श्रीनिवास रामानुजन्: Difference between revisions

From Vigyanwiki
No edit summary
(Added redirecting link Updated Title English page)
Line 64: Line 64:


== यह भी देखें ==
== यह भी देखें ==
[[Srinivasa Ramanujan]]
Śrīnivāsa Rāmānujan


== बाहरी संबंध ==
== बाहरी संबंध ==

Revision as of 17:42, 28 November 2022

श्रीनिवास रामानुजन्
Srinivasa Ramanujan - OPC - 2 (cleaned).jpg
जन्म22 दिसंबर 1887
इरोड
मर गया26 अप्रैल 1920 (उम्र 32)
कुंभकोणम
पुरस्काररॉयल सोसाइटी के अधिसदस्य

श्रीनिवास रामानुजन्, श्रीनिवास रामानुजन् अयंगर , (22 दिसंबर 1887 - 26 अप्रैल 1920)[1] एक भारतीय गणितज्ञ थे जो भारत में ब्रिटिश शासन के दौरान रहते थे। यद्यपि उनके पास शुद्ध गणित में लगभग कोई औपचारिक प्रशिक्षण नहीं था, उन्होंने गणितीय विश्लेषण, संख्या सिद्धांत, अनंत श्रृंखला और निरंतर अंशों में महत्वपूर्ण योगदान दिया, जिसमें गणितीय समस्याओं के समाधान भी शामिल थे, जिन्हें तब असाध्य माना जाता था।

योगदान

रामानुजन् संख्या: संख्या 1729. इसे रामानुजन् संख्या के रूप में जाना जाता है। यह सबसे छोटी संख्या है जिसे दो अलग -अलग तरीकों से दो घनों के योग के रूप में व्यक्त किया जा सकता है।

1729 = 13+ 123= 93+ 103

π के लिए अनंत श्रृंखला[2]: श्रीनिवास रामानुजन् ने 1910 में, π के लिए अनंत श्रृंखला की खोज की।

श्रृंखला -

समीकरणों का सिद्धांत : उन्होंने द्विघात समीकरणों को हल करने का सूत्र निकाला।

उपगामी सूत्र(एसिम्प्टोटिक फॉर्मूला): उन्होंने संख्याओं के विभाजन पर काम किया। विभाजन फलन p(n),का उपयोग करके संख्याओं के विभाजन की गणना करने के लिए कई सूत्र प्राप्त किए हैं ।


रामानुजन् का माया वर्ग:

22 12 18 87
88 17 9 25
10 24 89 16
19 86 23 11
  • किसी भी पंक्ति की संख्याओं का योग 139 होता है
  • किसी भी स्तंभ की संख्याओं का योग 139 होता है
  • किसी भी विकर्ण की संख्याओं का योग 139 होता है
  • कोनों की संख्या का योग 139 होता है
  • शीर्ष पंक्ति रामानुजन्, जन्म तिथि का प्रतिनिधित्व करती है

रामानुजन् की सर्वांगसमताएं :

उन्होंने सर्वांगसमता की खोज की

यह भी देखें

Śrīnivāsa Rāmānujan

बाहरी संबंध

संदर्भ