सम्मिश्र संयुग्मी: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Fundamental operation on complex numbers}} | {{Short description|Fundamental operation on complex numbers}} | ||
[[File:Complex conjugate picture.svg|thumb|ज्यामितीय प्रतिनिधित्व (आर्गन आरेख) <math>z</math> और इसके संयुग्म <math>\overline{z}</math> समष्टि विमान में।समष्टि संयुग्म प्रतिबिंब समरूपता द्वारा पाया जाता है <math>z</math> वास्तविक अक्ष के पार।]]गणित में, समष्टि संख्या का समष्टि संयुग्म समान वास्तविक संख्या भाग के साथ संख्या है और परिमाण में काल्पनिक संख्या भाग है, किन्तु संकेत (गणित) में विपरीत है। वह है, (यदि <math>a</math> और <math>b</math> वास्तविक हैं, फिर) के समष्टि संयुग्म <math> a + bi</math> के सामान्तर है <math>a - bi.</math> का समष्टि संयुग्म <math>z</math> अधिकांशतः के रूप में निरूपित किया जाता है <math>\overline{z}</math> या <math>z^*</math>। | [[File:Complex conjugate picture.svg|thumb|ज्यामितीय प्रतिनिधित्व (आर्गन आरेख) <math>z</math> और इसके संयुग्म <math>\overline{z}</math> समष्टि विमान में।समष्टि संयुग्म प्रतिबिंब समरूपता द्वारा पाया जाता है <math>z</math> वास्तविक अक्ष के पार।]]गणित में, समष्टि संख्या का '''समष्टि संयुग्म''' समान वास्तविक संख्या भाग के साथ संख्या है और परिमाण में काल्पनिक संख्या भाग है, किन्तु संकेत (गणित) में विपरीत है। वह है, (यदि <math>a</math> और <math>b</math> वास्तविक हैं, फिर) के समष्टि संयुग्म <math> a + bi</math> के सामान्तर है <math>a - bi.</math> का समष्टि संयुग्म <math>z</math> अधिकांशतः के रूप में निरूपित किया जाता है <math>\overline{z}</math> या <math>z^*</math>। | ||
ध्रुवीय समन्वय प्रणाली समष्टि संख्याओं में, का संयुग्म <math>r e^{i \varphi}</math> है <math>r e^{-i \varphi}.</math> यह यूलर के सूत्र का उपयोग करके दिखाया जा सकता है। | ध्रुवीय समन्वय प्रणाली समष्टि संख्याओं में, का संयुग्म <math>r e^{i \varphi}</math> है <math>r e^{-i \varphi}.</math> यह यूलर के सूत्र का उपयोग करके दिखाया जा सकता है। |
Revision as of 08:03, 5 October 2023
गणित में, समष्टि संख्या का समष्टि संयुग्म समान वास्तविक संख्या भाग के साथ संख्या है और परिमाण में काल्पनिक संख्या भाग है, किन्तु संकेत (गणित) में विपरीत है। वह है, (यदि और वास्तविक हैं, फिर) के समष्टि संयुग्म के सामान्तर है का समष्टि संयुग्म अधिकांशतः के रूप में निरूपित किया जाता है या ।
ध्रुवीय समन्वय प्रणाली समष्टि संख्याओं में, का संयुग्म है यह यूलर के सूत्र का उपयोग करके दिखाया जा सकता है।
समष्टि संख्या और इसके संयुग्म का उत्पाद वास्तविक संख्या है: & एनबीएसपी; (या & एनबीएसपी; ध्रुवीय समन्वय प्रणाली में)।
यदि वास्तविक गुणांक के साथ अविभाजित बहुपद की जड़ समष्टि है, तबी इसका समष्टि संयुग्म जड़ प्रमेय है।
संकेतन
समष्टि संख्या का समष्टि संयुग्म के रूप में लिखा है या पहला संकेतन, विनकुलम (प्रतीक), मैट्रिक्स (गणित) के संयुग्मन ट्रांसपोज़ के लिए संकेतन के साथ भ्रम से बचता है, जिसे समष्टि संयुग्म के सामान्यीकरण के रूप में सोचा जा सकता है।दूसरे को भौतिकी में पसंद किया जाता है, जहां डैगर (मार्क) (†) का उपयोग संयुग्म ट्रांसपोज़, साथ ही इलेक्ट्रिकल इंजीनियरिंग और कंप्यूटर इंजीनियरिंग के लिए किया जाता है, जहां बार नोटेशन तार्किक ऋणात्मकता (नहीं) बूलियन बीजगणित प्रतीक के लिए भ्रमित हो सकता है, जबकिशुद्ध गणित में बार संकेतन अधिक सामान्य है।यदि समष्टि संख्या समष्टि संख्या है मैट्रिक्स समष्टि संख्याओं का प्रतिनिधित्व | के रूप में प्रतिनिधित्व किया मैट्रिक्स, सूचनाएं समान हैं।
गुण
निम्नलिखित गुण सभी समष्टि संख्याओं के लिए क्रियान्वित होते हैं और जब तक अन्यथा नहीं कहा जाता है, और लेखन द्वारा सिद्ध किया जा सकता है और प्रपत्र में किसी भी दो समष्टि संख्याओं के लिए, संयुग्मन अतिरिक्त, घटाव, गुणन और विभाजन पर वितरण योग्य संपत्ति है:[ref 1]
संयुग्मन समष्टि संख्या के मापांक को नहीं बदलता है:
संयुग्मन इनव्यूशन (गणित) है, अर्थात, समष्टि संख्या के संयुग्म का संयुग्म है प्रतीकों में, [ref 1]
इसके संयुग्म के साथ समष्टि संख्या का उत्पाद संख्या के मापांक के वर्ग के सामान्तर है:
सामान्यतः, अगर होलोमोर्फिक फलन है जिसका वास्तविक संख्या पर प्रतिबंध वास्तविक-मूल्य है, और और परिभाषित किया गया है, फिर
चर के रूप में उपयोग करें
बार समष्टि संख्या या दिया गया है, इसका संयुग्म के कुछ हिस्सों को पुन: पेश करने के लिए पर्याप्त है -चर:
- वास्तविक भाग:
- काल्पनिक भाग:
- निरपेक्ष मान | मापांक (या निरपेक्ष मान):
- तर्क (समष्टि विश्लेषण): इसलिए
आगे, विमान में रेखाओं को निर्दिष्ट करने के लिए उपयोग किया जा सकता है: समूह
के संयुग्म के इन उपयोगों चर के रूप में फ्रैंक मॉर्ले की पुस्तक इनवर्सिव ज्यामिति (1933) में चित्रित किया गया है, जो उनके बेटे फ्रैंक वर्ल मॉर्ले के साथ लिखा गया है।
सामान्यीकरण
अन्य प्लानर रियल यूनिटल बीजगणित, दोहरी संख्या और विभाजन-समष्टि संख्याओं का भी समष्टि संयुग्मन का उपयोग करके विश्लेषण किया जाता है।
समष्टि संख्याओं के मैट्रिस के लिए, कहां के तत्व-दर-तत्व संयुग्मन का प्रतिनिधित्व करता है [ref 2] संपत्ति के विपरीत कहां के संयुग्मन ट्रांसपोज़ का प्रतिनिधित्व करता है समष्टि मैट्रिक्स (गणित) का संयुग्म ट्रांसपोज़ (या आसन्न) लेना समष्टि संयुग्मन को सामान्य करता है।इससे भी अधिक सामान्य ऑपरेटरों के लिए आसन्न ऑपरेटर की अवधारणा है (संभवतः अनंत-आयामी) समष्टि हिल्बर्ट रिक्त स्थान।यह सब C *-Algebras के *-ऑपरेशन द्वारा प्रस्तुत किया गया है।
भी चतुर्भुज और विभाजन-क्वाटेरन के लिए संयुग्मन को परिभाषित कर सकता है: का संयुग्म है ये सभी सामान्यीकरण केवल तभी गुणक होते हैं जब कारक उलट होते हैं:
सदिश रिक्त स्थान के लिए संयुग्मन की अमूर्त धारणा भी है समष्टि संख्याओं पर। इस संदर्भ में, किसी भी एंटिलिनियर मानचित्र वह संतुष्ट है
- जहां और पहचान मानचित्र पर है
- सबके लिए और
- सबके लिए
कहा जाता है समष्टि संयुग्म रेखा, या वास्तविक संरचना।अन्वेषण के रूप में एंटीलिनियर है, यह पहचान का मानचित्र नहीं हो सकता है बेशक, है के -इनर ट्रांसफॉर्मेशन यदि कोई नोट करता है कि हर समष्टि स्थान मूल स्थान में ही सदिश (गणित और भौतिकी) को लेने और अदिश को वास्तविक होने तक सीमित करने के लिए वास्तविक रूप प्राप्त किया गया है।उपरोक्त गुण वास्तव में समष्टि सदिश अंतरिक्ष पर वास्तविक संरचना को परिभाषित करते हैं [1] इस धारणा का उदाहरण ऊपर परिभाषित समष्टि आव्युह का संयुग्म ट्रांसपोज़ ऑपरेशन है।चूंकि, सामान्य समष्टि सदिश रिक्त स्थान पर, कोई नहीं है विहित समष्टि संयुग्मन की धारणा।
यह भी देखें
- पूर्ण वर्ग
- समष्टि संयुग्म रेखा
- समष्टि संयुग्म प्रतिनिधित्व
- समष्टि संयुग्मी सदिश समष्टि
- रचना बीजगणित – Type of algebras, possibly non associative
- संयुग्म (वर्गमूल) – Change of the sign of a square root
- हर्मिटियन फ़ंक्शन
- विर्टिंगर डेरिवेटिव – Concept in complex analysis
संदर्भ
- ↑ 1.0 1.1 Friedberg, Stephen; Insel, Arnold; Spence, Lawrence (2018), Linear Algebra (5 ed.), ISBN 978-0134860244, Appendix D
- ↑ Arfken, Mathematical Methods for Physicists, 1985, pg. 201
नोट
इस पृष्ठ में गुम आंतरिक लिंक की सूची
ग्रन्थसूची
- Budinich, P. and Trautman, A. The Spinorial Chessboard. Springer-Verlag, 1988. ISBN 0-387-19078-3. (antilinear maps are discussed in section 3.3).
- ↑ Budinich, P. and Trautman, A. The Spinorial Chessboard. Springer-Verlag, 1988, p. 29