अमेरिका में [[ संघीय संचार आयोग ]]) प्रसारण लाइसेंस धारकों के लिए क्षेत्रीय रूप से उपलब्ध बैंडविड्थ को विभाजित कर सकती है | कई [[ दूरसंचार ]] अनुप्रयोगों में बैंडविड्थ एक महत्वपूर्ण अवधारणा है। उदाहरण के लिए, [[ रेडियो |रेडियो]] संचार में, बैंडविड्थ एक संग्राहक [[ वाहक संकेत ]]द्वारा व्याप्त आवृत्ति रेंज है। एक एफएम रेडियो रिसीवर का[[ ट्यूनर (रेडियो) ]] आवृत्तियों की एक सीमित सीमा तक फैला होता है। एक सरकारी एजेंसी (जैसे संयुक्त राज्य अमेरिका में [[ संघीय संचार आयोग ]]) प्रसारण लाइसेंस धारकों के लिए क्षेत्रीय रूप से उपलब्ध बैंडविड्थ को विभाजित कर सकती है जिससे कि उनके [[ संकेत (इलेक्ट्रॉनिक्स) |संकेत (इलेक्ट्रॉनिक्स)]] परस्पर हस्तक्षेप न करें। इस संदर्भ में, बैंडविड्थ को [[ चैनल रिक्ति |चैनल रिक्ति]] के रूप में भी जाना जाता है। | ||
अन्य अनुप्रयोगों के लिए, अन्य परिभाषाएँ हैं। किसी प्रणाली के लिए बैंडविड्थ की एक परिभाषा, आवृत्तियों की वह सीमा हो सकती है जिस पर प्रणाली एक निर्दिष्ट स्तर का प्रदर्शन उत्पन्न करती है। एक कम सख्त और अधिक व्यावहारिक रूप से उपयोगी परिभाषा उन आवृत्तियों को संदर्भित करेगी जिनके परे प्रदर्शन में गिरावट आती है। उदाहरण के लिए, [[ आवृत्ति प्रतिक्रिया |आवृत्ति प्रतिक्रिया]] के मामले में, गिरावट का | अन्य अनुप्रयोगों के लिए, अन्य परिभाषाएँ हैं। किसी प्रणाली के लिए बैंडविड्थ की एक परिभाषा, आवृत्तियों की वह सीमा हो सकती है जिस पर प्रणाली एक निर्दिष्ट स्तर का प्रदर्शन उत्पन्न करती है। एक कम सख्त और अधिक व्यावहारिक रूप से उपयोगी परिभाषा उन आवृत्तियों को संदर्भित करेगी जिनके परे प्रदर्शन में गिरावट आती है। उदाहरण के लिए, [[ आवृत्ति प्रतिक्रिया |आवृत्ति प्रतिक्रिया]] के मामले में, गिरावट का तात्पर्य अधिकतम मूल्य से 3 [[ डेसिबल |डेसिबल]] से अधिक नीचे हो सकता है या इसका तात्पर्य एक निश्चित निरपेक्ष मूल्य से नीचे हो सकता है। किसी फ़ंक्शन की चौड़ाई की किसी भी परिभाषा की तरह, कई परिभाषाएँ विभिन्न उद्देश्यों के लिए उपयुक्त होती हैं। | ||
उदाहरण के लिए, [[ नमूना प्रमेय | नमूना प्रमेय]] और [[ Nyquist दर |नाइक्विस्ट नमूना दर]] के संदर्भ में, बैंडविड्थ | उदाहरण के लिए, [[ नमूना प्रमेय | नमूना प्रमेय]] और [[ Nyquist दर |नाइक्विस्ट नमूना दर]] के संदर्भ में, बैंडविड्थ सामान्यतः बेसबैंड बैंडविड्थ को संदर्भित करता है। संचार प्रणालियों के लिए नाइक्विस्ट प्रतीक दर या [[ शैनन-हार्टले |शैनन-हार्टले]] [[ चैनल क्षमता | चैनल क्षमता]] के संदर्भ में यह पासबैंड बैंडविड्थ को संदर्भित करता है। | ||
एक साधारण रडार पल्स की '{{vanchor|रेले बैंडविड्थ}} को इसकी अवधि के व्युत्क्रम के रूप में परिभाषित किया गया है। उदाहरण के लिए, एक-माइक्रोसेकंड पल्स में एक मेगाहर्ट्ज़ की रेले बैंडविड्थ होती है।<ref name=":0">Jeffrey A. Nanzer, ''Microwave and Millimeter-wave Remote Sensing for Security Applications'', pp. 268-269, Artech House, 2012 {{ISBN|1608071723}}.</ref> | एक साधारण रडार पल्स की '{{vanchor|रेले बैंडविड्थ}} को इसकी अवधि के व्युत्क्रम के रूप में परिभाषित किया गया है। उदाहरण के लिए, एक-माइक्रोसेकंड पल्स में एक मेगाहर्ट्ज़ की रेले बैंडविड्थ होती है।<ref name=":0">Jeffrey A. Nanzer, ''Microwave and Millimeter-wave Remote Sensing for Security Applications'', pp. 268-269, Artech House, 2012 {{ISBN|1608071723}}.</ref> | ||
{{vanchor|आवश्यक बैंडविड्थ}} को आवृत्ति डोमेन में सिग्नल स्पेक्ट्रम के उस | {{vanchor|आवश्यक बैंडविड्थ}} को आवृत्ति डोमेन में सिग्नल स्पेक्ट्रम के उस भाग के रूप में परिभाषित किया गया है जिसमें सिग्नल की अधिकांश ऊर्जा सम्मलित होती है।<ref name=":1">{{cite book|last=Sundararajan|first=D.|title=A Practical Approach to Signals and Systems|url=https://books.google.com/books?id=1Oo55lFE6UoC&pg=PA109|date=4 March 2009|publisher=John Wiley & Sons|isbn=978-0-470-82354-5|page=109}}</ref> | ||
== x डीबी बैंडविड्थ == | == x डीबी बैंडविड्थ == | ||
[[Image:Bandwidth 2.svg|right|300px|thumb|लगभग 0.707 के लाभ पर −3 dB बैंडविड्थ की अवधारणा को दर्शाने वाले बैंड-पास फ़िल्टर की परिमाण प्रतिक्रिया।]] | [[Image:Bandwidth 2.svg|right|300px|thumb|लगभग 0.707 के लाभ पर −3 dB बैंडविड्थ की अवधारणा को दर्शाने वाले बैंड-पास फ़िल्टर की परिमाण प्रतिक्रिया।]] | ||
कुछ संदर्भों में, हर्ट्ज़ में सिग्नल बैंडविड्थ उस आवृत्ति रेंज को संदर्भित करता है जिसमें सिग्नल का [[ वर्णक्रमीय घनत्व |वर्णक्रमीय घनत्व]] (W/Hz या V में)<sup>2</sup>/Hz) गैर-शून्य या एक छोटे थ्रेशोल्ड मान से ऊपर होता है। थ्रेशोल्ड मान को | कुछ संदर्भों में, हर्ट्ज़ में सिग्नल बैंडविड्थ उस आवृत्ति रेंज को संदर्भित करता है जिसमें सिग्नल का [[ वर्णक्रमीय घनत्व |वर्णक्रमीय घनत्व]] (W/Hz या V में)<sup>2</sup>/Hz) गैर-शून्य या एक छोटे थ्रेशोल्ड मान से ऊपर होता है। थ्रेशोल्ड मान को अधिकांशतः अधिकतम मान के सापेक्ष परिभाषित किया जाता है, और यह सामान्यतः {{no wrap|[[3 डीबी बिंदु]]}}, होता है, यह वह बिंदु है जहां वर्णक्रमीय घनत्व इसके अधिकतम मूल्य (या वर्णक्रमीय आयाम) का आधा होता है <math>\mathrm{V}</math> या <math>\mathrm{V/\sqrt{Hz}}</math>, अपने अधिकतम का 70.7% है)।<ref> | ||
{{cite book | {{cite book | ||
|title=Network Analysis | |title=Network Analysis | ||
Line 36: | Line 36: | ||
}}</ref> कम सीमा मान वाला यह आंकड़ा, सबसे कम नमूना दर की गणना में उपयोग किया जा सकता है जो नाइक्विस्ट-शैनन सैंपलिंग प्रमेय को संतुष्ट करेगा। | }}</ref> कम सीमा मान वाला यह आंकड़ा, सबसे कम नमूना दर की गणना में उपयोग किया जा सकता है जो नाइक्विस्ट-शैनन सैंपलिंग प्रमेय को संतुष्ट करेगा। | ||
बैंडविड्थ का उपयोग सिस्टम बैंडविड्थ को दर्शाने के लिए भी किया जाता है, उदाहरण के लिए [[ इलेक्ट्रॉनिक फिल्टर |इलेक्ट्रॉनिक फिल्टर]] या संचार चैनल सिस्टम में। यह कहने का | बैंडविड्थ का उपयोग सिस्टम बैंडविड्थ को दर्शाने के लिए भी किया जाता है, उदाहरण के लिए [[ इलेक्ट्रॉनिक फिल्टर |इलेक्ट्रॉनिक फिल्टर]] या संचार चैनल सिस्टम में। यह कहने का तात्पर्य है कि एक सिस्टम में एक निश्चित बैंडविड्थ है, इसका तात्पर्य है कि सिस्टम उस आवृत्ति सीमा के साथ संकेतों को संसाधित कर सकता है, या यह कि सिस्टम उस बैंडविड्थ में वाइट नॉइज़ इनपुट की बैंडविड्थ को कम कर देता है। | ||
इलेक्ट्रॉनिक फ़िल्टर या संचार चैनल की 3 डीबी बैंडविड्थ सिस्टम की आवृत्ति प्रतिक्रिया का हिस्सा है जो अपने चरम पर प्रतिक्रिया के 3 डीबी के भीतर होती है, जो पासबैंड फ़िल्टर मामले में, | इलेक्ट्रॉनिक फ़िल्टर या संचार चैनल की 3 डीबी बैंडविड्थ सिस्टम की आवृत्ति प्रतिक्रिया का हिस्सा है जो अपने चरम पर प्रतिक्रिया के 3 डीबी के भीतर होती है, जो पासबैंड फ़िल्टर मामले में, सामान्यतः इसके [[ केंद्र आवृत्ति |केंद्र आवृत्ति]] पर या उसके निकट होती है, और लो-पास फ़िल्टर अपनी [[ आपूर्ती बंद करने की आवृत्ति |आपूर्ती बंद करने की आवृत्ति]] पर या उसके निकट है। यदि अधिकतम लाभ 0 डीबी है, तो 3 डीबी बैंडविड्थ आवृत्ति रेंज है जहां क्षीणन 3 डीबी से कम है। 3 डीबी क्षीणन वह भी है जहां शक्ति इसकी अधिकतम आधी है। इसी अर्ध-शक्ति लाभ परिपाटी का उपयोग [[ वर्णक्रमीय चौड़ाई |वर्णक्रमीय चौड़ाई]] में भी किया जाता है, और सामान्यतः आधी अधिकतम पर पूर्ण चौड़ाई (एफडब्ल्यूएचएम) जैसे कार्यों की सीमा के लिए किया जाता है। | ||
इलेक्ट्रॉनिक फ़िल्टर डिज़ाइन में, फ़िल्टर विनिर्देश के लिए आवश्यक हो सकता है कि फ़िल्टर पासबैंड के भीतर, लाभ मामूली बदलाव के साथ नाममात्र 0 डीबी हो, उदाहरण के लिए ± 1 डीबी अंतराल के भीतर। [[ बंद करो बंद करो | स्टॉपबैंड]] में, डेसीबल में आवश्यक क्षीणन एक निश्चित स्तर से ऊपर है, उदाहरण के लिए >100 डीबी। [[ संक्रमण बैंड |संक्रमण बैंड]] में लाभ निर्दिष्ट नहीं होता है। इस मामले में, फ़िल्टर बैंडविड्थ पासबैंड चौड़ाई से मेल खाती है, जो इस उदाहरण में 1 डीबी-बैंडविड्थ है। यदि फ़िल्टर पासबैंड के भीतर आयाम तरंग दिखाता है, तो x डीबी बिंदु उस बिंदु को संदर्भित करता है जहां लाभ अधिकतम लाभ के नीचे x डीबी के | इलेक्ट्रॉनिक फ़िल्टर डिज़ाइन में, फ़िल्टर विनिर्देश के लिए आवश्यक हो सकता है कि फ़िल्टर पासबैंड के भीतर, लाभ मामूली बदलाव के साथ नाममात्र 0 डीबी हो, उदाहरण के लिए ± 1 डीबी अंतराल के भीतर। [[ बंद करो बंद करो | स्टॉपबैंड]] में, डेसीबल में आवश्यक क्षीणन एक निश्चित स्तर से ऊपर है, उदाहरण के लिए >100 डीबी। [[ संक्रमण बैंड |संक्रमण बैंड]] में लाभ निर्दिष्ट नहीं होता है। इस मामले में, फ़िल्टर बैंडविड्थ पासबैंड चौड़ाई से मेल खाती है, जो इस उदाहरण में 1 डीबी-बैंडविड्थ है। यदि फ़िल्टर पासबैंड के भीतर आयाम तरंग दिखाता है, तो x डीबी बिंदु उस बिंदु को संदर्भित करता है जहां लाभ अधिकतम लाभ के नीचे x डीबी के अतिरिक्त नाममात्र पासबैंड लाभ के कम x डीबी होता है। | ||
सिग्नल प्रोसेसिंग और [[ नियंत्रण सिद्धांत ]] में बैंडविड्थ वह आवृत्ति है जिस पर [[ बंद लूप स्थानांतरण समारोह |बंद-लूप स्थानांतरण फ़ंक्शन]] का लाभ चरम से 3 डीबी नीचे चला जाता है। | सिग्नल प्रोसेसिंग और [[ नियंत्रण सिद्धांत ]] में बैंडविड्थ वह आवृत्ति है जिस पर [[ बंद लूप स्थानांतरण समारोह |बंद-लूप स्थानांतरण फ़ंक्शन]] का लाभ चरम से 3 डीबी नीचे चला जाता है। | ||
Line 46: | Line 46: | ||
संचार प्रणालियों में, शैनन-हार्टले चैनल क्षमता की गणना में, बैंडविड्थ 3 डीबी-बैंडविड्थ को संदर्भित करता है। हार्टले के नियम के अनुसार अधिकतम प्रतीक दर, [[ Nyquist नमूना दर |नाइक्विस्ट नमूना दर]] और अधिकतम बिट दर की गणना में, बैंडविड्थ उस आवृत्ति सीमा को संदर्भित करता है जिसके भीतर लाभ गैर-शून्य है। | संचार प्रणालियों में, शैनन-हार्टले चैनल क्षमता की गणना में, बैंडविड्थ 3 डीबी-बैंडविड्थ को संदर्भित करता है। हार्टले के नियम के अनुसार अधिकतम प्रतीक दर, [[ Nyquist नमूना दर |नाइक्विस्ट नमूना दर]] और अधिकतम बिट दर की गणना में, बैंडविड्थ उस आवृत्ति सीमा को संदर्भित करता है जिसके भीतर लाभ गैर-शून्य है। | ||
तथ्य यह है कि संचार प्रणालियों के समतुल्य बेसबैंड मॉडल में, सिग्नल स्पेक्ट्रम में नकारात्मक और सकारात्मक दोनों आवृत्तियां होती हैं, जिससे बैंडविड्थ के बारे में भ्रम पैदा हो सकता है क्योंकि उन्हें कभी-कभी केवल सकारात्मक आधे द्वारा संदर्भित किया जाता है, और कभी-कभार ऐसे | तथ्य यह है कि संचार प्रणालियों के समतुल्य बेसबैंड मॉडल में, सिग्नल स्पेक्ट्रम में नकारात्मक और सकारात्मक दोनों आवृत्तियां होती हैं, जिससे बैंडविड्थ के बारे में भ्रम पैदा हो सकता है क्योंकि उन्हें कभी-कभी केवल सकारात्मक आधे द्वारा संदर्भित किया जाता है, और कभी-कभार ऐसे अभिव्यंजक देखने को मिलेंगे जैसे कि <math>B = 2W</math>, जहां पे <math>B</math> कुल बैंडविड्थ है (अर्थात वाहक-मॉड्यूलेटेड आरएफ सिग्नल की अधिकतम पासबैंड बैंडविड्थ और भौतिक पासबैंड चैनल की न्यूनतम पासबैंड बैंडविड्थ), और <math>W</math> सकारात्मक बैंडविड्थ (समकक्ष चैनल मॉडल का बेसबैंड बैंडविड्थ) है। उदाहरण के लिए, सिग्नल के बेसबैंड मॉडल को कम से कम कटऑफ आवृत्ति के साथ कम-पास फ़िल्टर की आवश्यकता होगी <math>W</math> निरंतर रहने के लिए, और भौतिक पासबैंड चैनल को कम से कम पासबैंड फिल्टर की आवश्यकता होगी <math>B</math> निरंतर रहने के लिए। | ||
== सापेक्ष बैंडविड्थ == | == सापेक्ष बैंडविड्थ == | ||
{{see also|ऐन्टेना (रेडियो)#बैंडविड्थ|ऐन्टेना माप#बैंडविड्थ}} | {{see also|ऐन्टेना (रेडियो)#बैंडविड्थ|ऐन्टेना माप#बैंडविड्थ}} | ||
पूर्ण बैंडविड्थ | पूर्ण बैंडविड्थ सदैव बैंडविड्थ का सबसे उपयुक्त या उपयोगी माप नहीं होता है। उदाहरण के लिए, [[ एंटीना (रेडियो) | एंटीना (रेडियो)]] के क्षेत्र में एक निर्दिष्ट निरपेक्ष बैंडविड्थ को पूरा करने के लिए एंटीना के निर्माण की कठिनाई कम आवृत्ति की तुलना में उच्च आवृत्ति पर आसान होती है। इस कारण से, बैंडविड्थ को अधिकांशतः ऑपरेशन की आवृत्ति के सापेक्ष उद्धृत किया जाता है जो विचाराधीन सर्किट या डिवाइस के लिए आवश्यक संरचना और परिष्कार का बेहतर संकेत देता है। | ||
सामान्य उपयोग में सापेक्ष बैंडविड्थ के दो अलग-अलग माप हैं: भिन्नात्मक बैंडविड्थ (<math>B_\mathrm F</math>) और अनुपात बैंडविड्थ (<math>B_\mathrm R</math>).<ref>{{cite book |last1=Stutzman |first1=Warren L. |first2=Gary A. |last2=Theiele |title=Antenna Theory and Design |edition=2nd |location=New York |year=1998 |isbn=0-471-02590-9 }}</ref> निम्नलिखित में, निरपेक्ष बैंडविड्थ को निम्नानुसार परिभाषित किया गया है, | सामान्य उपयोग में सापेक्ष बैंडविड्थ के दो अलग-अलग माप हैं: भिन्नात्मक बैंडविड्थ (<math>B_\mathrm F</math>) और अनुपात बैंडविड्थ (<math>B_\mathrm R</math>).<ref>{{cite book |last1=Stutzman |first1=Warren L. |first2=Gary A. |last2=Theiele |title=Antenna Theory and Design |edition=2nd |location=New York |year=1998 |isbn=0-471-02590-9 }}</ref> निम्नलिखित में, निरपेक्ष बैंडविड्थ को निम्नानुसार परिभाषित किया गया है, | ||
Line 58: | Line 58: | ||
आंशिक बैंडविड्थ को केंद्र आवृत्ति द्वारा विभाजित पूर्ण बैंडविड्थ के रूप में परिभाषित किया गया है (<math>f_\mathrm C</math>), | आंशिक बैंडविड्थ को केंद्र आवृत्ति द्वारा विभाजित पूर्ण बैंडविड्थ के रूप में परिभाषित किया गया है (<math>f_\mathrm C</math>), | ||
<math display="block"> B_\mathrm F = \frac {\Delta f}{f_\mathrm C} \, .</math> | <math display="block"> B_\mathrm F = \frac {\Delta f}{f_\mathrm C} \, .</math> | ||
केंद्र आवृत्ति को | केंद्र आवृत्ति को सामान्यतः ऊपरी और निचली आवृत्तियों के अंकगणितीय माध्य के रूप में परिभाषित किया जाता है, | ||
<math display="block"> f_\mathrm C = \frac {f_\mathrm H + f_\mathrm L}{2} \ </math> तथा | <math display="block"> f_\mathrm C = \frac {f_\mathrm H + f_\mathrm L}{2} \ </math> तथा | ||
<math display="block"> B_\mathrm F = \frac {2 (f_\mathrm H - f_\mathrm L)}{f_\mathrm H + f_\mathrm L} \, .</math> | <math display="block"> B_\mathrm F = \frac {2 (f_\mathrm H - f_\mathrm L)}{f_\mathrm H + f_\mathrm L} \, .</math> | ||
हालाँकि, केंद्र आवृत्ति को कभी-कभी ऊपरी और निचली आवृत्तियों के ज्यामितीय माध्य के रूप में परिभाषित किया जाता है,<math display="block"> f_\mathrm C = \sqrt {f_\mathrm H f_\mathrm L} </math>तथा | हालाँकि, केंद्र आवृत्ति को कभी-कभी ऊपरी और निचली आवृत्तियों के ज्यामितीय माध्य के रूप में परिभाषित किया जाता है,<math display="block"> f_\mathrm C = \sqrt {f_\mathrm H f_\mathrm L} </math>तथा | ||
<math display="block"> B_\mathrm F = \frac {f_\mathrm H - f_\mathrm L}{\sqrt {f_\mathrm H f_\mathrm L}} \, .</math> | <math display="block"> B_\mathrm F = \frac {f_\mathrm H - f_\mathrm L}{\sqrt {f_\mathrm H f_\mathrm L}} \, .</math> | ||
जबकि ज्यामितीय माध्य का उपयोग अंकगणितीय माध्य की तुलना में बहुत कम किया जाता है (और यदि स्पष्ट रूप से नहीं कहा गया है तो | जबकि ज्यामितीय माध्य का उपयोग अंकगणितीय माध्य की तुलना में बहुत कम किया जाता है (और यदि स्पष्ट रूप से नहीं कहा गया है तो पश्चात वाले को माना जा सकता है) पहले वाले को गणितीय रूप से अधिक कठोर माना जाता है। यह बढ़ती आवृत्ति के साथ भिन्नात्मक बैंडविड्थ के लघुगणकीय संबंध को अधिक उचित रूप से दर्शाता है।<ref>Hans G. Schantz, ''The Art and Science of Ultrawideband Antennas'', p. 75, Artech House, 2015 {{ISBN|1608079562}}</ref> [[ नैरोबैंड | नैरोबैंड]] अनुप्रयोगों के लिए, दो परिभाषाओं के बीच केवल मामूली अंतर है। ज्यामितीय माध्य संस्करण अप्रासंगिक रूप से बड़ा है।[[ वाइडबैंड | वाइडबैंड]] अनुप्रयोगों के लिए वे अंकगणित माध्य संस्करण के साथ सीमा में 2 के समीप पहुंचने और ज्यामितीय माध्य संस्करण के अनंत के समीप पहुंचने के साथ काफी हद तक भिन्न होते हैं। | ||
भिन्नात्मक बैंडविड्थ को कभी-कभी केंद्र आवृत्ति के प्रतिशत के रूप में व्यक्त किया जाता है (प्रतिशत बैंडविड्थ, <math>\%B</math>), | भिन्नात्मक बैंडविड्थ को कभी-कभी केंद्र आवृत्ति के प्रतिशत के रूप में व्यक्त किया जाता है (प्रतिशत बैंडविड्थ, <math>\%B</math>), | ||
Line 76: | Line 76: | ||
वाइडबैंड अनुप्रयोगों में प्रतिशत बैंडविड्थ एक कम सार्थक माप है। 100% का प्रतिशत बैंडविड्थ 3:1 के अनुपात बैंडविड्थ से मेल खाता है। अनंत तक के सभी उच्च अनुपात 100-200% की सीमा में संपीड़ित होते हैं। | वाइडबैंड अनुप्रयोगों में प्रतिशत बैंडविड्थ एक कम सार्थक माप है। 100% का प्रतिशत बैंडविड्थ 3:1 के अनुपात बैंडविड्थ से मेल खाता है। अनंत तक के सभी उच्च अनुपात 100-200% की सीमा में संपीड़ित होते हैं। | ||
वाइडबैंड अनुप्रयोगों के लिए अनुपात बैंडविड्थ को | वाइडबैंड अनुप्रयोगों के लिए अनुपात बैंडविड्थ को अधिकांशतः सप्तक में व्यक्त किया जाता है। एक सप्तक 2:1 का आवृत्ति अनुपात है जो सप्तक की संख्या के लिए इस व्यंजक की ओर ले जाता है, <math display="block">\log_2 \left(B_\mathrm R\right) .</math> | ||
== [[ फोटोनिक्स ]] == | == [[ फोटोनिक्स ]] == | ||
Revision as of 22:18, 20 September 2023
बैंडविड्थ आवृत्तियों के निरंतर आवृत्ति बैंड में ऊपरी और निचली आवृत्तियों के बीच का अंतराल है। इसे सामान्यतः हेटर्स में मापा जाता है, और संदर्भ के आधार पर, यह विशेष रूप से पासबैंड बैंडविड्थ या बेसबैंड बैंडविड्थ को संदर्भित कर सकता है। पासबैंड बैंडविड्थ ऊपरी और निचले कटऑफ आवृत्तियों के बीच का अंतर है, उदाहरण के लिए, एक बैंड-पास फ़िल्टर, एक संचार चैनल, या एक सिग्नल स्पेक्ट्रम । बेसबैंड बैंडविड्थ लो पास फिल्टर या बेसबैंड सिग्नल पर क्रियान्वित होता है; बैंडविड्थ इसकी ऊपरी कटऑफ आवृत्ति के बराबर है।
हर्ट्ज़ में बैंडविड्थ इलेक्ट्रानिक्स , सूचना सिद्धांत , डिजिटल संचार, रेडियो संचार , संकेत का प्रक्रमण और स्पेक्ट्रोस्कोपी सहित कई क्षेत्रों में एक केंद्रीय अवधारणा है और किसी दिए गए संचार चैनल की क्षमता के निर्धारकों में से एक है।
बैंडविड्थ की एक प्रमुख विशेषता यह है कि दी गई चौड़ाई का कोई भी बैंड समान मात्रा में जानकारी ले सकता है, भले ही वह बैंड आवृत्ति स्पेक्ट्रम में कहीं भी स्थित हो।[lower-alpha 1] उदाहरण के लिए, एक 3 किलोहर्ट्ज़ बैंड टेलीफोन पर वार्तालाप कर सकता है, चाहे वह बैंड बेसबैंड पर हो (जैसे कि एक पुरानी टेलीफोन सेवा टेलीफोन लाइन में) या कुछ उच्च आवृत्ति के लिए संशोधित हो। हालाँकि, विस्तृत बैंडविड्थ को प्राप्त करना और उच्च आवृत्तियों पर संसाधित करना आसान होता है क्योंकि § फ्रैक्शनल बैंडविड्थ छोटा होता है।
अवलोकन
कई दूरसंचार अनुप्रयोगों में बैंडविड्थ एक महत्वपूर्ण अवधारणा है। उदाहरण के लिए, रेडियो संचार में, बैंडविड्थ एक संग्राहक वाहक संकेत द्वारा व्याप्त आवृत्ति रेंज है। एक एफएम रेडियो रिसीवर काट्यूनर (रेडियो) आवृत्तियों की एक सीमित सीमा तक फैला होता है। एक सरकारी एजेंसी (जैसे संयुक्त राज्य अमेरिका में संघीय संचार आयोग ) प्रसारण लाइसेंस धारकों के लिए क्षेत्रीय रूप से उपलब्ध बैंडविड्थ को विभाजित कर सकती है जिससे कि उनके संकेत (इलेक्ट्रॉनिक्स) परस्पर हस्तक्षेप न करें। इस संदर्भ में, बैंडविड्थ को चैनल रिक्ति के रूप में भी जाना जाता है।
अन्य अनुप्रयोगों के लिए, अन्य परिभाषाएँ हैं। किसी प्रणाली के लिए बैंडविड्थ की एक परिभाषा, आवृत्तियों की वह सीमा हो सकती है जिस पर प्रणाली एक निर्दिष्ट स्तर का प्रदर्शन उत्पन्न करती है। एक कम सख्त और अधिक व्यावहारिक रूप से उपयोगी परिभाषा उन आवृत्तियों को संदर्भित करेगी जिनके परे प्रदर्शन में गिरावट आती है। उदाहरण के लिए, आवृत्ति प्रतिक्रिया के मामले में, गिरावट का तात्पर्य अधिकतम मूल्य से 3 डेसिबल से अधिक नीचे हो सकता है या इसका तात्पर्य एक निश्चित निरपेक्ष मूल्य से नीचे हो सकता है। किसी फ़ंक्शन की चौड़ाई की किसी भी परिभाषा की तरह, कई परिभाषाएँ विभिन्न उद्देश्यों के लिए उपयुक्त होती हैं।
उदाहरण के लिए, नमूना प्रमेय और नाइक्विस्ट नमूना दर के संदर्भ में, बैंडविड्थ सामान्यतः बेसबैंड बैंडविड्थ को संदर्भित करता है। संचार प्रणालियों के लिए नाइक्विस्ट प्रतीक दर या शैनन-हार्टले चैनल क्षमता के संदर्भ में यह पासबैंड बैंडविड्थ को संदर्भित करता है।
एक साधारण रडार पल्स की 'रेले बैंडविड्थ को इसकी अवधि के व्युत्क्रम के रूप में परिभाषित किया गया है। उदाहरण के लिए, एक-माइक्रोसेकंड पल्स में एक मेगाहर्ट्ज़ की रेले बैंडविड्थ होती है।[1]
आवश्यक बैंडविड्थ को आवृत्ति डोमेन में सिग्नल स्पेक्ट्रम के उस भाग के रूप में परिभाषित किया गया है जिसमें सिग्नल की अधिकांश ऊर्जा सम्मलित होती है।[2]
x डीबी बैंडविड्थ
कुछ संदर्भों में, हर्ट्ज़ में सिग्नल बैंडविड्थ उस आवृत्ति रेंज को संदर्भित करता है जिसमें सिग्नल का वर्णक्रमीय घनत्व (W/Hz या V में)2/Hz) गैर-शून्य या एक छोटे थ्रेशोल्ड मान से ऊपर होता है। थ्रेशोल्ड मान को अधिकांशतः अधिकतम मान के सापेक्ष परिभाषित किया जाता है, और यह सामान्यतः 3 डीबी बिंदु, होता है, यह वह बिंदु है जहां वर्णक्रमीय घनत्व इसके अधिकतम मूल्य (या वर्णक्रमीय आयाम) का आधा होता है या , अपने अधिकतम का 70.7% है)।[3] कम सीमा मान वाला यह आंकड़ा, सबसे कम नमूना दर की गणना में उपयोग किया जा सकता है जो नाइक्विस्ट-शैनन सैंपलिंग प्रमेय को संतुष्ट करेगा।
बैंडविड्थ का उपयोग सिस्टम बैंडविड्थ को दर्शाने के लिए भी किया जाता है, उदाहरण के लिए इलेक्ट्रॉनिक फिल्टर या संचार चैनल सिस्टम में। यह कहने का तात्पर्य है कि एक सिस्टम में एक निश्चित बैंडविड्थ है, इसका तात्पर्य है कि सिस्टम उस आवृत्ति सीमा के साथ संकेतों को संसाधित कर सकता है, या यह कि सिस्टम उस बैंडविड्थ में वाइट नॉइज़ इनपुट की बैंडविड्थ को कम कर देता है।
इलेक्ट्रॉनिक फ़िल्टर या संचार चैनल की 3 डीबी बैंडविड्थ सिस्टम की आवृत्ति प्रतिक्रिया का हिस्सा है जो अपने चरम पर प्रतिक्रिया के 3 डीबी के भीतर होती है, जो पासबैंड फ़िल्टर मामले में, सामान्यतः इसके केंद्र आवृत्ति पर या उसके निकट होती है, और लो-पास फ़िल्टर अपनी आपूर्ती बंद करने की आवृत्ति पर या उसके निकट है। यदि अधिकतम लाभ 0 डीबी है, तो 3 डीबी बैंडविड्थ आवृत्ति रेंज है जहां क्षीणन 3 डीबी से कम है। 3 डीबी क्षीणन वह भी है जहां शक्ति इसकी अधिकतम आधी है। इसी अर्ध-शक्ति लाभ परिपाटी का उपयोग वर्णक्रमीय चौड़ाई में भी किया जाता है, और सामान्यतः आधी अधिकतम पर पूर्ण चौड़ाई (एफडब्ल्यूएचएम) जैसे कार्यों की सीमा के लिए किया जाता है।
इलेक्ट्रॉनिक फ़िल्टर डिज़ाइन में, फ़िल्टर विनिर्देश के लिए आवश्यक हो सकता है कि फ़िल्टर पासबैंड के भीतर, लाभ मामूली बदलाव के साथ नाममात्र 0 डीबी हो, उदाहरण के लिए ± 1 डीबी अंतराल के भीतर। स्टॉपबैंड में, डेसीबल में आवश्यक क्षीणन एक निश्चित स्तर से ऊपर है, उदाहरण के लिए >100 डीबी। संक्रमण बैंड में लाभ निर्दिष्ट नहीं होता है। इस मामले में, फ़िल्टर बैंडविड्थ पासबैंड चौड़ाई से मेल खाती है, जो इस उदाहरण में 1 डीबी-बैंडविड्थ है। यदि फ़िल्टर पासबैंड के भीतर आयाम तरंग दिखाता है, तो x डीबी बिंदु उस बिंदु को संदर्भित करता है जहां लाभ अधिकतम लाभ के नीचे x डीबी के अतिरिक्त नाममात्र पासबैंड लाभ के कम x डीबी होता है।
सिग्नल प्रोसेसिंग और नियंत्रण सिद्धांत में बैंडविड्थ वह आवृत्ति है जिस पर बंद-लूप स्थानांतरण फ़ंक्शन का लाभ चरम से 3 डीबी नीचे चला जाता है।
संचार प्रणालियों में, शैनन-हार्टले चैनल क्षमता की गणना में, बैंडविड्थ 3 डीबी-बैंडविड्थ को संदर्भित करता है। हार्टले के नियम के अनुसार अधिकतम प्रतीक दर, नाइक्विस्ट नमूना दर और अधिकतम बिट दर की गणना में, बैंडविड्थ उस आवृत्ति सीमा को संदर्भित करता है जिसके भीतर लाभ गैर-शून्य है।
तथ्य यह है कि संचार प्रणालियों के समतुल्य बेसबैंड मॉडल में, सिग्नल स्पेक्ट्रम में नकारात्मक और सकारात्मक दोनों आवृत्तियां होती हैं, जिससे बैंडविड्थ के बारे में भ्रम पैदा हो सकता है क्योंकि उन्हें कभी-कभी केवल सकारात्मक आधे द्वारा संदर्भित किया जाता है, और कभी-कभार ऐसे अभिव्यंजक देखने को मिलेंगे जैसे कि , जहां पे कुल बैंडविड्थ है (अर्थात वाहक-मॉड्यूलेटेड आरएफ सिग्नल की अधिकतम पासबैंड बैंडविड्थ और भौतिक पासबैंड चैनल की न्यूनतम पासबैंड बैंडविड्थ), और सकारात्मक बैंडविड्थ (समकक्ष चैनल मॉडल का बेसबैंड बैंडविड्थ) है। उदाहरण के लिए, सिग्नल के बेसबैंड मॉडल को कम से कम कटऑफ आवृत्ति के साथ कम-पास फ़िल्टर की आवश्यकता होगी निरंतर रहने के लिए, और भौतिक पासबैंड चैनल को कम से कम पासबैंड फिल्टर की आवश्यकता होगी निरंतर रहने के लिए।
सापेक्ष बैंडविड्थ
पूर्ण बैंडविड्थ सदैव बैंडविड्थ का सबसे उपयुक्त या उपयोगी माप नहीं होता है। उदाहरण के लिए, एंटीना (रेडियो) के क्षेत्र में एक निर्दिष्ट निरपेक्ष बैंडविड्थ को पूरा करने के लिए एंटीना के निर्माण की कठिनाई कम आवृत्ति की तुलना में उच्च आवृत्ति पर आसान होती है। इस कारण से, बैंडविड्थ को अधिकांशतः ऑपरेशन की आवृत्ति के सापेक्ष उद्धृत किया जाता है जो विचाराधीन सर्किट या डिवाइस के लिए आवश्यक संरचना और परिष्कार का बेहतर संकेत देता है।
सामान्य उपयोग में सापेक्ष बैंडविड्थ के दो अलग-अलग माप हैं: भिन्नात्मक बैंडविड्थ () और अनुपात बैंडविड्थ ().[4] निम्नलिखित में, निरपेक्ष बैंडविड्थ को निम्नानुसार परिभाषित किया गया है,
भिन्नात्मक बैंडविड्थ
आंशिक बैंडविड्थ को केंद्र आवृत्ति द्वारा विभाजित पूर्ण बैंडविड्थ के रूप में परिभाषित किया गया है (),
भिन्नात्मक बैंडविड्थ को कभी-कभी केंद्र आवृत्ति के प्रतिशत के रूप में व्यक्त किया जाता है (प्रतिशत बैंडविड्थ, ),
अनुपात बैंडविड्थ
अनुपात बैंडविड्थ को बैंड की ऊपरी और निचली सीमाओं के अनुपात के रूप में परिभाषित किया जाता है,
वाइडबैंड अनुप्रयोगों के लिए अनुपात बैंडविड्थ को अधिकांशतः सप्तक में व्यक्त किया जाता है। एक सप्तक 2:1 का आवृत्ति अनुपात है जो सप्तक की संख्या के लिए इस व्यंजक की ओर ले जाता है,
फोटोनिक्स
फोटोनिक्स में, बैंडविड्थ शब्द के कई अर्थ हैं:
- कुछ प्रकाश स्रोत के आउटपुट की बैंडविड्थ, उदाहरण के लिए, एएसई स्रोत या लेजर; अल्ट्राशॉर्ट ऑप्टिकल पल्स की बैंडविड्थ विशेष रूप से बड़ी हो सकती है
- आवृत्ति रेंज की चौड़ाई जिसे किसी तत्व द्वारा प्रसारित किया जा सकता है, उदाहरण के लिए एक ऑप्टिकल फाइबर
- एक ऑप्टिकल एम्पलीफायर का लाभ बैंडविड्थ
- किसी अन्य घटना की सीमा की चौड़ाई, उदाहरण के लिए, एक प्रतिबिंब, एक गैर-रेखीय प्रक्रिया का चरण मिलान, या कुछ प्रतिध्वनि
- एक ऑप्टिकल मॉड्यूलेटर की अधिकतम मॉड्यूलेशन आवृत्ति (या मॉड्यूलेशन आवृत्तियों की सीमा)।
- आवृत्तियों की वह सीमा जिसमें कुछ माप उपकरण (जैसे, एक बिजली मीटर) काम कर सकते हैं
- एक ऑप्टिकल संचार प्रणाली में प्राप्त बिट दर (उदा., जीबीआईटी/एस में); बैंडविड्थ (कंप्यूटिंग) देखें।
एक संबंधित अवधारणा उत्तेजित परमाणुओं द्वारा उत्सर्जित विकिरण की वर्णक्रमीय लिनिविथ है।
यह भी देखें
टिप्पणियाँ
- ↑ The information capacity of a channel depends on noise level as well as bandwidth – see Shannon–Hartley theorem. Equal bandwidths can carry equal information only when subject to equal signal-to-noise ratios.
संदर्भ
- ↑ Jeffrey A. Nanzer, Microwave and Millimeter-wave Remote Sensing for Security Applications, pp. 268-269, Artech House, 2012 ISBN 1608071723.
- ↑ Sundararajan, D. (4 March 2009). A Practical Approach to Signals and Systems. John Wiley & Sons. p. 109. ISBN 978-0-470-82354-5.
- ↑ Van Valkenburg, M. E. (1974). Network Analysis (3rd ed.). pp. 383–384. ISBN 0-13-611095-9. Retrieved 2008-06-22.
- ↑ Stutzman, Warren L.; Theiele, Gary A. (1998). Antenna Theory and Design (2nd ed.). New York. ISBN 0-471-02590-9.
{{cite book}}
: CS1 maint: location missing publisher (link) - ↑ Hans G. Schantz, The Art and Science of Ultrawideband Antennas, p. 75, Artech House, 2015 ISBN 1608079562