संपूर्णत समतुल्य परत: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== तकनीकी विवरण == | == तकनीकी विवरण == | ||
[[File:Stretched coordinate PML absorption.ogg|thumb|250px|2डी एफडीटीडी विधि में फैला हुआ समन्वय पीएमएल के माध्यम से स्पंदित गोलाकार तरंग का अवशोषण। सफेद बॉर्डर अनुकरण सीमा को इंगित करता है।]]विशेष रूप से, x दिशा में फैलने वाली तरंगों को अवशोषित करने के लिए डिज़ाइन किए गए पीएमएल के लिए, निम्न परिवर्तन तरंग समीकरण में | [[File:Stretched coordinate PML absorption.ogg|thumb|250px|2डी एफडीटीडी विधि में फैला हुआ समन्वय पीएमएल के माध्यम से स्पंदित गोलाकार तरंग का अवशोषण। सफेद बॉर्डर अनुकरण सीमा को इंगित करता है।]]विशेष रूप से, x दिशा में फैलने वाली तरंगों को अवशोषित करने के लिए डिज़ाइन किए गए पीएमएल के लिए, निम्न परिवर्तन तरंग समीकरण में सम्मिलित है। जहां भी x व्युत्पन्न <math>\partial/\partial x</math> तरंग समीकरण में प्रकट होता है, इसे इसके द्वारा प्रतिस्थापित किया जाता है | ||
:<math>\frac{\partial}{\partial x} \to \frac{1}{1 + \frac{i\sigma(x)}{\omega}} \frac{\partial}{\partial x}</math> | :<math>\frac{\partial}{\partial x} \to \frac{1}{1 + \frac{i\sigma(x)}{\omega}} \frac{\partial}{\partial x}</math> | ||
जहां <math>\omega</math> [[कोणीय आवृत्ति]] है और <math>\sigma</math> x का कुछ कार्य है। '''जहां''' कहीं भी <math>\sigma</math> | जहां <math>\omega</math> [[कोणीय आवृत्ति]] है और <math>\sigma</math> x का कुछ कार्य है। '''जहां''' कहीं भी <math>\sigma</math> धनात्मक है, प्रसार तरंगें को दुर्बल किया जाता है क्योंकि | ||
:<math>e^{i(kx - \omega t)} \to e^{i(kx - \omega t) - \frac{k}{\omega} \int^x \sigma(x') dx'} ,</math> | :<math>e^{i(kx - \omega t)} \to e^{i(kx - \omega t) - \frac{k}{\omega} \int^x \sigma(x') dx'} ,</math> | ||
जहां हमने +x दिशा में प्रचार करने वाली समतल तरंग ली है (<math>k > 0</math> के लिए) और जटिल निर्देशांक के लिए परिवर्तन (विश्लेषणात्मक निरंतरता) लागू किया <math>x \to x + \frac{i}{\omega} \int^x \sigma(x') dx'</math>, या समन्वय <math>dx \to dx (1 + i\sigma/\omega)</math>. समान समन्वय परिवर्तन के कारण तरंगें दुर्बल हो जाती हैं जब भी उनकी x निर्भरता रूप में होती है <math>e^{ikx}</math> कुछ [[प्रसार स्थिरांक]] k के लिए इसमें x अक्ष के साथ कुछ कोण पर प्रसारित होने वाली समतल तरंगें और तरंगपथनिर्धारित्र के [[अनुप्रस्थ मोड]] भी | जहां हमने +x दिशा में प्रचार करने वाली समतल तरंग ली है (<math>k > 0</math> के लिए) और जटिल निर्देशांक के लिए परिवर्तन (विश्लेषणात्मक निरंतरता) लागू किया <math>x \to x + \frac{i}{\omega} \int^x \sigma(x') dx'</math>, या समन्वय <math>dx \to dx (1 + i\sigma/\omega)</math>. समान समन्वय परिवर्तन के कारण तरंगें दुर्बल हो जाती हैं जब भी उनकी x निर्भरता रूप में होती है <math>e^{ikx}</math> कुछ [[प्रसार स्थिरांक]] k के लिए इसमें x अक्ष के साथ कुछ कोण पर प्रसारित होने वाली समतल तरंगें और तरंगपथनिर्धारित्र के [[अनुप्रस्थ मोड]] भी सम्मिलित हैं। | ||
उपरोक्त समन्वय परिवर्तन को रूपांतरित तरंग समीकरणों में छोड़ दिया जा सकता है, या यूपीएमएल विवरण बनाने के लिए पदार्थ विवरण (जैसे मैक्सवेल के समीकरणों में विद्युतशीलता और [[पारगम्यता (विद्युत चुंबकत्व)|पारगम्यता]]) के साथ जोड़ा जा सकता है। गुणांक σ/ω आवृत्ति पर निर्भर करता है- ऐसा इसलिए है कि संकीर्णता दर k/ω के समानुपाती होती है, जो ω और k के बीच [[फैलाव संबंध|विस्तार संबंध]] के कारण सजातीय पदार्थ में आवृत्ति से स्वतंत्र होती है (भौतिक विस्तार | उपरोक्त समन्वय परिवर्तन को रूपांतरित तरंग समीकरणों में छोड़ दिया जा सकता है, या यूपीएमएल विवरण बनाने के लिए पदार्थ विवरण (जैसे मैक्सवेल के समीकरणों में विद्युतशीलता और [[पारगम्यता (विद्युत चुंबकत्व)|पारगम्यता]]) के साथ जोड़ा जा सकता है। गुणांक σ/ω आवृत्ति पर निर्भर करता है- ऐसा इसलिए है कि संकीर्णता दर k/ω के समानुपाती होती है, जो ω और k के बीच [[फैलाव संबंध|विस्तार संबंध]] के कारण सजातीय पदार्थ में आवृत्ति से स्वतंत्र होती है (भौतिक विस्तार सम्मिलित नहीं है, उदाहरण [[ खालीपन |निर्वात]] के लिए)। तथापि, इस आवृत्ति-निर्भरता का अर्थ है कि पीएमएल का समय डोमेन कार्यान्वयन, उदा [[FDTD|एफडीटीडी]] विधि में, आवृत्ति-स्वतंत्र अवशोषक की तुलना में अधिक जटिल है, और इसमें [[सहायक अंतर समीकरण]] (एडीई) दृष्टिकोण सम्मिलित है (समतुल्य, i/ω समय डोमेन मे [[अभिन्न]] या [[कनवल्शन|संवलन]] के रूप में प्रकट होता है)। | ||
संपूर्णत समतुल्य परतें, अपने मूल रूप में, केवल प्रसार तरंगों को दुर्बल करती हैं, विशुद्ध रूप से अस्थायी तरंगें (घातीय रूप से क्षय वाले क्षेत्र) पीएमएल में दोलन करती हैं लेकिन अधिक तेज़ी से क्षय नहीं करती हैं। तथापि, पीएमएल में [[वास्तविक संख्या|वास्तविक]] समन्वय को | संपूर्णत समतुल्य परतें, अपने मूल रूप में, केवल प्रसार तरंगों को दुर्बल करती हैं, विशुद्ध रूप से अस्थायी तरंगें (घातीय रूप से क्षय वाले क्षेत्र) पीएमएल में दोलन करती हैं लेकिन अधिक तेज़ी से क्षय नहीं करती हैं। तथापि, पीएमएल में [[वास्तविक संख्या|वास्तविक]] समन्वय को सम्मिलित करके वाष्पशील तरंगों के दुर्बल को भी तेज किया जा सकता है यह उपरोक्त अभिव्यक्ति में σ को जटिल संख्या बनाने के अनुरूप है, जहां काल्पनिक भाग वास्तविक समन्वय खिंचाव उत्पन्न करता है जिससे वाष्पशील तरंगों का तेजी से अधिक क्षय होता हैं। | ||
== संपूर्णत समतुल्य परतों की सीमाएं == | == संपूर्णत समतुल्य परतों की सीमाएं == | ||
Line 19: | Line 19: | ||
संपूर्णत समतुल्य परतों के साथ संकेत यह है कि वे केवल सटीक, निरंतर तरंग समीकरण के लिए परावर्तन रहित हैं। एक बार कंप्यूटर पर अनुकरण के लिए तरंग समीकरण को अलग कर दिया जाता है, तो कुछ छोटे संख्यात्मक प्रतिबिंब दिखाई देते हैं (जो बढ़ते संकल्प के साथ गायब हो जाते हैं)। इस कारण से, पीएमएल अवशोषण पदार्थांक σ प्रायः तरंग के [[तरंग दैर्ध्य]] के पैमाने पर कम दूरी पर शून्य (उदा. द्विघात रूप से) से धीरे-धीरे चालू होता है।<ref name=Taflove05/> प्रायः, कोई भी अवशोषक, चाहे पीएमएल हो या नहीं, उस सीमा में प्रतिबिंब रहित होता है जहां यह पर्याप्त रूप से धीरे-धीरे चालू होता है (और अवशोषित परत मोटी हो जाती है), लेकिन असंततकरण प्रणाली में पीएमएल का लाभ परिमित-मोटाई "संक्रमण" को कम करना है। साधारण समदैशिक अवशोषण पदार्थांक की तुलना में परिमाण के कई आदेशों द्वारा प्रतिबिंब है।<ref name=Oskooi08/> | संपूर्णत समतुल्य परतों के साथ संकेत यह है कि वे केवल सटीक, निरंतर तरंग समीकरण के लिए परावर्तन रहित हैं। एक बार कंप्यूटर पर अनुकरण के लिए तरंग समीकरण को अलग कर दिया जाता है, तो कुछ छोटे संख्यात्मक प्रतिबिंब दिखाई देते हैं (जो बढ़ते संकल्प के साथ गायब हो जाते हैं)। इस कारण से, पीएमएल अवशोषण पदार्थांक σ प्रायः तरंग के [[तरंग दैर्ध्य]] के पैमाने पर कम दूरी पर शून्य (उदा. द्विघात रूप से) से धीरे-धीरे चालू होता है।<ref name=Taflove05/> प्रायः, कोई भी अवशोषक, चाहे पीएमएल हो या नहीं, उस सीमा में प्रतिबिंब रहित होता है जहां यह पर्याप्त रूप से धीरे-धीरे चालू होता है (और अवशोषित परत मोटी हो जाती है), लेकिन असंततकरण प्रणाली में पीएमएल का लाभ परिमित-मोटाई "संक्रमण" को कम करना है। साधारण समदैशिक अवशोषण पदार्थांक की तुलना में परिमाण के कई आदेशों द्वारा प्रतिबिंब है।<ref name=Oskooi08/> | ||
कुछ पदार्थ में, "पश्चवर्ती-तरंग" समाधान होते हैं जिसमें [[समूह वेग|समूह]] और [[चरण वेग]] एक दूसरे के विपरीत होते हैं। यह विद्युतचुम्बकत्व के लिए और कुछ ठोस पदार्थों में ध्वनिक तरंगों के लिए "बाएं हाथ" | कुछ पदार्थ में, "पश्चवर्ती-तरंग" समाधान होते हैं जिसमें [[समूह वेग|समूह]] और [[चरण वेग]] एक दूसरे के विपरीत होते हैं। यह विद्युतचुम्बकत्व के लिए और कुछ ठोस पदार्थों में ध्वनिक तरंगों के लिए "बाएं हाथ" ऋणात्मक सूचकांक मेटामटेरियल्स में होता है, और इन मामलों में मानक पीएमएल निरूपण अस्थिर होता है यह क्षय के बजाय घातीय वृद्धि की ओर जाता है, क्योंकि के(k) का संकेत उपरोक्त विश्लेषण में व्यवस्थित किया जाता है।<ref>{{cite journal | author= E. Bécache, S. Fauqueux and P. Joly| title= पूरी तरह से मेल खाने वाली परतों, समूह वेगों और अनिसोट्रोपिक तरंगों की स्थिरता| journal= Journal of Computational Physics | year= 2003 | volume= 188 | pages= 399–433| doi=10.1016/S0021-9991(03)00184-0 | issue= 2| bibcode= 2003JCoPh.188..399B| s2cid= 18020140| url= https://hal.inria.fr/inria-00072283/file/RR-4304.pdf}} [http://hal.archives-ouvertes.fr/docs/00/07/22/83/PDF/RR-4304.pdf]</ref> सौभाग्य से, बाएं हाथ के माध्यम में सरल समाधान है (जिसके लिए सभी तरंगें पीछे की ओर हैं) केवल σ के चिह्न को व्यवस्थित करें। तथापि, जटिलता यह है कि भौतिक बाएँ हाथ की पदार्थ [[फैलाव (प्रकाशिकी)|फैलाने]] वाली होती है वे केवल निश्चित आवृत्ति सीमा के भीतर बाएँ हाथ की होती हैं, और इसलिए σ पदार्थांक को आवृत्ति-निर्भर बनाया जाना चाहिए।<ref>{{cite journal | author = Cummer Steven A | year = 2004 | title = नकारात्मक अपवर्तक सूचकांक सामग्री में पूरी तरह से मेल खाने वाली परत व्यवहार| journal = IEEE Ant. Wireless Prop. Lett | volume = 3 | issue = 9 | pages = 172–175 | doi = 10.1109/lawp.2004.833710 | bibcode = 2004IAWPL...3..172C | s2cid = 18838504 }}</ref><ref>{{cite journal | author = Dong X. T., Rao X. S., Gan Y. B., Guo B., Yin W.-Y. | year = 2004 | title = बाएं हाथ की सामग्री के लिए पूरी तरह से मेल खाने वाली परत-अवशोषित सीमा की स्थिति| journal = IEEE Microwave Wireless Components Lett. | volume = 14 | issue = 6 | pages = 301–333 | doi = 10.1109/lmwc.2004.827104 | s2cid = 19568400 }}</ref> दुर्भाग्य से, विदेशी पदार्थ के बिना, कोई भी कुछ वेवगाइडिंग संरचनाओं (जैसे कि इसके केंद्र में उच्च-सूचकांक सिलेंडर के साथ एक खोखली धातु ट्यूब) को डिज़ाइन कर सकता है, जो एक ही आवृत्ति पर पीछे की ओर और आगे-तरंग दोनों समाधानों को प्रदर्शित करता है, जैसे कि कोई भी संकेत विकल्प σ के लिए घातीय वृद्धि होगी, और ऐसे मामलों में पीएमएल अपरिवर्तनीय रूप से अस्थिर प्रतीत होता है।<ref>{{cite journal | author = Loh P.-R., Oskooi A. F., Ibanescu M., Skorobogatiy M., Johnson S. G. | year = 2009 | title = चरण और समूह वेग के बीच मौलिक संबंध, और पश्च-तरंग संरचनाओं में पूरी तरह से मेल खाने वाली परतों की विफलता के लिए आवेदन| url = http://math.mit.edu/~stevenj/papers/LohOs09.pdf | journal = Phys. Rev. E | volume = 79 | issue = 6 | page = 065601 | doi = 10.1103/physreve.79.065601 | pmid = 19658556 | bibcode = 2009PhRvE..79f5601L | hdl = 1721.1/51780 | hdl-access = free }}</ref> | ||
पीएमएल की एक और महत्वपूर्ण सीमा यह है कि जटिल निर्देशांक (जटिल "समन्वय खिंचाव") के समाधान की विश्लेषणात्मक निरंतरता का समर्थन करने के लिए माध्यम को सीमा के ओर्थोगोनल दिशा में अपरिवर्तनीय होना आवश्यक है। परिणामस्वरूप, आवर्ती माध्यम (जैसे [[फोटोनिक क्रिस्टल]] या [[ध्वनिक मेटामटेरियल्स]]) के मामले में पीएमएल दृष्टिकोण अब मान्य नहीं है (अनंत संकल्प पर अब परावर्तन रहित नहीं है)। <ref name="Oskooi08">A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, [http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-15-11376 The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers], ''Optics Express'' '''16''', 11376–11392 (2008).</ref> या केवल वेवगाइड जो तिरछे कोण पर सीमा में प्रवेश करता है,<ref>{{cite journal | author = Oskooi A., Johnson S. G. | year = 2011 | title = अनिसोट्रोपिक, फैलाने वाले मीडिया के लिए गलत पीएमएल प्रस्तावों से सही भेद और एक सही अनप्लिट पीएमएल| url = http://math.mit.edu/~stevenj/papers/OskooiJo11.pdf | journal = Journal of Computational Physics | volume = 230 | issue = 7 | pages = 2369–2377 | doi = 10.1016/j.jcp.2011.01.006 | bibcode = 2011JCoPh.230.2369O }}</ref> | पीएमएल की एक और महत्वपूर्ण सीमा यह है कि जटिल निर्देशांक (जटिल "समन्वय खिंचाव") के समाधान की विश्लेषणात्मक निरंतरता का समर्थन करने के लिए माध्यम को सीमा के ओर्थोगोनल दिशा में अपरिवर्तनीय होना आवश्यक है। परिणामस्वरूप, आवर्ती माध्यम (जैसे [[फोटोनिक क्रिस्टल]] या [[ध्वनिक मेटामटेरियल्स]]) के मामले में पीएमएल दृष्टिकोण अब मान्य नहीं है (अनंत संकल्प पर अब परावर्तन रहित नहीं है)। <ref name="Oskooi08">A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, [http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-15-11376 The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers], ''Optics Express'' '''16''', 11376–11392 (2008).</ref> या केवल वेवगाइड जो तिरछे कोण पर सीमा में प्रवेश करता है,<ref>{{cite journal | author = Oskooi A., Johnson S. G. | year = 2011 | title = अनिसोट्रोपिक, फैलाने वाले मीडिया के लिए गलत पीएमएल प्रस्तावों से सही भेद और एक सही अनप्लिट पीएमएल| url = http://math.mit.edu/~stevenj/papers/OskooiJo11.pdf | journal = Journal of Computational Physics | volume = 230 | issue = 7 | pages = 2369–2377 | doi = 10.1016/j.jcp.2011.01.006 | bibcode = 2011JCoPh.230.2369O }}</ref> |
Latest revision as of 12:21, 20 October 2023
संपूर्णत समतुल्य परत (पीएमएल) लहर समीकरणों के लिए कृत्रिम अवशोषित परत है, जो प्रायः खुली सीमाओं के साथ समस्याओं का अनुकरण करने के लिए संख्यात्मक तरीकों में अभिकलनात्मक क्षेत्रों को छोटा करने के लिए प्रायः उपयोग किया जाता है, विशेष रूप से एफडीटीडी और एफई विधियों में।[1][2] पीएमएल की प्रमुख गुण जो इसे सामान्य अवशोषित पदार्थ से अलग करती है, वह यह है कि इसे इस तरह से डिज़ाइन किया गया है कि ताकि गैर-पीएमएल माध्यम से पीएमएल पर आने वाली तरंगें अंतरापृष्ठ पर परावर्तित न हों- यह गुण पीएमएल को बाहर जाने वाली तरंगों को दृढ़ता से अवशोषित करने की अनुमति देती है अभिकलनात्मक क्षेत्र के आंतरिक भाग को वापस आंतरिक भाग में परावर्तित किए बिना।
पीएमएल को मूल रूप से 1994 में बेरेंगर द्वारा तैयार किया गया था[3] मैक्सवेल के समीकरणों के साथ उपयोग के लिए, और उस समय से मैक्सवेल के समीकरणों और अन्य तरंग-प्रकार के समीकरणों के लिए पीएमएल के कई संबंधित सुधार किए गए हैं, जैसे प्रत्यास्थगतिकी रैखिक यूलर समीकरण, हेल्महोल्टस समीकरण और पोरोइलास्टिसिटी।[4] बेरेंगर के मूल निरूपण को विभाजन-क्षेत्र पीएमएल कहा जाता है, क्योंकि यह पीएमएल क्षेत्र में विद्युत चुम्बकीय क्षेत्रों को दो अभौतिक क्षेत्रों में विभाजित करता है। बाद का निरूपण जो अपनी सरलता और कार्यक्षमता के कारण अधिक लोकप्रिय हो गया है, उसे अक्षीय पीएमएल या यूपीएमएल कहा जाता है।[5] जिसमें पीएमएल को कृत्रिम विषमदैशिक अवशोषित पदार्थ के रूप में वर्णित किया गया है। यद्यपि बेरेंगर के निरूपण और यूपीएमएल दोनों को शुरू में नियमावली रूप से उन परिस्थितियों का निर्माण करके प्राप्त किया गया था, जिसके तहत सजातीय माध्यम से पीएमएल अंतरापृष्ठ से वृत्तांत विमान तरंगें परावर्तित नहीं होती हैं, दोनों निरूपण को बाद में अधिक सहज और सामान्य दृष्टिकोण के बराबर दिखाया गया तानित - पीएमएल का समन्वय करें।[6][7] विशेष रूप से, पीएमएल को समन्वय परिवर्तन के अनुरूप दिखाया गया था जिसमें एक (या अधिक) निर्देशांक जटिल संख्याओं में मैप किए जाते हैं, अधिक तकनीकी रूप से, यह वास्तव में जटिल निर्देशांक में तरंग समीकरण का विश्लेषणात्मक निरंतरता है, जो तेजी से क्षय वाली तरंगों द्वारा प्रसार (दोलन) तरंगों को प्रतिस्थापित करता है। यह दृष्टिकोण पीएमएल को अमानवीय मीडिया जैसे वेवगाइड्स के साथ-साथ अन्य समन्वय प्रणालियों और तरंग समीकरणों के लिए प्राप्त करने की अनुमति देता है।[8][9]
तकनीकी विवरण
विशेष रूप से, x दिशा में फैलने वाली तरंगों को अवशोषित करने के लिए डिज़ाइन किए गए पीएमएल के लिए, निम्न परिवर्तन तरंग समीकरण में सम्मिलित है। जहां भी x व्युत्पन्न तरंग समीकरण में प्रकट होता है, इसे इसके द्वारा प्रतिस्थापित किया जाता है
जहां कोणीय आवृत्ति है और x का कुछ कार्य है। जहां कहीं भी धनात्मक है, प्रसार तरंगें को दुर्बल किया जाता है क्योंकि
जहां हमने +x दिशा में प्रचार करने वाली समतल तरंग ली है ( के लिए) और जटिल निर्देशांक के लिए परिवर्तन (विश्लेषणात्मक निरंतरता) लागू किया , या समन्वय . समान समन्वय परिवर्तन के कारण तरंगें दुर्बल हो जाती हैं जब भी उनकी x निर्भरता रूप में होती है कुछ प्रसार स्थिरांक k के लिए इसमें x अक्ष के साथ कुछ कोण पर प्रसारित होने वाली समतल तरंगें और तरंगपथनिर्धारित्र के अनुप्रस्थ मोड भी सम्मिलित हैं।
उपरोक्त समन्वय परिवर्तन को रूपांतरित तरंग समीकरणों में छोड़ दिया जा सकता है, या यूपीएमएल विवरण बनाने के लिए पदार्थ विवरण (जैसे मैक्सवेल के समीकरणों में विद्युतशीलता और पारगम्यता) के साथ जोड़ा जा सकता है। गुणांक σ/ω आवृत्ति पर निर्भर करता है- ऐसा इसलिए है कि संकीर्णता दर k/ω के समानुपाती होती है, जो ω और k के बीच विस्तार संबंध के कारण सजातीय पदार्थ में आवृत्ति से स्वतंत्र होती है (भौतिक विस्तार सम्मिलित नहीं है, उदाहरण निर्वात के लिए)। तथापि, इस आवृत्ति-निर्भरता का अर्थ है कि पीएमएल का समय डोमेन कार्यान्वयन, उदा एफडीटीडी विधि में, आवृत्ति-स्वतंत्र अवशोषक की तुलना में अधिक जटिल है, और इसमें सहायक अंतर समीकरण (एडीई) दृष्टिकोण सम्मिलित है (समतुल्य, i/ω समय डोमेन मे अभिन्न या संवलन के रूप में प्रकट होता है)।
संपूर्णत समतुल्य परतें, अपने मूल रूप में, केवल प्रसार तरंगों को दुर्बल करती हैं, विशुद्ध रूप से अस्थायी तरंगें (घातीय रूप से क्षय वाले क्षेत्र) पीएमएल में दोलन करती हैं लेकिन अधिक तेज़ी से क्षय नहीं करती हैं। तथापि, पीएमएल में वास्तविक समन्वय को सम्मिलित करके वाष्पशील तरंगों के दुर्बल को भी तेज किया जा सकता है यह उपरोक्त अभिव्यक्ति में σ को जटिल संख्या बनाने के अनुरूप है, जहां काल्पनिक भाग वास्तविक समन्वय खिंचाव उत्पन्न करता है जिससे वाष्पशील तरंगों का तेजी से अधिक क्षय होता हैं।
संपूर्णत समतुल्य परतों की सीमाएं
पीएमएल का व्यापक रूप से उपयोग किया जाता है और अभिकलनात्मक विद्युतचुम्बकत्व में पसंद की अवशोषित सीमा तकनीक बन गई है।[1] यद्यपि यह ज्यादातर मामलों में अच्छी तरह से काम करता है, कुछ महत्वपूर्ण मामलों में यह टूट जाता है, अपरिहार्य प्रतिबिंबों या यहां तक कि घातीय वृद्धि से पीड़ित होता है।
संपूर्णत समतुल्य परतों के साथ संकेत यह है कि वे केवल सटीक, निरंतर तरंग समीकरण के लिए परावर्तन रहित हैं। एक बार कंप्यूटर पर अनुकरण के लिए तरंग समीकरण को अलग कर दिया जाता है, तो कुछ छोटे संख्यात्मक प्रतिबिंब दिखाई देते हैं (जो बढ़ते संकल्प के साथ गायब हो जाते हैं)। इस कारण से, पीएमएल अवशोषण पदार्थांक σ प्रायः तरंग के तरंग दैर्ध्य के पैमाने पर कम दूरी पर शून्य (उदा. द्विघात रूप से) से धीरे-धीरे चालू होता है।[1] प्रायः, कोई भी अवशोषक, चाहे पीएमएल हो या नहीं, उस सीमा में प्रतिबिंब रहित होता है जहां यह पर्याप्त रूप से धीरे-धीरे चालू होता है (और अवशोषित परत मोटी हो जाती है), लेकिन असंततकरण प्रणाली में पीएमएल का लाभ परिमित-मोटाई "संक्रमण" को कम करना है। साधारण समदैशिक अवशोषण पदार्थांक की तुलना में परिमाण के कई आदेशों द्वारा प्रतिबिंब है।[10]
कुछ पदार्थ में, "पश्चवर्ती-तरंग" समाधान होते हैं जिसमें समूह और चरण वेग एक दूसरे के विपरीत होते हैं। यह विद्युतचुम्बकत्व के लिए और कुछ ठोस पदार्थों में ध्वनिक तरंगों के लिए "बाएं हाथ" ऋणात्मक सूचकांक मेटामटेरियल्स में होता है, और इन मामलों में मानक पीएमएल निरूपण अस्थिर होता है यह क्षय के बजाय घातीय वृद्धि की ओर जाता है, क्योंकि के(k) का संकेत उपरोक्त विश्लेषण में व्यवस्थित किया जाता है।[11] सौभाग्य से, बाएं हाथ के माध्यम में सरल समाधान है (जिसके लिए सभी तरंगें पीछे की ओर हैं) केवल σ के चिह्न को व्यवस्थित करें। तथापि, जटिलता यह है कि भौतिक बाएँ हाथ की पदार्थ फैलाने वाली होती है वे केवल निश्चित आवृत्ति सीमा के भीतर बाएँ हाथ की होती हैं, और इसलिए σ पदार्थांक को आवृत्ति-निर्भर बनाया जाना चाहिए।[12][13] दुर्भाग्य से, विदेशी पदार्थ के बिना, कोई भी कुछ वेवगाइडिंग संरचनाओं (जैसे कि इसके केंद्र में उच्च-सूचकांक सिलेंडर के साथ एक खोखली धातु ट्यूब) को डिज़ाइन कर सकता है, जो एक ही आवृत्ति पर पीछे की ओर और आगे-तरंग दोनों समाधानों को प्रदर्शित करता है, जैसे कि कोई भी संकेत विकल्प σ के लिए घातीय वृद्धि होगी, और ऐसे मामलों में पीएमएल अपरिवर्तनीय रूप से अस्थिर प्रतीत होता है।[14]
पीएमएल की एक और महत्वपूर्ण सीमा यह है कि जटिल निर्देशांक (जटिल "समन्वय खिंचाव") के समाधान की विश्लेषणात्मक निरंतरता का समर्थन करने के लिए माध्यम को सीमा के ओर्थोगोनल दिशा में अपरिवर्तनीय होना आवश्यक है। परिणामस्वरूप, आवर्ती माध्यम (जैसे फोटोनिक क्रिस्टल या ध्वनिक मेटामटेरियल्स) के मामले में पीएमएल दृष्टिकोण अब मान्य नहीं है (अनंत संकल्प पर अब परावर्तन रहित नहीं है)। [10] या केवल वेवगाइड जो तिरछे कोण पर सीमा में प्रवेश करता है,[15]
यह भी देखें
- कैग्नियार्ड-डी हूप विधि
संदर्भ
- ↑ 1.0 1.1 1.2 Allen Taflove and Susan C. Hagness (2005). Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. Artech House Publishers. ISBN 978-1-58053-832-9.
- ↑ Johnson, Steven G. (2021). "पूरी तरह से मेल खाने वाली परतों (पीएमएल) पर नोट्स". arXiv:2108.05348 [physics.comp-ph]. Tutorial review based on online MIT course notes.
- ↑ J. Berenger (1994). "विद्युत चुम्बकीय तरंगों के अवशोषण के लिए एक पूरी तरह से मेल खाने वाली परत". Journal of Computational Physics. 114 (2): 185–200. Bibcode:1994JCoPh.114..185B. doi:10.1006/jcph.1994.1159.
- ↑ Fathi, Arash; Poursartip, Babak; Kallivokas, Loukas (2015). "Time‐domain hybrid formulations for wave simulations in three‐dimensional PML‐truncated heterogeneous media". International Journal for Numerical Methods in Engineering. 101 (3): 165–198. Bibcode:2015IJNME.101..165F. doi:10.1002/nme.4780. S2CID 122812832.
- ↑ S.D. Gedney (1996). "FDTD लैटिस के ट्रंकेशन के लिए एक अनिसोट्रोपिक पूरी तरह से मेल खाने वाली परत अवशोषित मीडिया". IEEE Transactions on Antennas and Propagation. 44 (12): 1630–1639. Bibcode:1996ITAP...44.1630G. doi:10.1109/8.546249.
- ↑ W. C. Chew and W. H. Weedon (1994). "A 3d perfectly matched medium from modified Maxwell's equations with stretched coordinates". Microwave Optical Tech. Letters. 7 (13): 599–604. Bibcode:1994MiOTL...7..599C. doi:10.1002/mop.4650071304.
- ↑ F. L. Teixeira W. C. Chew (1998). "मनमाना बायनिसोट्रोपिक और फैलाने वाले रैखिक मीडिया से मेल खाने के लिए सामान्य बंद फॉर्म पीएमएल संवैधानिक टेंसर". IEEE Microwave and Guided Wave Letters. 8 (6): 223–225. doi:10.1109/75.678571.
- ↑ V. Kalvin (2012). "अर्ध-बेलनाकार डोमेन में डिरिचलेट लाप्लासियन के लिए सीमित अवशोषण सिद्धांत और पूरी तरह से मेल खाने वाली परत विधि". SIAM J. Math. Anal. 44: 355–382. arXiv:1110.4912. doi:10.1137/110834287. S2CID 2625082.
- ↑ V. Kalvin (2013). "क्वैसिलिंड्रिकल सिरों के साथ मैनिफोल्ड पर ध्वनिक बिखरने के लिए पूरी तरह से मेल खाने वाले परत ऑपरेटरों का विश्लेषण". J. Math. Pures Appl. 100 (2): 204–219. arXiv:1212.5707. doi:10.1016/j.matpur.2012.12.001. S2CID 119315209.
- ↑ 10.0 10.1 A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers, Optics Express 16, 11376–11392 (2008).
- ↑ E. Bécache, S. Fauqueux and P. Joly (2003). "पूरी तरह से मेल खाने वाली परतों, समूह वेगों और अनिसोट्रोपिक तरंगों की स्थिरता" (PDF). Journal of Computational Physics. 188 (2): 399–433. Bibcode:2003JCoPh.188..399B. doi:10.1016/S0021-9991(03)00184-0. S2CID 18020140. [1]
- ↑ Cummer Steven A (2004). "नकारात्मक अपवर्तक सूचकांक सामग्री में पूरी तरह से मेल खाने वाली परत व्यवहार". IEEE Ant. Wireless Prop. Lett. 3 (9): 172–175. Bibcode:2004IAWPL...3..172C. doi:10.1109/lawp.2004.833710. S2CID 18838504.
- ↑ Dong X. T., Rao X. S., Gan Y. B., Guo B., Yin W.-Y. (2004). "बाएं हाथ की सामग्री के लिए पूरी तरह से मेल खाने वाली परत-अवशोषित सीमा की स्थिति". IEEE Microwave Wireless Components Lett. 14 (6): 301–333. doi:10.1109/lmwc.2004.827104. S2CID 19568400.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Loh P.-R., Oskooi A. F., Ibanescu M., Skorobogatiy M., Johnson S. G. (2009). "चरण और समूह वेग के बीच मौलिक संबंध, और पश्च-तरंग संरचनाओं में पूरी तरह से मेल खाने वाली परतों की विफलता के लिए आवेदन" (PDF). Phys. Rev. E. 79 (6): 065601. Bibcode:2009PhRvE..79f5601L. doi:10.1103/physreve.79.065601. hdl:1721.1/51780. PMID 19658556.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Oskooi A., Johnson S. G. (2011). "अनिसोट्रोपिक, फैलाने वाले मीडिया के लिए गलत पीएमएल प्रस्तावों से सही भेद और एक सही अनप्लिट पीएमएल" (PDF). Journal of Computational Physics. 230 (7): 2369–2377. Bibcode:2011JCoPh.230.2369O. doi:10.1016/j.jcp.2011.01.006.