एफ(आर) गुरुत्वाकर्षण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{DISPLAYTITLE:<var>f</var>(<var>R</var>) gravity}}
{{DISPLAYTITLE:<var>f</var>(<var>R</var>) gravity}}


 
यहाँ f(R) एक प्रकार का संशोधित गुरुत्वाकर्षण सिद्धांत है जो आइंस्टीन की सामान्य सापेक्षता का सामान्यीकरण करता है।  '''{{var|f}}({{var|R}}) गुरुत्वाकर्षण''' वास्तव में सिद्धांतों का वर्ग है, प्रत्येक को रिक्की स्केलर, {{var|R}} के अलग फ़ंक्शन, {{var|f}} द्वारा परिभाषित किया गया है। सबसे सरल स्थिति केवल कार्य  अदिश के समान होना है; यह सामान्य सापेक्षता है. यह इच्छानुसार  कार्य  प्रारंभ  करने के परिणामस्वरूप, डार्क एनर्जी या डार्क मैटर के अज्ञात रूपों को जोड़े बिना ब्रह्मांड के त्वरित विस्तार और संरचना निर्माण की व्याख्या करने की स्वतंत्रता हो सकती है। जिसमे कुछ कार्यात्मक रूप गुरुत्वाकर्षण के क्वांटम सिद्धांत से उत्पन्न सुधारों से प्रेरित हो सकते हैं। जो कि f(R) गुरुत्वाकर्षण को पहली बार 1970 में हंस एडोल्फ़ बुचडाहल द्वारा प्रस्तावित किया गया था<ref>{{cite journal| title = गैर-रैखिक लैग्रेंजियन और ब्रह्माण्ड संबंधी सिद्धांत| last=Buchdahl |first=H. A.| journal = [[Monthly Notices of the Royal Astronomical Society]]| volume = 150| pages = 1–8| year = 1970| bibcode = 1970MNRAS.150....1B| doi=10.1093/mnras/150.1.1| doi-access = free}}</ref> (चूँकि  इच्छानुसार कार्य  के नाम के लिए f के अतिरिक्त ϕ का उपयोग किया गया था)। ब्रह्मांडीय मुद्रास्फीति पर स्टारोबिंस्की के काम के पश्चात् यह अनुसंधान का सक्रिय क्षेत्र बन गया है।<ref>{{cite journal| title = विलक्षणता के बिना एक नए प्रकार के आइसोट्रोपिक ब्रह्माण्ड संबंधी मॉडल| last=Starobinsky |first=A. A.| journal = [[Physics Letters B]] | volume = 91| pages = 99–102| year = 1980| issue=1 |doi = 10.1016/0370-2693(80)90670-X| bibcode = 1980PhLB...91...99S }}</ref> विभिन्न कार्यों को अपनाकर इस सिद्धांत से घटनाओं की विस्तृत श्रृंखला उत्पन्न की जा सकती है; चूँकि , अनेक कार्यात्मक रूपों को अब अवलोकन के आधार पर, या रोग संबंधी सैद्धांतिक समस्याओं के कारण अस्वीकार किया जा सकता है।
f(R) एक प्रकार का संशोधित गुरुत्वाकर्षण सिद्धांत है जो आइंस्टीन की सामान्य सापेक्षता का सामान्यीकरण करता है।  {{var|f}}({{var|R}}) गुरुत्वाकर्षण वास्तव में सिद्धांतों का वर्ग है, प्रत्येक को रिक्की स्केलर, {{var|R}} के अलग फ़ंक्शन, {{var|f}} द्वारा परिभाषित किया गया है। सबसे सरल स्थिति केवल कार्य  स्केलर के समान होना है; यह सामान्य सापेक्षता है. यह इच्छानुसार  कार्य  प्रारंभ  करने के परिणामस्वरूप, डार्क एनर्जी या डार्क मैटर के अज्ञात रूपों को जोड़े बिना ब्रह्मांड के त्वरित विस्तार और संरचना निर्माण की व्याख्या करने की स्वतंत्रता हो सकती है। जिसमे कुछ कार्यात्मक रूप गुरुत्वाकर्षण के क्वांटम सिद्धांत से उत्पन्न सुधारों से प्रेरित हो सकते हैं। जो कि f(R) गुरुत्वाकर्षण को पहली बार 1970 में हंस एडोल्फ़ बुचडाहल द्वारा प्रस्तावित किया गया था<ref>{{cite journal| title = गैर-रैखिक लैग्रेंजियन और ब्रह्माण्ड संबंधी सिद्धांत| last=Buchdahl |first=H. A.| journal = [[Monthly Notices of the Royal Astronomical Society]]| volume = 150| pages = 1–8| year = 1970| bibcode = 1970MNRAS.150....1B| doi=10.1093/mnras/150.1.1| doi-access = free}}</ref> (चूँकि  इच्छानुसार कार्य  के नाम के लिए f के अतिरिक्त ϕ का उपयोग किया गया था)। ब्रह्मांडीय मुद्रास्फीति पर स्टारोबिंस्की के काम के पश्चात् यह अनुसंधान का सक्रिय क्षेत्र बन गया है।<ref>{{cite journal| title = विलक्षणता के बिना एक नए प्रकार के आइसोट्रोपिक ब्रह्माण्ड संबंधी मॉडल| last=Starobinsky |first=A. A.| journal = [[Physics Letters B]] | volume = 91| pages = 99–102| year = 1980| issue=1 |doi = 10.1016/0370-2693(80)90670-X| bibcode = 1980PhLB...91...99S }}</ref> विभिन्न कार्यों को अपनाकर इस सिद्धांत से घटनाओं की विस्तृत श्रृंखला उत्पन्न की जा सकती है; चूँकि , अनेक कार्यात्मक रूपों को अब अवलोकन के आधार पर, या रोग संबंधी सैद्धांतिक समस्याओं के कारण अस्वीकार किया जा सकता है।


==परिचय==
==परिचय==
Line 11: Line 10:
को
को
<math display="block">S[g]= \int {1 \over 2\kappa} f(R) \sqrt{-g} \, \mathrm{d}^4x </math>
<math display="block">S[g]= \int {1 \over 2\kappa} f(R) \sqrt{-g} \, \mathrm{d}^4x </math>
जहाँ <math>\kappa=\tfrac{8\pi G}{c^4}, g = \det g_{\mu\nu}</math> [[मीट्रिक टेंसर]] का निर्धारक है, और <math>f(R)</math> अदिश वक्रता का कुछ कार्य है।<ref name="DE textbook Amendola-Tsujikawa"> [https://www.cambridge.org/core/books/dark-energy/EC55E8BF946C34D61B758273D8286618 L. Amendola and S. Tsujikawa (2013) “Dark Energy, Theory and Observations”] Cambridge University Press</ref>
जहाँ <math>\kappa=\tfrac{8\pi G}{c^4}, g = \det g_{\mu\nu}</math> [[मीट्रिक टेंसर]] का निर्धारक है, और <math>f(R)                                                                                                                                                                                                                              
                                                                                                                                                                                                                     
                                              </math> अदिश वक्रता का कुछ कार्य है।<ref name="DE textbook Amendola-Tsujikawa"> [https://www.cambridge.org/core/books/dark-energy/EC55E8BF946C34D61B758273D8286618 L. Amendola and S. Tsujikawa (2013) “Dark Energy, Theory and Observations”] Cambridge University Press</ref>


<math>R</math> को <math>f(R)</math> में बदलने के प्रभाव को ट्रैक करने के दो विधि हैं, अथार्त , सिद्धांत क्षेत्र समीकरण प्राप्त करना है। जिसका पहला है मीट्रिक औपचारिकता का उपयोग करना और दूसरा है पैलेटिनी औपचारिकता का उपयोग करना है ।<ref name="DE textbook Amendola-Tsujikawa" /> जबकि दो औपचारिकताएँ सामान्य सापेक्षता के लिए समान क्षेत्र समीकरणों की ओर ले जाती हैं, अर्थात, जब <math>f(R)=R</math>, तो क्षेत्र समीकरण <math>f(R) \neq R</math> होने पर भिन्न हो सकते हैं।
<math>R</math> को <math>f(R)</math> में बदलने के प्रभाव को ट्रैक करने के दो विधि हैं, अथार्त , सिद्धांत क्षेत्र समीकरण प्राप्त करना है। जिसका पहला है मीट्रिक औपचारिकता का उपयोग करना और दूसरा है पैलेटिनी औपचारिकता का उपयोग करना है ।<ref name="DE textbook Amendola-Tsujikawa" /> जबकि दो औपचारिकताएँ सामान्य सापेक्षता के लिए समान क्षेत्र समीकरणों की ओर ले जाती हैं, अर्थात, जब <math>f(R)=R</math>, तो क्षेत्र समीकरण <math>f(R) \neq R</math> होने पर भिन्न हो सकते हैं।
Line 88: Line 89:
जहाँ  
जहाँ  
<math display="block"> h_f\equiv \frac{\delta \Phi}{\Phi_0},</math>
<math display="block"> h_f\equiv \frac{\delta \Phi}{\Phi_0},</math>
और vg(ω) = dω/dk तरंग-सदिश k पर केन्द्रित तरंग पैकेट hf का समूह वेग है। पहले दो पद सामान्य सापेक्षता से सामान्य अनुप्रस्थ ध्रुवीकरण के अनुरूप हैं, जबकि तीसरा  {{var|f}}({{var|R}})  सिद्धांतों के नए बड़े मापदंड पर ध्रुवीकरण मोड से मेल खाता है। यह मोड द्रव्यमान रहित अनुप्रस्थ श्वास मोड (किन्तु ट्रेसलेस नहीं) और बड़े मापदंड पर अनुदैर्ध्य स्केलर मोड का मिश्रण है। <ref>{{cite journal |doi=10.1103/PhysRevD.95.104034 |title=एफ(आर) गुरुत्वाकर्षण में गुरुत्वाकर्षण तरंगों का ध्रुवीकरण|journal=Phys. Rev. D  |volume=95 |pages=104034 |year=2017 | last1=Liang | first1=Dicong | last2=Gong |first2= Yungui | last3=Hou |first3= Shaoqi | last4=Liu |first4= Yunqi |issue=10 |arxiv=1701.05998 |bibcode=2017PhRvD..95j4034L |s2cid=119005163 }}</ref> <ref>{{cite journal |doi=10.1140/epjc/s10052-020-08684-3 |title=एक नया f(R) गुरुत्वाकर्षण मॉडल और उसमें गुरुत्वाकर्षण तरंगों के गुण|journal=The European Physical Journal C  |volume=80 |pages=1101 |year=2020 | last1=Gogoi | first1=Dhruba Jyoti | last2=Dev Goswami |first2= Umananda |issue=12 |arxiv= 2006.04011 |bibcode=2020EPJC...80.1101G |s2cid=219530929 }}</ref> अनुप्रस्थ और ट्रेसलेस मोड (जिसे टेंसर मोड के रूप में भी जाना जाता है) प्रकाश की गति से फैलता है, किन्तु विशाल स्केलर मोड {{var|v}}<sub>G</sub>< 1 (इकाइयों में जहां {{var|c}}=1) की गति से चलता है, यह मोड फैलाव वाला है . चूँकि , f(R) गुरुत्वाकर्षण मीट्रिक औपचारिकता में, मॉडल <math> f(R) = \alpha R^2 </math> (जिसे शुद्ध <math> R^2 </math> के रूप में भी जाना जाता है) के लिए, तीसरा ध्रुवीकरण मोड एक शुद्ध श्वास मोड है और स्पेसटाइम के माध्यम से प्रकाश की गति के साथ फैलता है। <ref>{{cite journal |doi=10.1007/s12648-020-01998-8 |title=एफ(आर) गुरुत्वाकर्षण शक्ति कानून मॉडल में गुरुत्वाकर्षण तरंगें|journal=Indian Journal of Physics |year=2022 | last1=Gogoi | first1=Dhruba Jyoti | last2=Dev Goswami |first2= Umananda |volume=96 |issue=2 |page=637 |arxiv= 1901.11277 |bibcode=2022InJPh..96..637G |s2cid=231655238 }}</ref>
और vg(ω) = dω/dk तरंग-सदिश k पर केन्द्रित तरंग पैकेट hf का समूह वेग है। पहले दो पद सामान्य सापेक्षता से सामान्य अनुप्रस्थ ध्रुवीकरण के अनुरूप हैं, जबकि तीसरा  {{var|f}}({{var|R}})  सिद्धांतों के नए बड़े मापदंड पर ध्रुवीकरण मोड से मेल खाता है। यह मोड द्रव्यमान रहित अनुप्रस्थ श्वास मोड (किन्तु ट्रेसलेस नहीं) और बड़े मापदंड पर अनुदैर्ध्य अदिश मोड का मिश्रण है। <ref>{{cite journal |doi=10.1103/PhysRevD.95.104034 |title=एफ(आर) गुरुत्वाकर्षण में गुरुत्वाकर्षण तरंगों का ध्रुवीकरण|journal=Phys. Rev. D  |volume=95 |pages=104034 |year=2017 | last1=Liang | first1=Dicong | last2=Gong |first2= Yungui | last3=Hou |first3= Shaoqi | last4=Liu |first4= Yunqi |issue=10 |arxiv=1701.05998 |bibcode=2017PhRvD..95j4034L |s2cid=119005163 }}</ref> <ref>{{cite journal |doi=10.1140/epjc/s10052-020-08684-3 |title=एक नया f(R) गुरुत्वाकर्षण मॉडल और उसमें गुरुत्वाकर्षण तरंगों के गुण|journal=The European Physical Journal C  |volume=80 |pages=1101 |year=2020 | last1=Gogoi | first1=Dhruba Jyoti | last2=Dev Goswami |first2= Umananda |issue=12 |arxiv= 2006.04011 |bibcode=2020EPJC...80.1101G |s2cid=219530929 }}</ref> अनुप्रस्थ और ट्रेसलेस मोड (जिसे टेंसर मोड के रूप में भी जाना जाता है) प्रकाश की गति से फैलता है, किन्तु विशाल अदिश मोड {{var|v}}<sub>G</sub>< 1 (इकाइयों में जहां {{var|c}}=1) की गति से चलता है, यह मोड फैलाव वाला है . चूँकि , f(R) गुरुत्वाकर्षण मीट्रिक औपचारिकता में, मॉडल <math> f(R) = \alpha R^2 </math> (जिसे शुद्ध <math> R^2 </math> के रूप में भी जाना जाता है) के लिए, तीसरा ध्रुवीकरण मोड एक शुद्ध श्वास मोड है और स्पेसटाइम के माध्यम से प्रकाश की गति के साथ फैलता है। <ref>{{cite journal |doi=10.1007/s12648-020-01998-8 |title=एफ(आर) गुरुत्वाकर्षण शक्ति कानून मॉडल में गुरुत्वाकर्षण तरंगें|journal=Indian Journal of Physics |year=2022 | last1=Gogoi | first1=Dhruba Jyoti | last2=Dev Goswami |first2= Umananda |volume=96 |issue=2 |page=637 |arxiv= 1901.11277 |bibcode=2022InJPh..96..637G |s2cid=231655238 }}</ref>




Line 114: Line 115:
==प्लैटिनम {{var|f}}({{var|R}})गुरुत्वाकर्षण==
==प्लैटिनम {{var|f}}({{var|R}})गुरुत्वाकर्षण==


पलातिनी  {{var|f}}({{var|R}})गुरुत्वाकर्षण में, व्यक्ति मीट्रिक और कनेक्शन को स्वतंत्र रूप से मानता है और उनमें से प्रत्येक के संबंध में कार्रवाई को अलग-अलग बदलता है। लैग्रेंजियन स्थिति को कनेक्शन से स्वतंत्र माना जाता है। इन सिद्धांतों को {{nowrap|1={{var|ω}} = &minus;{{frac|3|2}}}} के साथ ब्रैन्स-डिके सिद्धांत के समकक्ष दिखाया गया है।.<ref name="flanagan04">{{cite journal| title = गुरुत्वाकर्षण के सिद्धांतों में अनुरूप ढाँचा स्वतंत्रता| last= Flanagan |first=E. E.| journal = [[Classical and Quantum Gravity]] | volume = 21| pages = 3817–3829| year = 2004| doi = 10.1088/0264-9381/21/15/N02 | bibcode = 2004CQGra..21.3817F |arxiv = gr-qc/0403063| issue = 15 | s2cid= 117619981 }}</ref><ref name="olmo05">{{cite journal| title = सौर मंडल प्रयोगों के अनुसार ग्रेविटी लैग्रेंजियन| last= Olmo |first=G. J.| journal = [[Physical Review Letters]] | volume = 95| pages = 261102| year = 2005| doi = 10.1103/PhysRevLett.95.261102 | bibcode = 2005PhRvL..95z1102O |arxiv = gr-qc/0505101| issue = 26| pmid = 16486333 | s2cid= 27440524 }}</ref> चूँकि , सिद्धांत की संरचना के कारण, पलाटिनी {{var|f}}({{var|R}}) सिद्धांत मानक मॉडल के विरोध में प्रतीत होते हैं,<ref name="flanagan04"/><ref>{{cite journal| title =स्केलर-टेंसर गुरुत्वाकर्षण के पैलेटिनी फॉर्मूलेशन का उपयोग कैसे करें (नहीं)।| last1= Iglesias |first1=A. |last2=Kaloper |first2=N. |last3=Padilla |first3=A. |last4=Park |first4=M.| journal = [[Physical Review D]] | volume = 76| pages = 104001| year = 2007| doi = 10.1103/PhysRevD.76.104001 | bibcode = 2007PhRvD..76j4001I |arxiv = 0708.1163| issue =10 }}</ref> सौर मंडल प्रयोगों का उल्लंघन हो सकता है,<ref name="olmo05"/>और अवांछित विलक्षणताएँ निर्मित करते प्रतीत होते हैं।<ref>{{cite journal| title =पलाटिनी ''एफ''(''आर'') गुरुत्वाकर्षण में बहुउष्णकटिबंधीय क्षेत्रों के लिए एक नो-गो प्रमेय| last1=Barausse |first1=E. |last2=Sotiriou |first2=T. P. |last3=Miller |first3=J. C.| journal = [[Classical and Quantum Gravity]] | volume = 25| pages = 062001| year = 2008| doi = 10.1088/0264-9381/25/6/062001 | bibcode = 2008CQGra..25f2001B |arxiv = gr-qc/0703132| issue =6 | s2cid=119370540 }}</ref>
पलातिनी  {{var|f}}({{var|R}})गुरुत्वाकर्षण में, व्यक्ति मीट्रिक और कनेक्शन को स्वतंत्र रूप से मानता है और उनमें से प्रत्येक के संबंध में कार्रवाई को अलग-अलग बदलता है। लैग्रेंजियन स्थिति को कनेक्शन से स्वतंत्र माना जाता है। इन सिद्धांतों को {{nowrap|1={{var|ω}} = &minus;{{frac|3|2}}}} के साथ ब्रैन्स-डिके सिद्धांत के समकक्ष दिखाया गया है।.<ref name="flanagan04">{{cite journal| title = गुरुत्वाकर्षण के सिद्धांतों में अनुरूप ढाँचा स्वतंत्रता| last= Flanagan |first=E. E.| journal = [[Classical and Quantum Gravity]] | volume = 21| pages = 3817–3829| year = 2004| doi = 10.1088/0264-9381/21/15/N02 | bibcode = 2004CQGra..21.3817F |arxiv = gr-qc/0403063| issue = 15 | s2cid= 117619981 }}</ref><ref name="olmo05">{{cite journal| title = सौर मंडल प्रयोगों के अनुसार ग्रेविटी लैग्रेंजियन| last= Olmo |first=G. J.| journal = [[Physical Review Letters]] | volume = 95| pages = 261102| year = 2005| doi = 10.1103/PhysRevLett.95.261102 | bibcode = 2005PhRvL..95z1102O |arxiv = gr-qc/0505101| issue = 26| pmid = 16486333 | s2cid= 27440524 }}</ref> चूँकि सिद्धांत की संरचना के कारण, पलाटिनी {{var|f}}({{var|R}}) सिद्धांत मानक मॉडल के विरोध में प्रतीत होते हैं,<ref name="flanagan04"/><ref>{{cite journal| title =स्केलर-टेंसर गुरुत्वाकर्षण के पैलेटिनी फॉर्मूलेशन का उपयोग कैसे करें (नहीं)।| last1= Iglesias |first1=A. |last2=Kaloper |first2=N. |last3=Padilla |first3=A. |last4=Park |first4=M.| journal = [[Physical Review D]] | volume = 76| pages = 104001| year = 2007| doi = 10.1103/PhysRevD.76.104001 | bibcode = 2007PhRvD..76j4001I |arxiv = 0708.1163| issue =10 }}</ref> सौर मंडल प्रयोगों का उल्लंघन हो सकता है,<ref name="olmo05"/> और अवांछित विलक्षणताएँ निर्मित करते प्रतीत होते हैं।<ref>{{cite journal| title =पलाटिनी ''एफ''(''आर'') गुरुत्वाकर्षण में बहुउष्णकटिबंधीय क्षेत्रों के लिए एक नो-गो प्रमेय| last1=Barausse |first1=E. |last2=Sotiriou |first2=T. P. |last3=Miller |first3=J. C.| journal = [[Classical and Quantum Gravity]] | volume = 25| pages = 062001| year = 2008| doi = 10.1088/0264-9381/25/6/062001 | bibcode = 2008CQGra..25f2001B |arxiv = gr-qc/0703132| issue =6 | s2cid=119370540 }}</ref>
==मीट्रिक-एफ़िन {{var|f}}({{var|R}})गुरुत्वाकर्षण==
==मीट्रिक-एफ़िन {{var|f}}({{var|R}})गुरुत्वाकर्षण==


मीट्रिक-एफ़िन  {{var|f}}({{var|R}}) गुरुत्वाकर्षण में, व्यक्ति चीजों को और भी सामान्यीकृत करता है, मीट्रिक और कनेक्शन दोनों को स्वतंत्र रूप से मानता है, और यह मानता है कि स्थिति लैग्रेंजियन कनेक्शन पर भी निर्भर करता है।
मीट्रिक-एफ़िन  {{var|f}}({{var|R}}) गुरुत्वाकर्षण में, व्यक्ति चीजों को और भी सामान्यीकृत करता है, जो कि मीट्रिक और कनेक्शन दोनों को स्वतंत्र रूप से मानता है, और यह मानता है कि स्थिति लैग्रेंजियन कनेक्शन पर भी निर्भर करता है।


==अवलोकनात्मक परीक्षण==
==अवलोकनात्मक परीक्षण==
Line 149: Line 150:
{{var|f}}({{var|R}}) जैसा कि पिछले अनुभागों में प्रस्तुत किया गया गुरुत्वाकर्षण सामान्य सापेक्षता का अदिश संशोधन है। अधिक सामान्यतः, हमारे पास हो सकता है
{{var|f}}({{var|R}}) जैसा कि पिछले अनुभागों में प्रस्तुत किया गया गुरुत्वाकर्षण सामान्य सापेक्षता का अदिश संशोधन है। अधिक सामान्यतः, हमारे पास हो सकता है
<math display="block">\int \mathrm{d}^Dx \sqrt{-g}\, f(R, R^{\mu\nu}R_{\mu\nu}, R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma})</math>
<math display="block">\int \mathrm{d}^Dx \sqrt{-g}\, f(R, R^{\mu\nu}R_{\mu\nu}, R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma})</math>
[[रिक्की टेंसर]] और [[वेइल टेंसर]] के अपरिवर्तनीयों को सम्मिलित करने वाला युग्मन है । जिसकी विशेष स्थिति  हैं {{var|f}}({{var|R}}) गुरुत्वाकर्षण, [[अनुरूप गुरुत्वाकर्षण]], गॉस-बोनट गुरुत्वाकर्षण और [[लवलॉक गुरुत्वाकर्षण]]। ध्यान दें कि किसी भी गैर-तुच्छ टेंसोरिअल निर्भरता के साथ, हमारे पास समान्य रूप से द्रव्यमान रहित गुरुत्वाकर्षण और विशाल स्केलर के अतिरिक्त , स्वतंत्रता के अतिरिक्त बड़े स्पिन -2 डिग्री होते हैं। अपवाद गॉस-बोनट गुरुत्व है जहां स्पिन-2 घटकों के लिए चौथे क्रम की नियम समाप्त हो जाती हैं।
[[रिक्की टेंसर]] और [[वेइल टेंसर]] के अपरिवर्तनीयों को सम्मिलित करने वाला युग्मन है । जिसकी विशेष स्थिति  हैं {{var|f}}({{var|R}}) गुरुत्वाकर्षण, [[अनुरूप गुरुत्वाकर्षण]], गॉस-बोनट गुरुत्वाकर्षण और [[लवलॉक गुरुत्वाकर्षण]]। ध्यान दें कि किसी भी गैर-तुच्छ टेंसोरिअल निर्भरता के साथ, हमारे पास समान्य रूप से द्रव्यमान रहित गुरुत्वाकर्षण और विशाल अदिश के अतिरिक्त , स्वतंत्रता के अतिरिक्त बड़े स्पिन -2 डिग्री होते हैं। अपवाद गॉस-बोनट गुरुत्व है जहां स्पिन-2 घटकों के लिए चौथे क्रम की नियम समाप्त हो जाती हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 16:50, 28 November 2023


यहाँ f(R) एक प्रकार का संशोधित गुरुत्वाकर्षण सिद्धांत है जो आइंस्टीन की सामान्य सापेक्षता का सामान्यीकरण करता है। f(R) गुरुत्वाकर्षण वास्तव में सिद्धांतों का वर्ग है, प्रत्येक को रिक्की स्केलर, R के अलग फ़ंक्शन, f द्वारा परिभाषित किया गया है। सबसे सरल स्थिति केवल कार्य अदिश के समान होना है; यह सामान्य सापेक्षता है. यह इच्छानुसार कार्य प्रारंभ करने के परिणामस्वरूप, डार्क एनर्जी या डार्क मैटर के अज्ञात रूपों को जोड़े बिना ब्रह्मांड के त्वरित विस्तार और संरचना निर्माण की व्याख्या करने की स्वतंत्रता हो सकती है। जिसमे कुछ कार्यात्मक रूप गुरुत्वाकर्षण के क्वांटम सिद्धांत से उत्पन्न सुधारों से प्रेरित हो सकते हैं। जो कि f(R) गुरुत्वाकर्षण को पहली बार 1970 में हंस एडोल्फ़ बुचडाहल द्वारा प्रस्तावित किया गया था[1] (चूँकि इच्छानुसार कार्य के नाम के लिए f के अतिरिक्त ϕ का उपयोग किया गया था)। ब्रह्मांडीय मुद्रास्फीति पर स्टारोबिंस्की के काम के पश्चात् यह अनुसंधान का सक्रिय क्षेत्र बन गया है।[2] विभिन्न कार्यों को अपनाकर इस सिद्धांत से घटनाओं की विस्तृत श्रृंखला उत्पन्न की जा सकती है; चूँकि , अनेक कार्यात्मक रूपों को अब अवलोकन के आधार पर, या रोग संबंधी सैद्धांतिक समस्याओं के कारण अस्वीकार किया जा सकता है।

परिचय

f(R) गुरुत्वाकर्षण में कोई आइंस्टीन-हिल्बर्ट क्रिया के लैग्रेन्जियन को सामान्यीकृत करना चाहता है:

को
जहाँ मीट्रिक टेंसर का निर्धारक है, और अदिश वक्रता का कुछ कार्य है।[3]

को में बदलने के प्रभाव को ट्रैक करने के दो विधि हैं, अथार्त , सिद्धांत क्षेत्र समीकरण प्राप्त करना है। जिसका पहला है मीट्रिक औपचारिकता का उपयोग करना और दूसरा है पैलेटिनी औपचारिकता का उपयोग करना है ।[3] जबकि दो औपचारिकताएँ सामान्य सापेक्षता के लिए समान क्षेत्र समीकरणों की ओर ले जाती हैं, अर्थात, जब , तो क्षेत्र समीकरण होने पर भिन्न हो सकते हैं।

मीट्रिक f(R)गुरुत्वाकर्षण

क्षेत्र समीकरणों की व्युत्पत्ति

मीट्रिक f(R) गुरुत्वाकर्षण में, कोई व्यक्ति मीट्रिक के संबंध में कार्रवाई को अलग-अलग करके और कनेक्शन का स्वतंत्र रूप से उपचार नहीं करके क्षेत्र समीकरणों पर पहुंचता है। पूर्णता के लिए अब हम क्रिया के परिवर्तन के मूल चरणों का संक्षेप में उल्लेख करेंगे। मुख्य चरण वही हैं जो आइंस्टीन-हिल्बर्ट कार्रवाई की भिन्नता के स्थिति में थे (अधिक विवरण के लिए लेख देखें) किन्तु कुछ महत्वपूर्ण अंतर भी हैं।

निर्धारक की भिन्नता सदैव की तरह है:

रिक्की अदिश को इस प्रकार परिभाषित किया गया है
इसलिए, व्युत्क्रम मीट्रिक के संबंध में इसकी भिन्नता इस प्रकार दी गई है

दूसरे चरण के लिए आइंस्टीन-हिल्बर्ट कार्रवाई के बारे में लेख देखें। चूँकि दो कनेक्शनों का अंतर है, इसे एक टेंसर के रूप में बदलना चाहिए। अत: इसे इस प्रकार लिखा जा सकता है
उपरोक्त समीकरण में प्रतिस्थापित करने पर:
जहाँ सहसंयोजक व्युत्पन्न है और डी'एलेम्बर्ट ऑपरेटर है।

दर्शाने , क्रिया में भिन्नता पढ़ती है:

दूसरे और तीसरे पदों पर भागों द्वारा एकीकरण (और सीमा योगदान की उपेक्षा) करने पर, हमें मिलता है:
यह मांग करके कि मीट्रिक की विविधताओं के अनुसार `कार्रवाई अपरिवर्तनीय बनी रहे, , कोई क्षेत्र समीकरण प्राप्त करता है:
जहाँ ऊर्जा-संवेग टेंसर के रूप में परिभाषित किया गया है
जहाँ स्थिति लैग्रेन्जियन का है.

सामान्यीकृत फ्रीडमैन समीकरण

स्केल कारक के साथ रॉबर्टसन-वॉकर मीट्रिक को मानते हुए हम सामान्यीकृत फ्रीडमैन समीकरण (इकाइयों में जहां पा सकते हैं

जहाँ
हबल पैरामीटर है, बिंदु ब्रह्मांडीय समय के संबंध में व्युत्पन्न है t, और नियम ρm और ρrad क्रमशः पदार्थ और विकिरण घनत्व का प्रतिनिधित्व करें; ये निरंतरता समीकरणों को संतुष्ट करते हैं:


संशोधित न्यूटन स्थिरांक

इन सिद्धांतों की रौचक विशेषता यह तथ्य है कि गुरुत्वाकर्षण स्थिरांक समय और मापदंड पर निर्भर है।[4] इसे देखने के लिए, मीट्रिक में छोटा अदिश अस्पष्टता जोड़ें (न्यूटोनियन गेज में):

जहां Φ और Ψ न्यूटोनियन क्षमताएं हैं और पहले क्रम में फ़ील्ड समीकरणों का उपयोग करें। कुछ लंबी गणनाओं के पश्चात् , कोई फूरियर अंतरिक्ष में एक पॉइसन को परिभाषित कर सकता है और दाहिनी ओर दिखाई देने वाले अतिरिक्त शब्दों को एक प्रभावी गुरुत्वाकर्षण स्थिरांक Geff.के रूप में प्रस्तुत कर सकता है। ऐसा करने पर, हमें गुरुत्वाकर्षण क्षमता प्राप्त होती है (उप-क्षितिज मापदंड k2 ≫ a2H2 पर मान्य):
जहाँ δρm पदार्थ के घनत्व में अस्पष्टता है, k फूरियर स्केल है और Geff है:

साथ


विशाल गुरुत्वाकर्षण तरंग

सिद्धांतों का यह वर्ग जब रैखिककृत होता है तो गुरुत्वाकर्षण तरंगों के लिए तीन ध्रुवीकरण मोड प्रदर्शित करता है, जिनमें से दो द्रव्यमानहीन गुरुत्वाकर्षण (हेलिकॉप्टर ±2) के अनुरूप होते हैं और तीसरा (स्केलर) इस तथ्य से आता है कि यदि हम अनुरूप परिवर्तन को ध्यान में रखते हैं, तो चतुर्थ क्रम सिद्धांत f(R) सामान्य सापेक्षता प्लस अदिश क्षेत्र बन जाता है। ये देखना है तो पहचानो

और प्राप्त करने के लिए उपरोक्त क्षेत्र समीकरणों का उपयोग करें
अस्पष्टता सिद्धांत के पहले क्रम पर कार्य करना:
और कुछ कठिन बीजगणित के पश्चात् , कोई मीट्रिक अस्पष्टता को हल कर सकता है, जो गुरुत्वाकर्षण तरंगों से मेल खाती है। जिसमें फैलने वाली तरंग के लिए विशेष आवृत्ति घटक z-दिशा, के रूप में लिखा जा सकता है
जहाँ
और vg(ω) = dω/dk तरंग-सदिश k पर केन्द्रित तरंग पैकेट hf का समूह वेग है। पहले दो पद सामान्य सापेक्षता से सामान्य अनुप्रस्थ ध्रुवीकरण के अनुरूप हैं, जबकि तीसरा f(R) सिद्धांतों के नए बड़े मापदंड पर ध्रुवीकरण मोड से मेल खाता है। यह मोड द्रव्यमान रहित अनुप्रस्थ श्वास मोड (किन्तु ट्रेसलेस नहीं) और बड़े मापदंड पर अनुदैर्ध्य अदिश मोड का मिश्रण है। [5] [6] अनुप्रस्थ और ट्रेसलेस मोड (जिसे टेंसर मोड के रूप में भी जाना जाता है) प्रकाश की गति से फैलता है, किन्तु विशाल अदिश मोड vG< 1 (इकाइयों में जहां c=1) की गति से चलता है, यह मोड फैलाव वाला है . चूँकि , f(R) गुरुत्वाकर्षण मीट्रिक औपचारिकता में, मॉडल (जिसे शुद्ध के रूप में भी जाना जाता है) के लिए, तीसरा ध्रुवीकरण मोड एक शुद्ध श्वास मोड है और स्पेसटाइम के माध्यम से प्रकाश की गति के साथ फैलता है। [7]


समतुल्य औपचारिकता

कुछ अतिरिक्त नियमो के अनुसार [8] हम एक सहायक क्षेत्र Φ प्रस्तुत करके f(R) सिद्धांतों के विश्लेषण को सरल बना सकते हैं। सभी R के लिए मानते हुए, मान लीजिए कि V(Φ) f(R) का लीजेंड्रे ट्रांसफॉर्मेशन है जिससे और फिर, व्यक्ति को O'Hanlon (1972) क्रिया प्राप्त होती है:

हमारे पास यूलर-लैग्रेंज समीकरण हैं
Φ को हटाने पर,, हमें बिल्कुल पहले जैसे ही समीकरण प्राप्त होते हैं। चूँकि , डेरिवेटिव में समीकरण चौथे क्रम के अतिरिक्त केवल दूसरे क्रम के हैं।

हम वर्तमान में जॉर्डन और आइंस्टीन फ्रेम के साथ काम कर रहे हैं। अनुरूप पुनर्स्केलिंग करके

हम आइंस्टीन फ्रेम में बदल जाते हैं:
भागों द्वारा एकीकृत करने के पश्चात् .

परिभाषित , और प्रतिस्थापित करना है

यह एक वास्तविक अदिश क्षेत्र से जुड़ी सामान्य सापेक्षता है: त्वरित ब्रह्मांड का वर्णन करने के लिए f(R) सिद्धांतों का उपयोग करना व्यावहारिक रूप से सर्वोत्कृष्टता का उपयोग करने के समान है। (जो कि कम से कम, इस चेतावनी के समतुल्य कि हमने अभी तक पदार्थ युग्मों को निर्दिष्ट नहीं किया है, इसलिए (उदाहरण के लिए) f(R) गुरुत्वाकर्षण जिसमें पदार्थ न्यूनतम रूप से मीट्रिक के साथ युग्मित होता है (अर्थात, जॉर्डन फ्रेम में) एक सर्वोत्कृष्ट सिद्धांत के समान है जिसमें अदिश क्षेत्र गुरुत्वाकर्षण शक्ति के साथ पांचवें बल की मध्यस्थता करता है।)

प्लैटिनम f(R)गुरुत्वाकर्षण

पलातिनी f(R)गुरुत्वाकर्षण में, व्यक्ति मीट्रिक और कनेक्शन को स्वतंत्र रूप से मानता है और उनमें से प्रत्येक के संबंध में कार्रवाई को अलग-अलग बदलता है। लैग्रेंजियन स्थिति को कनेक्शन से स्वतंत्र माना जाता है। इन सिद्धांतों को ω = −32 के साथ ब्रैन्स-डिके सिद्धांत के समकक्ष दिखाया गया है।.[9][10] चूँकि सिद्धांत की संरचना के कारण, पलाटिनी f(R) सिद्धांत मानक मॉडल के विरोध में प्रतीत होते हैं,[9][11] सौर मंडल प्रयोगों का उल्लंघन हो सकता है,[10] और अवांछित विलक्षणताएँ निर्मित करते प्रतीत होते हैं।[12]

मीट्रिक-एफ़िन f(R)गुरुत्वाकर्षण

मीट्रिक-एफ़िन f(R) गुरुत्वाकर्षण में, व्यक्ति चीजों को और भी सामान्यीकृत करता है, जो कि मीट्रिक और कनेक्शन दोनों को स्वतंत्र रूप से मानता है, और यह मानता है कि स्थिति लैग्रेंजियन कनेक्शन पर भी निर्भर करता है।

अवलोकनात्मक परीक्षण

चूंकि f(R) गुरुत्वाकर्षण के अनेक संभावित रूप हैं, इसलिए सामान्य परीक्षण खोजना कठिन है। इसके अतिरिक्त, चूंकि कुछ स्थिति में सामान्य सापेक्षता से विचलन को इच्छानुसार रूप से छोटा किया जा सकता है, इसलिए कुछ संशोधनों को निर्णायक रूप से बाहर करना असंभव है। टेलर के विस्तार द्वारा फ़ंक्शन f(R) के लिए कोई ठोस रूप ग्रहण किए बिना, कुछ प्रगति की जा सकती है

पहला पद ब्रह्माण्ड संबंधी स्थिरांक की तरह है और छोटा होना चाहिए। अगला गुणांक a1 सामान्य सापेक्षता की तरह पर सेट किया जा सकता है। मीट्रिक के लिए f(R) गुरुत्वाकर्षण (पालाटिनी या मीट्रिक-एफ़िन के विपरीत)। f(R) गुरुत्वाकर्षण), द्विघात शब्द को पांचवें बल माप द्वारा सर्वोत्तम रूप से नियंत्रित किया जाता है, क्योंकि यह गुरुत्वाकर्षण क्षमता में युकावा संभावित सुधार की ओर ले जाता है। सर्वोत्तम वर्तमान सीमाएँ |a2| < 4×10−9 m2 या समकक्ष |a2| < 2.3×1022 GeV−2.हैं[13][14]

पैरामीटरयुक्त पोस्ट-न्यूटोनियन औपचारिकता को गुरुत्वाकर्षण के सामान्य संशोधित सिद्धांतों को बाधित करने में सक्षम बनाने के लिए डिज़ाइन किया गया है। तथापि, f(R) गुरुत्वाकर्षण सामान्य सापेक्षता के समान अनेक मूल्यों को साझा करता है, और इसलिए इन परीक्षणों का उपयोग करके अप्रभेद्य है।[15] विशेष रूप से प्रकाश विक्षेपण अपरिवर्तित है, इसलिए f(R) गुरुत्वाकर्षण, सामान्य सापेक्षता की तरह, सामान्य सापेक्षता के कैसिनी-ह्यूजेंस या परीक्षणों की सीमाओं के साथ पूरी तरह से सुसंगत है।[13]


स्टारोबिंस्की गुरुत्वाकर्षण

स्टारोबिंस्की गुरुत्वाकर्षण का निम्नलिखित रूप है

जहाँ द्रव्यमान के आयाम हैं।[16]


स्टारोबिंस्की गुरुत्वाकर्षण, बिग बैंग के ठीक बाद, जब अभी भी बड़ा था, ब्रह्मांडीय मुद्रास्फीति के लिए एक तंत्र प्रदान करता है। चूँकि , यह वर्तमान ब्रह्मांड त्वरण का वर्णन करने के लिए उपयुक्त नहीं है क्योंकि वर्तमान में बहुत छोटा है।[17][18][19] इसका तात्पर्य यह है कि में द्विघात पद नगण्य है, अर्थात्, कोई की ओर प्रवृत्त होता है, जो एक अशक्त ब्रह्माण्ड संबंधी स्थिरांक के साथ सामान्य सापेक्षता है।

गोगोई-गोस्वामी गुरुत्वाकर्षण

गोगोई-गोस्वामी गुरुत्वाकर्षण का निम्नलिखित रूप है

जहाँ और दो आयामहीन सकारात्मक स्थिरांक हैं और विशिष्ट वक्रता स्थिरांक है। [20]


तन्य सामान्यीकरण

f(R) जैसा कि पिछले अनुभागों में प्रस्तुत किया गया गुरुत्वाकर्षण सामान्य सापेक्षता का अदिश संशोधन है। अधिक सामान्यतः, हमारे पास हो सकता है

रिक्की टेंसर और वेइल टेंसर के अपरिवर्तनीयों को सम्मिलित करने वाला युग्मन है । जिसकी विशेष स्थिति हैं f(R) गुरुत्वाकर्षण, अनुरूप गुरुत्वाकर्षण, गॉस-बोनट गुरुत्वाकर्षण और लवलॉक गुरुत्वाकर्षण। ध्यान दें कि किसी भी गैर-तुच्छ टेंसोरिअल निर्भरता के साथ, हमारे पास समान्य रूप से द्रव्यमान रहित गुरुत्वाकर्षण और विशाल अदिश के अतिरिक्त , स्वतंत्रता के अतिरिक्त बड़े स्पिन -2 डिग्री होते हैं। अपवाद गॉस-बोनट गुरुत्व है जहां स्पिन-2 घटकों के लिए चौथे क्रम की नियम समाप्त हो जाती हैं।

यह भी देखें

संदर्भ

  1. Buchdahl, H. A. (1970). "गैर-रैखिक लैग्रेंजियन और ब्रह्माण्ड संबंधी सिद्धांत". Monthly Notices of the Royal Astronomical Society. 150: 1–8. Bibcode:1970MNRAS.150....1B. doi:10.1093/mnras/150.1.1.
  2. Starobinsky, A. A. (1980). "विलक्षणता के बिना एक नए प्रकार के आइसोट्रोपिक ब्रह्माण्ड संबंधी मॉडल". Physics Letters B. 91 (1): 99–102. Bibcode:1980PhLB...91...99S. doi:10.1016/0370-2693(80)90670-X.
  3. 3.0 3.1 L. Amendola and S. Tsujikawa (2013) “Dark Energy, Theory and Observations” Cambridge University Press
  4. Tsujikawa, Shinji (2007). "डार्क एनर्जी के संशोधित गुरुत्वाकर्षण मॉडल में पदार्थ घनत्व गड़बड़ी और प्रभावी गुरुत्वाकर्षण स्थिरांक". Physical Review D. 76 (2): 023514. arXiv:0705.1032. Bibcode:2007PhRvD..76b3514T. doi:10.1103/PhysRevD.76.023514. S2CID 119324187.
  5. Liang, Dicong; Gong, Yungui; Hou, Shaoqi; Liu, Yunqi (2017). "एफ(आर) गुरुत्वाकर्षण में गुरुत्वाकर्षण तरंगों का ध्रुवीकरण". Phys. Rev. D. 95 (10): 104034. arXiv:1701.05998. Bibcode:2017PhRvD..95j4034L. doi:10.1103/PhysRevD.95.104034. S2CID 119005163.
  6. Gogoi, Dhruba Jyoti; Dev Goswami, Umananda (2020). "एक नया f(R) गुरुत्वाकर्षण मॉडल और उसमें गुरुत्वाकर्षण तरंगों के गुण". The European Physical Journal C. 80 (12): 1101. arXiv:2006.04011. Bibcode:2020EPJC...80.1101G. doi:10.1140/epjc/s10052-020-08684-3. S2CID 219530929.
  7. Gogoi, Dhruba Jyoti; Dev Goswami, Umananda (2022). "एफ(आर) गुरुत्वाकर्षण शक्ति कानून मॉडल में गुरुत्वाकर्षण तरंगें". Indian Journal of Physics. 96 (2): 637. arXiv:1901.11277. Bibcode:2022InJPh..96..637G. doi:10.1007/s12648-020-01998-8. S2CID 231655238.
  8. De Felice, Antonio; Tsujikawa, Shinji (2010). "एफ(आर) सिद्धांत". Living Reviews in Relativity. 13 (1): 3. arXiv:1002.4928. Bibcode:2010LRR....13....3D. doi:10.12942/lrr-2010-3. PMC 5255939. PMID 28179828.
  9. 9.0 9.1 Flanagan, E. E. (2004). "गुरुत्वाकर्षण के सिद्धांतों में अनुरूप ढाँचा स्वतंत्रता". Classical and Quantum Gravity. 21 (15): 3817–3829. arXiv:gr-qc/0403063. Bibcode:2004CQGra..21.3817F. doi:10.1088/0264-9381/21/15/N02. S2CID 117619981.
  10. 10.0 10.1 Olmo, G. J. (2005). "सौर मंडल प्रयोगों के अनुसार ग्रेविटी लैग्रेंजियन". Physical Review Letters. 95 (26): 261102. arXiv:gr-qc/0505101. Bibcode:2005PhRvL..95z1102O. doi:10.1103/PhysRevLett.95.261102. PMID 16486333. S2CID 27440524.
  11. Iglesias, A.; Kaloper, N.; Padilla, A.; Park, M. (2007). "स्केलर-टेंसर गुरुत्वाकर्षण के पैलेटिनी फॉर्मूलेशन का उपयोग कैसे करें (नहीं)।". Physical Review D. 76 (10): 104001. arXiv:0708.1163. Bibcode:2007PhRvD..76j4001I. doi:10.1103/PhysRevD.76.104001.
  12. Barausse, E.; Sotiriou, T. P.; Miller, J. C. (2008). "पलाटिनी एफ(आर) गुरुत्वाकर्षण में बहुउष्णकटिबंधीय क्षेत्रों के लिए एक नो-गो प्रमेय". Classical and Quantum Gravity. 25 (6): 062001. arXiv:gr-qc/0703132. Bibcode:2008CQGra..25f2001B. doi:10.1088/0264-9381/25/6/062001. S2CID 119370540.
  13. 13.0 13.1 Berry, C. P. L.; Gair, J. R. (2011). "Linearized f(R) gravity: Gravitational radiation and Solar System tests". Physical Review D. 83 (10): 104022. arXiv:1104.0819. Bibcode:2011PhRvD..83j4022B. doi:10.1103/PhysRevD.83.104022. S2CID 119202399.
  14. Cembranos, J. A. R. (2009). "Dark Matter from R2 Gravity". Physical Review Letters. 102 (14): 141301. arXiv:0809.1653. Bibcode:2009PhRvL.102n1301C. doi:10.1103/PhysRevLett.102.141301. PMID 19392422. S2CID 33042847.
  15. Clifton, T. (2008). "गुरुत्वाकर्षण के चौथे क्रम के सिद्धांतों की पैरामीट्रिज्ड पोस्ट-न्यूटोनियन सीमा". Physical Review D. 77 (2): 024041. arXiv:0801.0983. Bibcode:2008PhRvD..77b4041C. doi:10.1103/PhysRevD.77.024041. S2CID 54174617.
  16. Starobinsky, A.A (1980). "विलक्षणता के बिना एक नए प्रकार के आइसोट्रोपिक ब्रह्माण्ड संबंधी मॉडल". Physics Letters B. 91 (1): 99–102. Bibcode:1980PhLB...91...99S. doi:10.1016/0370-2693(80)90670-X.
  17. "क्या ब्रह्मांड का हमेशा के लिए विस्तार होगा?". NASA. 24 January 2014. Retrieved 16 March 2015.
  18. Biron, Lauren (7 April 2015). "हमारा ब्रह्मांड चपटा है". symmetrymagazine.org. FermiLab/SLAC.
  19. Marcus Y. Yoo (2011). "अप्रत्याशित कनेक्शन". Engineering & Science. LXXIV1: 30.
  20. Gogoi, Dhruba Jyoti; Dev Goswami, Umananda (2020). "एक नया f(R) गुरुत्वाकर्षण मॉडल और उसमें गुरुत्वाकर्षण तरंगों के गुण". The European Physical Journal C. 80 (12): 1101. arXiv:2006.04011. Bibcode:2020EPJC...80.1101G. doi:10.1140/epjc/s10052-020-08684-3. S2CID 219530929.


अग्रिम पठन


बाहरी संबंध