समदिग्नत कक्षा (होमोक्लिनिक ऑर्बिट): Difference between revisions
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
:<math>\Phi(t)\rightarrow x_0\quad \mathrm{as}\quad | :<math>\Phi(t)\rightarrow x_0\quad \mathrm{as}\quad | ||
t\rightarrow\pm\infty</math> | t\rightarrow\pm\infty</math> | ||
यदि चरण स्थान में तीन या अधिक [[आयाम]] हैं, तो सैडल बिंदु के अस्थिर मैनिफोल्ड की [[टोपोलॉजी]] पर विचार करना महत्वपूर्ण है। आंकड़े दो | यदि चरण स्थान में तीन या अधिक [[आयाम]] हैं, तो सैडल बिंदु के अस्थिर मैनिफोल्ड की [[टोपोलॉजी]] पर विचार करना महत्वपूर्ण है। आंकड़े दो स्थितियों दिखाते हैं. पहला, जब स्थिर मैनिफोल्ड टोपोलॉजिकल रूप से [[सिलेंडर]] होता है, और दूसरा, जब अस्थिर मैनिफोल्ड टोपोलॉजिकल रूप से मोबियस स्ट्रिप होता है; इस स्थितियों में समदिग्नत कक्षा को मुड़ कहा जाता है। | ||
== असतत गतिशील प्रणाली == | == असतत गतिशील प्रणाली == | ||
समदिग्नत कक्षाओं और समदिग्नत बिंदुओं को पुनरावृत्त कार्यों के लिए उसी | समदिग्नत कक्षाओं और समदिग्नत बिंदुओं को पुनरावृत्त कार्यों के लिए उसी प्रकार से परिभाषित किया जाता है, जैसे प्रणाली के कुछ [[निश्चित बिंदु (गणित)]] या [[आवधिक बिंदु]] के स्थिर मैनिफोल्ड और [[अस्थिर सेट|अस्थिर]] समुच्चय का प्रतिच्छेदन। | ||
असतत गतिशील प्रणालियों पर विचार करते समय हमारे पास समदिग्नत कक्षा की भी धारणा है। ऐसे में यदि <math>f:M\rightarrow M</math> अनेक गुना की [[भिन्नता]] है <math>M</math>, हम ऐसा कहते हैं <math>x</math> समदिग्नत बिंदु है यदि इसका अतीत और भविष्य समान है - अधिक विशेष रूप से, यदि कोई निश्चित (या आवधिक) बिंदु | असतत गतिशील प्रणालियों पर विचार करते समय हमारे पास समदिग्नत कक्षा की भी धारणा है। ऐसे में यदि <math>f:M\rightarrow M</math> अनेक गुना की [[भिन्नता]] है <math>M</math>, हम ऐसा कहते हैं <math>x</math> समदिग्नत बिंदु है यदि इसका अतीत और भविष्य समान है - अधिक विशेष रूप से, यदि कोई निश्चित (या आवधिक) बिंदु उपस्तिथ है <math>p</math> ऐसा है कि | ||
:<math>\lim_{n\rightarrow \pm\infty}f^n(x)=p.</math> | :<math>\lim_{n\rightarrow \pm\infty}f^n(x)=p.</math> | ||
== गुण == | == गुण == | ||
समदिग्नत बिंदु का अस्तित्व उनकी अनंत संख्या के अस्तित्व को दर्शाता है।<ref>{{cite book|last=Ott|first=Edward|title=डायनामिकल सिस्टम में अराजकता|url=https://archive.org/details/chaosindynamical0000otte|url-access=registration|year=1994|publisher=Cambridge University Press|isbn=9780521437998 }}</ref> | समदिग्नत बिंदु का अस्तित्व उनकी अनंत संख्या के अस्तित्व को दर्शाता है।<ref>{{cite book|last=Ott|first=Edward|title=डायनामिकल सिस्टम में अराजकता|url=https://archive.org/details/chaosindynamical0000otte|url-access=registration|year=1994|publisher=Cambridge University Press|isbn=9780521437998 }}</ref>यह इसकी परिभाषा से आता है: स्थिर और अस्थिर समुच्चय का प्रतिच्छेदन, दोनों समुच्चय परिभाषा के अनुसार [[सकारात्मक अपरिवर्तनीय सेट|सकारात्मक अपरिवर्तनीय]] समुच्चय हैं, जिसका अर्थ है कि समदिग्नत बिंदु का आगे का पुनरावृत्ति स्थिर और अस्थिर समुच्चय दोनों पर है। एन बार पुनरावृत्ति करके, नक्शा स्थिर समुच्चय द्वारा संतुलन बिंदु तक पहुंचता है, लेकिन प्रत्येक पुनरावृत्ति में यह अस्थिर मैनिफोल्ड पर भी होता है, जो इस संपत्ति को दर्शाता है। | ||
यह इसकी परिभाषा से आता है: स्थिर और अस्थिर | |||
यह गुण बताता है कि समदिग्नत बिंदु के अस्तित्व से जटिल गतिशीलता उत्पन्न होती है। वास्तव में, स्मेल (1967)<ref>{{cite book|last=Smale|first=Stephen|title=विभेदक गतिशील प्रणालियाँ|year=1967|publisher=Bull. Amer. Math. Soc.73, 747–817}}</ref> पता चला कि ये बिंदु गतिशीलता जैसे घोड़े की नाल के नक्शे की ओर ले जाते हैं, जो | यह गुण बताता देता है कि समदिग्नत बिंदु के अस्तित्व से जटिल गतिशीलता उत्पन्न होती है। वास्तव में, स्मेल (1967)<ref>{{cite book|last=Smale|first=Stephen|title=विभेदक गतिशील प्रणालियाँ|year=1967|publisher=Bull. Amer. Math. Soc.73, 747–817}}</ref> पता चला कि ये बिंदु गतिशीलता जैसे घोड़े की नाल के नक्शे की ओर ले जाते हैं, जो की कोलाहल से जुड़ा होती है। | ||
== [[प्रतीकात्मक गतिशीलता]] == | == [[प्रतीकात्मक गतिशीलता]] == | ||
[[मार्कोव विभाजन]] का उपयोग करके, प्रतीकात्मक गतिशीलता की तकनीकों का उपयोग करके हाइपरबोलिक प्रणाली के दीर्घकालिक व्यवहार का अध्ययन किया जा सकता है। इस | [[मार्कोव विभाजन]] का उपयोग करके, प्रतीकात्मक गतिशीलता की तकनीकों का उपयोग करके हाइपरबोलिक प्रणाली के दीर्घकालिक व्यवहार का अध्ययन किया जा सकता है। इस स्थितियों में, समदिग्नत कक्षा का विशेष रूप से सरल और स्पष्ट प्रतिनिधित्व होता है। मान लें कि <math>S=\{1,2,\ldots,M\}</math> सीमित संख्यक M प्रतीकों का समुच्चय है। बिंदु x की गतिकता फिर से प्रतीकों की [[द्वि-अनंत स्ट्रिंग]] स्वरूप की स्त्रिंग द्वारा प्रदर्शित किया जाता है | ||
:<math>\sigma =\{(\ldots,s_{-1},s_0,s_1,\ldots) : s_k \in S \; \forall k \in \mathbb{Z} \}</math> | :<math>\sigma =\{(\ldots,s_{-1},s_0,s_1,\ldots) : s_k \in S \; \forall k \in \mathbb{Z} \}</math> | ||
प्रणाली का आवृत्तिक बिंदु केवल आवृत्ति वाला प्रतीकों का एक दोहराने वाला सिरा होता है। हेटरोक्लिनिक कक्षा तब दो विभिन्न आवधिक कक्षाओं का जुड़ना होता है। जिसे इस प्रकार लिखा जा सकता है | |||
:<math>p^\omega s_1 s_2 \cdots s_n q^\omega</math> | :<math>p^\omega s_1 s_2 \cdots s_n q^\omega</math> | ||
यहाँ <math>p= t_1 t_2 \cdots t_k</math> लंबाई k के प्रतीकों की आवृत्तिक क्रम है (स्वभावसंख्या में, <math>t_i\in S</math>), और <math>q = r_1 r_2 \cdots r_m</math> लंबाई m के प्रतीकों का और क्रम है (इसी प्रकार, <math>r_i\in S</math>). संकेतन <math>p^\omega</math> बस अनंत बार p की पुनरावृत्ति को दर्शाता है। इस प्रकार, हेटरोक्लिनिक कक्षा को आवधिक कक्षा से दूसरे में संक्रमण के रूप में समझा जा सकता है। इसके विपरीत, समदिग्नत कक्षा को इस प्रकार लिखा जा सकता है | |||
:<math>p^\omega s_1 s_2 \cdots s_n p^\omega</math> | :<math>p^\omega s_1 s_2 \cdots s_n p^\omega</math> | ||
जहां आंतरिक क्रम <math>s_1 s_2 \cdots s_n</math> संख्यमूलक होता है और बेशक, p नहीं होता है, क्योंकि अन्यथा, ऑर्बिट बस <math>p^\omega</math> होती। | |||
== यह भी देखें == | == यह भी देखें == |
Revision as of 22:35, 26 September 2023
गतिशील प्रणालियों के अध्ययन में, समदिग्नत कक्षा चरण स्थान के माध्यम से पथ है जो काठी संतुलन बिंदु को स्वयं से जोड़ती है। अधिक सटीक रूप से, समदिग्नत कक्षा संतुलन के स्थिर अनेक गुना और अस्थिर अनेक गुना के प्रतिच्छेदन में स्थित होती है। यह हेटरोक्लिनिक कक्षा है - किन्हीं दो संतुलन बिंदुओं के बीच का पथ - जिसमें समापन बिंदु और समान होते हैं।
साधारण अंतर समीकरण द्वारा वर्णित सतत कार्य गतिशील प्रणाली पर विचार करें
मान लीजिए कि वहाँ संतुलन है , फिर समाधान यदि समदिग्नत कक्षा है
यदि चरण स्थान में तीन या अधिक आयाम हैं, तो सैडल बिंदु के अस्थिर मैनिफोल्ड की टोपोलॉजी पर विचार करना महत्वपूर्ण है। आंकड़े दो स्थितियों दिखाते हैं. पहला, जब स्थिर मैनिफोल्ड टोपोलॉजिकल रूप से सिलेंडर होता है, और दूसरा, जब अस्थिर मैनिफोल्ड टोपोलॉजिकल रूप से मोबियस स्ट्रिप होता है; इस स्थितियों में समदिग्नत कक्षा को मुड़ कहा जाता है।
असतत गतिशील प्रणाली
समदिग्नत कक्षाओं और समदिग्नत बिंदुओं को पुनरावृत्त कार्यों के लिए उसी प्रकार से परिभाषित किया जाता है, जैसे प्रणाली के कुछ निश्चित बिंदु (गणित) या आवधिक बिंदु के स्थिर मैनिफोल्ड और अस्थिर समुच्चय का प्रतिच्छेदन।
असतत गतिशील प्रणालियों पर विचार करते समय हमारे पास समदिग्नत कक्षा की भी धारणा है। ऐसे में यदि अनेक गुना की भिन्नता है , हम ऐसा कहते हैं समदिग्नत बिंदु है यदि इसका अतीत और भविष्य समान है - अधिक विशेष रूप से, यदि कोई निश्चित (या आवधिक) बिंदु उपस्तिथ है ऐसा है कि
गुण
समदिग्नत बिंदु का अस्तित्व उनकी अनंत संख्या के अस्तित्व को दर्शाता है।[1]यह इसकी परिभाषा से आता है: स्थिर और अस्थिर समुच्चय का प्रतिच्छेदन, दोनों समुच्चय परिभाषा के अनुसार सकारात्मक अपरिवर्तनीय समुच्चय हैं, जिसका अर्थ है कि समदिग्नत बिंदु का आगे का पुनरावृत्ति स्थिर और अस्थिर समुच्चय दोनों पर है। एन बार पुनरावृत्ति करके, नक्शा स्थिर समुच्चय द्वारा संतुलन बिंदु तक पहुंचता है, लेकिन प्रत्येक पुनरावृत्ति में यह अस्थिर मैनिफोल्ड पर भी होता है, जो इस संपत्ति को दर्शाता है।
यह गुण बताता देता है कि समदिग्नत बिंदु के अस्तित्व से जटिल गतिशीलता उत्पन्न होती है। वास्तव में, स्मेल (1967)[2] पता चला कि ये बिंदु गतिशीलता जैसे घोड़े की नाल के नक्शे की ओर ले जाते हैं, जो की कोलाहल से जुड़ा होती है।
प्रतीकात्मक गतिशीलता
मार्कोव विभाजन का उपयोग करके, प्रतीकात्मक गतिशीलता की तकनीकों का उपयोग करके हाइपरबोलिक प्रणाली के दीर्घकालिक व्यवहार का अध्ययन किया जा सकता है। इस स्थितियों में, समदिग्नत कक्षा का विशेष रूप से सरल और स्पष्ट प्रतिनिधित्व होता है। मान लें कि सीमित संख्यक M प्रतीकों का समुच्चय है। बिंदु x की गतिकता फिर से प्रतीकों की द्वि-अनंत स्ट्रिंग स्वरूप की स्त्रिंग द्वारा प्रदर्शित किया जाता है
प्रणाली का आवृत्तिक बिंदु केवल आवृत्ति वाला प्रतीकों का एक दोहराने वाला सिरा होता है। हेटरोक्लिनिक कक्षा तब दो विभिन्न आवधिक कक्षाओं का जुड़ना होता है। जिसे इस प्रकार लिखा जा सकता है
यहाँ लंबाई k के प्रतीकों की आवृत्तिक क्रम है (स्वभावसंख्या में, ), और लंबाई m के प्रतीकों का और क्रम है (इसी प्रकार, ). संकेतन बस अनंत बार p की पुनरावृत्ति को दर्शाता है। इस प्रकार, हेटरोक्लिनिक कक्षा को आवधिक कक्षा से दूसरे में संक्रमण के रूप में समझा जा सकता है। इसके विपरीत, समदिग्नत कक्षा को इस प्रकार लिखा जा सकता है
जहां आंतरिक क्रम संख्यमूलक होता है और बेशक, p नहीं होता है, क्योंकि अन्यथा, ऑर्बिट बस होती।
यह भी देखें
- हेटरोक्लिनिक कक्षा
- समदिग्नत द्विभाजन
संदर्भ
- ↑ Ott, Edward (1994). डायनामिकल सिस्टम में अराजकता. Cambridge University Press. ISBN 9780521437998.
- ↑ Smale, Stephen (1967). विभेदक गतिशील प्रणालियाँ. Bull. Amer. Math. Soc.73, 747–817.
- John Guckenheimer and Philip Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Applied Mathematical Sciences Vol. 42), Springer
बाहरी संबंध
- Homoclinic orbits in Henon map with Java applets and comments