अतिपरवलयिक त्रिभुज: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Short description|Triangle in hyperbolic geometry}}
{{Short description|Triangle in hyperbolic geometry}}[[File:Hyperbolic triangle.svg|thumb|250px|right| काठी के आकार की सतह में अंतर्निहित एक अतिशयोक्तिपूर्ण त्रिकोण]]अतिपरवलयिक ज्यामिति में, '''अतिपरवलयिक (हाइपरबोलिक) त्रिकोण''' अतिशयोक्तिपूर्ण तल में त्रिकोण होता है। इसमें तीन [[रेखा खंड]] होते हैं जिन्हें 'भुजाएँ' या 'किनारे' कहा जाता है और तीन [[बिंदु (ज्यामिति)|बिंदु]]  जिन्हें 'कोण' या 'कोने' कहा जाता है।
{{About|[[त्रिकोण]] [[अतिशयोक्तिपूर्ण ज्यामिति]] में
|एक अतिशयोक्तिपूर्ण क्षेत्र में त्रिकोण
|हाइपरबॉलिक सेक्टर#हाइपरबोलिक त्रिकोण
}}


[[File:Hyperbolic triangle.svg|thumb|250px|right| काठी के आकार की सतह में अंतर्निहित एक अतिशयोक्तिपूर्ण त्रिकोण]]अतिपरवलयिक ज्यामिति में, अतिपरवलयिक (हाइपरबोलिक) त्रिकोण अतिशयोक्तिपूर्ण तल में त्रिकोण होता है। इसमें तीन [[रेखा खंड]] होते हैं जिन्हें 'भुजाएँ' या 'किनारे' कहा जाता है और तीन [[बिंदु (ज्यामिति)|बिंदु]]  जिन्हें 'कोण' या 'कोने' कहा जाता है।
जैसे यूक्लिडियन स्थिति में, एक मनमाने आयाम के हाइपरबोलिक समष्टि के तीन बिंदु हमेशा एक ही तल पर स्थित होते हैं। इसलिए तलीय हाइपरबोलिक त्रिकोण भी अतिशयोक्तिपूर्ण रिक्त समष्टि के किसी भी उच्च आयाम में संभव त्रिकोणों का वर्णन करते हैं।
 
जैसे [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन]] स्थिति में, एक मनमाने [[आयाम (गणित)|आयाम]] के हाइपरबोलिक स्थान के तीन बिंदु हमेशा एक ही तल पर स्थित होते हैं। इसलिए तलीय हाइपरबोलिक त्रिकोण भी अतिशयोक्तिपूर्ण रिक्त स्थान के किसी भी उच्च आयाम में संभव त्रिकोणों का वर्णन करते हैं।
[[File:Order-7 triangular tiling.svg|thumb|right|200px|एक क्रम-7 त्रिकोणीय टाइलिंग में 2π/7 रेडियन [[आंतरिक कोण|आंतरिक कोणों]] के साथ समबाहु त्रिकोण हैं।]]
[[File:Order-7 triangular tiling.svg|thumb|right|200px|एक क्रम-7 त्रिकोणीय टाइलिंग में 2π/7 रेडियन [[आंतरिक कोण|आंतरिक कोणों]] के साथ समबाहु त्रिकोण हैं।]]


Line 37: Line 31:


*कुछ अतिशयोक्तिपूर्ण त्रिकोणों में कोई परिबद्ध वृत्त नहीं होता है, यह वह स्थिति होती है जब इसका कम से कम एक शीर्ष एक [[आदर्श बिंदु]] होता है या जब इसके सभी शीर्ष एक कुंडली या एक पक्ष अतिचक्र (ज्यामिति) पर स्थित होते हैं।
*कुछ अतिशयोक्तिपूर्ण त्रिकोणों में कोई परिबद्ध वृत्त नहीं होता है, यह वह स्थिति होती है जब इसका कम से कम एक शीर्ष एक [[आदर्श बिंदु]] होता है या जब इसके सभी शीर्ष एक कुंडली या एक पक्ष अतिचक्र (ज्यामिति) पर स्थित होते हैं।
*δ-अतिशयोक्तिपूर्ण स्थान अतिशयोक्तिपूर्ण त्रिकोण पतले होते हैं, एक किनारे पर एक बिंदु से दूसरे दो किनारों में से एक तक अधिकतम दूरी होती है। इस सिद्धांत ने δ-अतिशयोक्तिपूर्ण स्थान को जन्म दिया।
*δ-अतिशयोक्तिपूर्ण समष्टि अतिशयोक्तिपूर्ण त्रिकोण पतले होते हैं, एक किनारे पर एक बिंदु से दूसरे दो किनारों में से एक तक अधिकतम दूरी होती है। इस सिद्धांत ने δ-अतिशयोक्तिपूर्ण समष्टि को जन्म दिया।


== आदर्श शीर्षों वाले त्रिकोण ==
== आदर्श शीर्षों वाले त्रिकोण ==


[[File:Ideal circles.svg|thumb|right|200px|पॉइंकेयर डिस्क मॉडल में तीन आदर्श त्रिकोण]]त्रिकोण की परिभाषा को सामान्यीकृत किया जा सकता है, समतल के भीतर भुजाओं को रखते हुए समतल के आदर्श बिंदु पर शीर्षों की अनुमति दी जा सकती है। यदि पक्षों की एक जोड़ी समानांतर को सीमित कर रही है (यदि उनके बीच की दूरी [[शून्य]] तक पहुंचती है क्योंकि वे आदर्श बिंदु पर जाते हैं, लेकिन वे एक दूसरे को नहीं काटते हैं), तो वे एक आदर्श बिंदु के रूप में प्रदर्शित 'आदर्श शीर्ष' पर समाप्त होते हैं।
[[File:Ideal circles.svg|thumb|right|200px|पॉइंकेयर डिस्क मॉडल में तीन आदर्श त्रिकोण]]त्रिकोण की परिभाषा को सामान्यीकृत किया जा सकता है, समतल के भीतर भुजाओं को रखते हुए समतल के आदर्श बिंदु पर शीर्षों की अनुमति दी जा सकती है। यदि पक्षों की एक जोड़ी समानांतर को सीमित कर रही है (यदि उनके बीच की दूरी शून्य तक पहुंचती है क्योंकि वे आदर्श बिंदु पर जाते हैं, लेकिन वे एक दूसरे को नहीं काटते हैं), तो वे एक आदर्श बिंदु के रूप में प्रदर्शित 'आदर्श शीर्ष' पर समाप्त होते हैं।


भुजाओं का ऐसा युग्म शून्य का कोण बनाने वाला भी कहा जा सकता है।
भुजाओं का ऐसा युग्म शून्य का कोण बनाने वाला भी कहा जा सकता है।
Line 55: Line 49:


===श्वीकार्ट त्रिकोण===
===श्वीकार्ट त्रिकोण===
त्रिकोण जहां दो कोने आदर्श बिंदु हैं और शेष कोण [[समकोण]] है, [[फर्डिनेंड कार्ल श्वेकार्ट]] द्वारा वर्णित पहले अतिपरवलिक त्रिकोण (1818) में से एक है।
त्रिकोण जहां दो कोने आदर्श बिंदु हैं और शेष कोण [[समकोण]] है, फर्डिनेंड कार्ल श्वेकार्ट द्वारा वर्णित पहले अतिपरवलिक त्रिकोण (1818) में से एक है।


===आदर्श त्रिकोण===
===आदर्श त्रिकोण===
{{Main|आदर्श त्रिकोण
{{Main|आदर्श त्रिकोण}}
}}
 
त्रिकोण जहां सभी कोने आदर्श बिंदु हैं, कोणों के शून्य योग के कारण एक आदर्श त्रिकोण अतिशयोक्तिपूर्ण ज्यामिति में सबसे बड़ा संभव त्रिकोण है।
त्रिकोण जहां सभी कोने आदर्श बिंदु हैं, कोणों के शून्य योग के कारण एक आदर्श त्रिकोण अतिशयोक्तिपूर्ण ज्यामिति में सबसे बड़ा संभव त्रिकोण है।


== मानकीकृत गाऊसी वक्रता ==
== मानकीकृत गाऊसी वक्रता ==
कोणों और भुजाओं के बीच संबंध [[गोलाकार त्रिकोणमिति]] के समान हैं; गोलाकार ज्यामिति और हाइपरबोलिक ज्यामिति दोनों के लिए लंबाई के पैमाने को उदाहरण के लिए नियत कोणों वाले समबाहु त्रिकोण की एक भुजा की लंबाई के रूप में परिभाषित किया जा सकता है।
कोणों और भुजाओं के बीच संबंध गोलाकार त्रिकोणमिति के समान हैं; गोलाकार ज्यामिति और हाइपरबोलिक ज्यामिति दोनों के लिए लंबाई के पैमाने को उदाहरण के लिए नियत कोणों वाले समबाहु त्रिकोण की एक भुजा की लंबाई के रूप में परिभाषित किया जा सकता है।


लंबाई का पैमाना सबसे सुविधाजनक है यदि लंबाई को हाइपरबोलिक ज्यामिति मानकीकृत गाऊसी वक्रता (गोलाकार ज्यामिति में दूरियों के बीच संबंधों के अनुरूप लंबाई की एक विशेष इकाई) के संदर्भ में मापा जाता है। लंबाई के इस पैमाने के लिए यह विकल्प सूत्रों को सरल बनाता है।<ref>{{cite book|last=Needham|first=Tristan|title=दृश्य जटिल विश्लेषण|publisher=Oxford University Press|year=1998|isbn=9780198534464|page=270|url=https://books.google.com/books?id=ogz5FjmiqlQC&pg=PA270}}</ref>
लंबाई का पैमाना सबसे सुविधाजनक है यदि लंबाई को हाइपरबोलिक ज्यामिति मानकीकृत गाऊसी वक्रता (गोलाकार ज्यामिति में दूरियों के बीच संबंधों के अनुरूप लंबाई की एक विशेष इकाई) के संदर्भ में मापा जाता है। लंबाई के इस पैमाने के लिए यह विकल्प सूत्रों को सरल बनाता है।<ref>{{cite book|last=Needham|first=Tristan|title=दृश्य जटिल विश्लेषण|publisher=Oxford University Press|year=1998|isbn=9780198534464|page=270|url=https://books.google.com/books?id=ogz5FjmiqlQC&pg=PA270}}</ref>
Line 73: Line 67:
:<math>R=\frac{1}{\sqrt{-K}}</math>.
:<math>R=\frac{1}{\sqrt{-K}}</math>.


एक अतिशयोक्तिपूर्ण त्रिकोण में एक त्रिकोण A, B, C के कोणों का योग (क्रमशः संबंधित अक्षर वाली भुजा के विपरीत) एक सीधे कोण से कम होता है। एक ऋजुकोण की माप और त्रिकोण के कोणों की मापों के योग के बीच के अंतर को त्रिकोण का [[कोणीय दोष]] कहते हैं।एक हाइपरबोलिक त्रिकोण का [[क्षेत्र]] - फल उसके दोष के गुणनफल के [[वर्ग (बीजगणित)|वर्ग]] के बराबर होता है{{mvar|R}}:
एक अतिशयोक्तिपूर्ण त्रिकोण में एक त्रिकोण A, B, C के कोणों का योग (क्रमशः संबंधित अक्षर वाली भुजा के विपरीत) एक सीधे कोण से कम होता है। एक ऋजुकोण की माप और त्रिकोण के कोणों की मापों के योग के बीच के अंतर को त्रिकोण का कोणीय दोष कहते हैं।एक हाइपरबोलिक त्रिकोण का [[क्षेत्र]] - फल उसके दोष के गुणनफल के [[वर्ग (बीजगणित)|वर्ग]] के बराबर होता है{{mvar|R}}:
:<math>(\pi-A-B-C) R^2{}{}\!</math>.
:<math>(\pi-A-B-C) R^2{}{}\!</math>.


यह प्रमेय, सबसे पहले [[जोहान हेनरिक लैम्बर्ट]] द्वारा सिद्ध किया गया, गोलाकार ज्यामिति में गिरार्ड के प्रमेय से संबंधित है।<ref>{{cite book|title=हाइपरबोलिक मैनिफोल्ड्स की नींव|volume=149|series=Graduate Texts in Mathematics|first=John|last=Ratcliffe|publisher=Springer|year=2006|isbn=9780387331973|page=99|url=https://books.google.com/books?id=JV9m8o-ok6YC&pg=PA99|quotation=That the area of a hyperbolic triangle is proportional to its angle defect first appeared in Lambert's monograph ''Theorie der Parallellinien'', which was published posthumously in 1786.}}</ref>
यह प्रमेय, सबसे पहले जोहान हेनरिक लैम्बर्ट द्वारा सिद्ध किया गया, गोलाकार ज्यामिति में गिरार्ड के प्रमेय से संबंधित है।<ref>{{cite book|title=हाइपरबोलिक मैनिफोल्ड्स की नींव|volume=149|series=Graduate Texts in Mathematics|first=John|last=Ratcliffe|publisher=Springer|year=2006|isbn=9780387331973|page=99|url=https://books.google.com/books?id=JV9m8o-ok6YC&pg=PA99|quotation=That the area of a hyperbolic triangle is proportional to its angle defect first appeared in Lambert's monograph ''Theorie der Parallellinien'', which was published posthumously in 1786.}}</ref>


==त्रिकोणमिति==
==त्रिकोणमिति==
Line 85: Line 79:
=== समकोण त्रिकोणों का त्रिकोणमिति ===
=== समकोण त्रिकोणों का त्रिकोणमिति ===
यदि C एक समकोण है तो:
यदि C एक समकोण है तो:
* कोण A का 'ज्या' [[कर्ण]] के 'हाइपरबोलिक ज्या' द्वारा विभाजित कोण के विपरीत पक्ष की 'हाइपरबोलिक ज्या' है।
* कोण A का 'ज्या' कर्ण के 'हाइपरबोलिक ज्या' द्वारा विभाजित कोण के विपरीत पक्ष की 'हाइपरबोलिक ज्या' है।
::<math>\sin A=\frac{\textrm{sinh(opposite)}}{\textrm{sinh(hypotenuse)}}=\frac{\sinh a}{\,\sinh c\,}.\,</math>
::<math>\sin A=\frac{\textrm{sinh(opposite)}}{\textrm{sinh(hypotenuse)}}=\frac{\sinh a}{\,\sinh c\,}.\,</math>
*कोण 'A' का कोज्या कर्ण के अतिशयोक्तिपूर्ण स्पर्शरेखा द्वारा विभाजित आसन्न पैर की हाइपरबोलिक स्पर्शरेखा है।
*कोण 'A' का कोज्या कर्ण के अतिशयोक्तिपूर्ण स्पर्शरेखा द्वारा विभाजित आसन्न पैर की हाइपरबोलिक स्पर्शरेखा है।

Revision as of 15:58, 12 October 2023

काठी के आकार की सतह में अंतर्निहित एक अतिशयोक्तिपूर्ण त्रिकोण

अतिपरवलयिक ज्यामिति में, अतिपरवलयिक (हाइपरबोलिक) त्रिकोण अतिशयोक्तिपूर्ण तल में त्रिकोण होता है। इसमें तीन रेखा खंड होते हैं जिन्हें 'भुजाएँ' या 'किनारे' कहा जाता है और तीन बिंदु जिन्हें 'कोण' या 'कोने' कहा जाता है।

जैसे यूक्लिडियन स्थिति में, एक मनमाने आयाम के हाइपरबोलिक समष्टि के तीन बिंदु हमेशा एक ही तल पर स्थित होते हैं। इसलिए तलीय हाइपरबोलिक त्रिकोण भी अतिशयोक्तिपूर्ण रिक्त समष्टि के किसी भी उच्च आयाम में संभव त्रिकोणों का वर्णन करते हैं।

एक क्रम-7 त्रिकोणीय टाइलिंग में 2π/7 रेडियन आंतरिक कोणों के साथ समबाहु त्रिकोण हैं।

परिभाषा

एक अतिशयोक्तिपूर्ण त्रिकोण में तीन गैर-संरेख बिंदु और उनके बीच तीन खंड होते हैं।[1]


गुण

अतिशयोक्तिपूर्ण त्रिकोणों में कुछ गुण होते हैं जो यूक्लिडियन ज्यामिति में त्रिकोणों के अनुरूप होते हैं:

  • प्रत्येक हाइपरबोलिक त्रिकोण में एक उत्कीर्ण वृत्त होता है लेकिन प्रत्येक हाइपरबोलिक त्रिकोण में एक परिबद्ध वृत्त नहीं होता है (नीचे देखें)। इसके शीर्ष किसी कुंडली या अतिचक्र पर स्थित हो सकते हैं।

अतिशयोक्तिपूर्ण त्रिकोणों में कुछ गुण होते हैं जो गोलाकार या अण्डाकार ज्यामिति में त्रिकोणों के अनुरूप होते हैं:

  • कोणों के समान योग वाले दो त्रिकोण क्षेत्रफल में बराबर होते हैं।
  • त्रिकोणों के क्षेत्रफल के लिए एक ऊपरी सीमा होती है।
  • उत्कीर्ण वृत्त की त्रिज्या के लिए एक ऊपरी सीमा है।
  • दो त्रिकोण सर्वांगसम होते हैं और यदि केवल वे रेखा परावर्तनों के परिमित गुणनफल के अनुरूप हों।
  • समान कोण वाले दो त्रिकोण सर्वांगसम होते हैं (अर्थात, सभी समरूप त्रिकोण सर्वांगसम होते हैं)।

अतिशयोक्तिपूर्ण त्रिकोणों में कुछ गुण होते हैं जो गोलाकार या अण्डाकार ज्यामिति में त्रिकोणों के गुणों के विपरीत होते हैं:

  • त्रिकोण के कोणों का योग 180° से कम होता है।
  • त्रिकोण का क्षेत्रफल 180° से इसके कोण योग के घाटे के समानुपाती होता है।

अतिशयोक्तिपूर्ण त्रिकोणों में कुछ ऐसे गुण भी होते हैं जो अन्य ज्यामितियों में नहीं पाए जाते हैं:

  • कुछ अतिशयोक्तिपूर्ण त्रिकोणों में कोई परिबद्ध वृत्त नहीं होता है, यह वह स्थिति होती है जब इसका कम से कम एक शीर्ष एक आदर्श बिंदु होता है या जब इसके सभी शीर्ष एक कुंडली या एक पक्ष अतिचक्र (ज्यामिति) पर स्थित होते हैं।
  • δ-अतिशयोक्तिपूर्ण समष्टि अतिशयोक्तिपूर्ण त्रिकोण पतले होते हैं, एक किनारे पर एक बिंदु से दूसरे दो किनारों में से एक तक अधिकतम दूरी होती है। इस सिद्धांत ने δ-अतिशयोक्तिपूर्ण समष्टि को जन्म दिया।

आदर्श शीर्षों वाले त्रिकोण

पॉइंकेयर डिस्क मॉडल में तीन आदर्श त्रिकोण

त्रिकोण की परिभाषा को सामान्यीकृत किया जा सकता है, समतल के भीतर भुजाओं को रखते हुए समतल के आदर्श बिंदु पर शीर्षों की अनुमति दी जा सकती है। यदि पक्षों की एक जोड़ी समानांतर को सीमित कर रही है (यदि उनके बीच की दूरी शून्य तक पहुंचती है क्योंकि वे आदर्श बिंदु पर जाते हैं, लेकिन वे एक दूसरे को नहीं काटते हैं), तो वे एक आदर्श बिंदु के रूप में प्रदर्शित 'आदर्श शीर्ष' पर समाप्त होते हैं।

भुजाओं का ऐसा युग्म शून्य का कोण बनाने वाला भी कहा जा सकता है।

भिन्न -भिन्न रेखाओं पर स्थित सीधी रेखा भुजाओं के लिए यूक्लिडियन ज्यामिति में शून्य कोण वाला त्रिकोण असंभव है। तथापि, ऐसे शून्य कोण स्पर्शी वृत्तों के साथ संभव हैं।

एक आदर्श शीर्ष वाले त्रिकोण को 'ओमेगा त्रिकोण' कहा जाता है।

आदर्श शीर्षों वाले विशेष त्रिकोण हैं:

समानता का त्रिकोण

एक त्रिकोण जहाँ एक शीर्ष एक आदर्श बिंदु है, एक कोण समकोण है: तीसरा कोण समांतरता का कोण है जो समकोण और तीसरे कोण के बीच की भुजा की लंबाई के लिए है।

श्वीकार्ट त्रिकोण

त्रिकोण जहां दो कोने आदर्श बिंदु हैं और शेष कोण समकोण है, फर्डिनेंड कार्ल श्वेकार्ट द्वारा वर्णित पहले अतिपरवलिक त्रिकोण (1818) में से एक है।

आदर्श त्रिकोण

त्रिकोण जहां सभी कोने आदर्श बिंदु हैं, कोणों के शून्य योग के कारण एक आदर्श त्रिकोण अतिशयोक्तिपूर्ण ज्यामिति में सबसे बड़ा संभव त्रिकोण है।

मानकीकृत गाऊसी वक्रता

कोणों और भुजाओं के बीच संबंध गोलाकार त्रिकोणमिति के समान हैं; गोलाकार ज्यामिति और हाइपरबोलिक ज्यामिति दोनों के लिए लंबाई के पैमाने को उदाहरण के लिए नियत कोणों वाले समबाहु त्रिकोण की एक भुजा की लंबाई के रूप में परिभाषित किया जा सकता है।

लंबाई का पैमाना सबसे सुविधाजनक है यदि लंबाई को हाइपरबोलिक ज्यामिति मानकीकृत गाऊसी वक्रता (गोलाकार ज्यामिति में दूरियों के बीच संबंधों के अनुरूप लंबाई की एक विशेष इकाई) के संदर्भ में मापा जाता है। लंबाई के इस पैमाने के लिए यह विकल्प सूत्रों को सरल बनाता है।[2] बिंदु देखभाल आधा -तल मॉडल के संदर्भ में निरपेक्ष लंबाई रीमैनियन कई गुना से मेल खाती है और बिंदु देखभाल

डिस्क मॉडल में .

(निरंतर और ऋणात्मक) गाऊसी वक्रता के संदर्भ में K एक अतिशयोक्तिपूर्ण तल की, पूर्ण लंबाई की एक इकाई की लंबाई से मेल खाती है

.

एक अतिशयोक्तिपूर्ण त्रिकोण में एक त्रिकोण A, B, C के कोणों का योग (क्रमशः संबंधित अक्षर वाली भुजा के विपरीत) एक सीधे कोण से कम होता है। एक ऋजुकोण की माप और त्रिकोण के कोणों की मापों के योग के बीच के अंतर को त्रिकोण का कोणीय दोष कहते हैं।एक हाइपरबोलिक त्रिकोण का क्षेत्र - फल उसके दोष के गुणनफल के वर्ग के बराबर होता हैR:

.

यह प्रमेय, सबसे पहले जोहान हेनरिक लैम्बर्ट द्वारा सिद्ध किया गया, गोलाकार ज्यामिति में गिरार्ड के प्रमेय से संबंधित है।[3]

त्रिकोणमिति

पक्षों के नीचे दिए गए सभी सूत्रों में a, b, तथा c हाइपरबोलिक ज्यामिति में मापा जाना चाहिएI मानकीकृत गॉसियन वक्रता, एक इकाई जिससे कि तलके गॉसियन वक्रता K-1हो। दूसरे शब्दों में, मात्रा R उपरोक्त अनुच्छेद में 1 के बराबर माना जाता है।

अतिशयोक्तिपूर्ण त्रिकोणों के लिए त्रिकोणमितीय सूत्र अतिशयोक्तिपूर्ण कार्यों sinh, cosh, और tanh पर निर्भर करते हैं।

समकोण त्रिकोणों का त्रिकोणमिति

यदि C एक समकोण है तो:

  • कोण A का 'ज्या' कर्ण के 'हाइपरबोलिक ज्या' द्वारा विभाजित कोण के विपरीत पक्ष की 'हाइपरबोलिक ज्या' है।
  • कोण 'A' का कोज्या कर्ण के अतिशयोक्तिपूर्ण स्पर्शरेखा द्वारा विभाजित आसन्न पैर की हाइपरबोलिक स्पर्शरेखा है।
  • कोण 'A' की स्पर्शरेखा विपरीत पैर की हाइपरबोलिक स्पर्शरेखा है जो आसन्न पैर की अतिशयोक्तिपूर्ण ज्या से विभाजित होती है।
.
  • कोण A के सन्निकट पैर की हाइपरबोलिक कोज्या, कोण A की ज्या से विभाजित कोण B की कोज्या है।
.
  • कर्ण का अतिशयोक्तिपूर्ण कोज्या पैरों के अतिशयोक्तिपूर्ण कोज्या का उत्पाद है।
.
  • कर्ण की हाइपरबोलिक कोज्या भी उनकी ज्याओं के गुणनफल द्वारा विभाजित कोणों के कोज्याओं का गुणनफल है।[4]


कोणों के बीच संबंध

हमारे पास निम्नलिखित समीकरण भी हैं:[5]


क्षेत्र

एक समकोण त्रिकोण का क्षेत्रफल है:

किसी अन्य त्रिकोण का क्षेत्रफल है:

भी

[citation needed][6]


समानता का कोण

समकोण के साथ एक ओमेगा त्रिकोण का उदाहरण त्रिकोण में समांतरता के कोण की जांच करने के लिए विन्यास प्रदान करता है।

इस स्थिति में कोण B = 0, A = C = तथा , जिसके परिणामस्वरूप .

समबाहु त्रिकोण

समकोण त्रिकोणों के त्रिकोणमिति सूत्र एक समबाहु त्रिकोण की भुजाओं s और कोण A के बीच संबंध भी देते हैं (एक त्रिकोण जहाँ सभी भुजाओं की लंबाई समान होती है और सभी कोण बराबर होते हैं)।

संबंध हैं:


सामान्य त्रिकोणमिति

C एक समकोण है या नहीं, निम्नलिखित संबंध धारण करते हैं:

कोज्या का अतिशयोक्तिपूर्ण नियम इस प्रकार है:

इसका द्वैत प्रमेय (प्रक्षेपी ज्यामिति) है

ज्या का नियम भी है:

और एक चार-भाग सूत्र:

जो उसी प्रकार गोलाकार त्रिकोणमिति में अनुरूप सूत्र के रूप में प्राप्त होता है।

संदर्भ

  1. Stothers, Wilson (2000), Hyperbolic geometry, University of Glasgow, interactive instructional website
  2. Needham, Tristan (1998). दृश्य जटिल विश्लेषण. Oxford University Press. p. 270. ISBN 9780198534464.
  3. Ratcliffe, John (2006). हाइपरबोलिक मैनिफोल्ड्स की नींव. Graduate Texts in Mathematics. Vol. 149. Springer. p. 99. ISBN 9780387331973. That the area of a hyperbolic triangle is proportional to its angle defect first appeared in Lambert's monograph Theorie der Parallellinien, which was published posthumously in 1786.
  4. Martin, George E. (1998). ज्यामिति की नींव और गैर-यूक्लिडियन विमान (Corrected 4. print. ed.). New York, NY: Springer. p. 433. ISBN 0-387-90694-0.
  5. Smogorzhevski, A.S. लोबचेवस्कियन ज्यामिति. Moscow 1982: Mir Publishers. p. 63.{{cite book}}: CS1 maint: location (link)
  6. "भुजाओं की लंबाई के फलन के रूप में एक समकोण अतिपरवलयिक त्रिभुज का क्षेत्रफल". Stack Exchange Mathematics. Retrieved 11 October 2015.