ग्लौबर-सुदर्शन पी प्रतिनिधित्व: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
सुदर्शन-ग्लौबर पी प्रतिनिधित्व क्वांटम यांत्रिकी के [[चरण स्थान]] निर्माण में क्वांटम प्रणाली के चरण स्थान वितरण को लिखने | सुदर्शन-ग्लौबर पी प्रतिनिधित्व क्वांटम यांत्रिकी के [[चरण स्थान]] निर्माण में क्वांटम प्रणाली के चरण स्थान वितरण को लिखने की सुझायी गयी विधि है। पी प्रतिनिधित्व [[अर्धसंभाव्यता वितरण]] है जिसमें अवलोकनों को [[सामान्य क्रम]] में व्यक्त किया जाता है। [[क्वांटम प्रकाशिकी]] में, यह प्रतिनिधित्व, औपचारिक रूप से कई अन्य अभ्यावेदन के बराबर है,<ref> | ||
{{cite journal | {{cite journal | ||
|author=L. Cohen | |author=L. Cohen | ||
Line 15: | Line 15: | ||
|volume=17 |issue=10 |pages=1863–1866 | |volume=17 |issue=10 |pages=1863–1866 | ||
|doi=10.1063/1.522807|bibcode=1976JMP....17.1863C}} | |doi=10.1063/1.522807|bibcode=1976JMP....17.1863C}} | ||
</ref> कभी-कभी [[ऑप्टिकल चरण स्थान]] में प्रकाश का वर्णन करने के लिए ऐसे वैकल्पिक अभ्यावेदन पर प्राथमिकता दी जाती है, क्योंकि विशिष्ट | </ref> कभी-कभी [[ऑप्टिकल चरण स्थान|प्रकाशीय चरण स्थान]] में प्रकाश का वर्णन करने के लिए ऐसे वैकल्पिक अभ्यावेदन पर प्राथमिकता दी जाती है, क्योंकि विशिष्ट प्रकाशीय अवलोकन, जैसे कि [[कण संख्या ऑपरेटर]], स्वाभाविक रूप से सामान्य क्रम में व्यक्त किए जाते हैं। इसका नाम [[जॉर्ज सुदर्शन]] के नाम पर रखा गया है<ref name="Sudarshan"> | ||
{{cite journal | {{cite journal | ||
|author=E. C. G. Sudarshan | |author=E. C. G. Sudarshan | ||
Line 30: | Line 30: | ||
|volume=131 |issue=6 |pages=2766–2788 | |volume=131 |issue=6 |pages=2766–2788 | ||
|doi=10.1103/PhysRev.131.2766|bibcode=1963PhRv..131.2766G}}</ref> जिन्होंने 1963 में इस विषय पर काम किया था।<ref>It was the subject of a [[Nobel Prize controversies#Physics|controversy]] when Glauber was awarded a share of the 2005 [[Nobel Prize in Physics]] for his work in this field and [[George Sudarshan]]'s contribution was not recognized, cf. {{cite news |last=Zhou |first=Lulu |date=2005-12-06 |title=Scientists Question Nobel |url=http://www.thecrimson.com/article/2005/12/6/scientists-question-nobel-a-group-of/ |newspaper=The Harvard Crimson |access-date=2016-04-28}}. | |doi=10.1103/PhysRev.131.2766|bibcode=1963PhRv..131.2766G}}</ref> जिन्होंने 1963 में इस विषय पर काम किया था।<ref>It was the subject of a [[Nobel Prize controversies#Physics|controversy]] when Glauber was awarded a share of the 2005 [[Nobel Prize in Physics]] for his work in this field and [[George Sudarshan]]'s contribution was not recognized, cf. {{cite news |last=Zhou |first=Lulu |date=2005-12-06 |title=Scientists Question Nobel |url=http://www.thecrimson.com/article/2005/12/6/scientists-question-nobel-a-group-of/ |newspaper=The Harvard Crimson |access-date=2016-04-28}}. | ||
Sudarshan's paper was received at Physical Review Letters on March 1, 1963, and published on April 1, 1963, while Glauber's paper was received at Physical Review on April 29, 1963, and published on September 15, 1963.</ref> | Sudarshan's paper was received at Physical Review Letters on March 1, 1963, and published on April 1, 1963, while Glauber's paper was received at Physical Review on April 29, 1963, and published on September 15, 1963.</ref> लेज़र सिद्धांत और सुसंगतता सिद्धांत में कई उपयोगी अनुप्रयोगों के अतिरिक्त, सुदर्शन-ग्लौबर पी प्रतिनिधित्व की विशिष्टता यह है कि यह सदैव सकारात्मक नहीं होता है, और यह प्रामाणिक संभाव्यता फ़ंक्शन नहीं है। | ||
लेज़र सिद्धांत और सुसंगतता सिद्धांत में कई उपयोगी अनुप्रयोगों के | |||
'''दैव सकारात्मक नहीं होता है, और यह प्रामाणिक संभाव्यता फ़ंक्शन नहीं है।''' | |||
==परिभाषा== | ==परिभाषा== | ||
Line 37: | Line 38: | ||
हम फ़ंक्शन बनाना चाहते हैं <math>P(\alpha)</math> [[घनत्व मैट्रिक्स]] की संपत्ति के साथ <math>\hat{\rho}</math> सुसंगत अवस्थाओं के आधार पर [[विकर्ण मैट्रिक्स]] है <math>\{|\alpha\rangle\}</math>, अर्थात।, | हम फ़ंक्शन बनाना चाहते हैं <math>P(\alpha)</math> [[घनत्व मैट्रिक्स]] की संपत्ति के साथ <math>\hat{\rho}</math> सुसंगत अवस्थाओं के आधार पर [[विकर्ण मैट्रिक्स]] है <math>\{|\alpha\rangle\}</math>, अर्थात।, | ||
:<math>\hat{\rho} = \int P(\alpha) |{\alpha}\rangle \langle {\alpha}|\, d^{2}\alpha, \qquad d^2\alpha \equiv d\, {\rm Re}(\alpha) \, d\, {\rm Im}(\alpha).</math> | :<math>\hat{\rho} = \int P(\alpha) |{\alpha}\rangle \langle {\alpha}|\, d^{2}\alpha, \qquad d^2\alpha \equiv d\, {\rm Re}(\alpha) \, d\, {\rm Im}(\alpha).</math> | ||
हम फ़ंक्शन का निर्माण भी इस तरह करना चाहते हैं कि सामान्य रूप से ऑर्डर किए गए ऑपरेटर का अपेक्षित मूल्य [[ऑप्टिकल तुल्यता प्रमेय]] को संतुष्ट करे। इसका तात्पर्य यह है कि घनत्व मैट्रिक्स सामान्य-विरोधी क्रम में होना चाहिए ताकि हम घनत्व मैट्रिक्स को शक्ति श्रृंखला के रूप में व्यक्त कर सकें | हम फ़ंक्शन का निर्माण भी इस तरह करना चाहते हैं कि सामान्य रूप से ऑर्डर किए गए ऑपरेटर का अपेक्षित मूल्य [[ऑप्टिकल तुल्यता प्रमेय|प्रकाशीय तुल्यता प्रमेय]] को संतुष्ट करे। इसका तात्पर्य यह है कि घनत्व मैट्रिक्स सामान्य-विरोधी क्रम में होना चाहिए ताकि हम घनत्व मैट्रिक्स को शक्ति श्रृंखला के रूप में व्यक्त कर सकें | ||
:<math>\hat{\rho}_A=\sum_{j,k} c_{j,k}\cdot\hat{a}^j\hat{a}^{\dagger k}.</math> | :<math>\hat{\rho}_A=\sum_{j,k} c_{j,k}\cdot\hat{a}^j\hat{a}^{\dagger k}.</math> | ||
पहचान ऑपरेटर सम्मिलित करना | पहचान ऑपरेटर सम्मिलित करना | ||
Line 77: | Line 78: | ||
==चर्चा== | ==चर्चा== | ||
यदि क्वांटम प्रणाली में शास्त्रीय एनालॉग है, उदा। सुसंगत अवस्था या थर्मल विकिरण, फिर {{mvar|P}} सामान्य संभाव्यता वितरण की तरह हर जगह गैर-नकारात्मक है। हालाँकि, यदि क्वांटम प्रणाली का कोई शास्त्रीय एनालॉग नहीं है, उदाहरण के लिए असंगत फॉक अवस्था या क्वांटम उलझाव, फिर {{mvar|P}} डिराक डेल्टा फ़ंक्शन की तुलना में कहीं न कहीं नकारात्मक या अधिक विलक्षण है। (वितरण द्वारा (गणित)#वितरण के रूप में कार्य, डिराक डेल्टा फ़ंक्शन की तुलना में अधिक विलक्षण वितरण | यदि क्वांटम प्रणाली में शास्त्रीय एनालॉग है, उदा। सुसंगत अवस्था या थर्मल विकिरण, फिर {{mvar|P}} सामान्य संभाव्यता वितरण की तरह हर जगह गैर-नकारात्मक है। हालाँकि, यदि क्वांटम प्रणाली का कोई शास्त्रीय एनालॉग नहीं है, उदाहरण के लिए असंगत फॉक अवस्था या क्वांटम उलझाव, फिर {{mvar|P}} डिराक डेल्टा फ़ंक्शन की तुलना में कहीं न कहीं नकारात्मक या अधिक विलक्षण है। (वितरण द्वारा (गणित)#वितरण के रूप में कार्य, डिराक डेल्टा फ़ंक्शन की तुलना में अधिक विलक्षण वितरण सदैव कहीं न कहीं नकारात्मक होते हैं।) ऐसी [[नकारात्मक संभावना]] या उच्च स्तर की विलक्षणता प्रतिनिधित्व में निहित विशेषता है और इसकी सार्थकता को कम नहीं करती है अपेक्षा मूल्यों के संबंध में लिया गया {{mvar|P}}. भले ही {{mvar|P}} सामान्य संभाव्यता वितरण की तरह व्यवहार करता है, हालाँकि, मामला इतना सरल नहीं है। मंडेल और वुल्फ के अनुसार: विभिन्न सुसंगत राज्य [परस्पर] ऑर्थोगोनल नहीं हैं, भले ही <math>P(\alpha) </math> वास्तविक संभाव्यता घनत्व [फ़ंक्शन] की तरह व्यवहार किया जाता है, यह परस्पर अनन्य राज्यों की संभावनाओं का वर्णन नहीं करेगा।<ref>{{harvnb|Mandel|Wolf|1995|page=541}}</ref> | ||
==उदाहरण== | ==उदाहरण== | ||
Line 105: | Line 106: | ||
\cdot \delta^2(2\alpha-\alpha_0-\alpha_1). | \cdot \delta^2(2\alpha-\alpha_0-\alpha_1). | ||
\end{align}</math> | \end{align}</math> | ||
डेल्टा फ़ंक्शंस के अनंत रूप से कई व्युत्पन्न होने के | डेल्टा फ़ंक्शंस के अनंत रूप से कई व्युत्पन्न होने के अतिरिक्त, {{mvar|P}} अभी भी प्रकाशीय तुल्यता प्रमेय का पालन करता है। यदि संख्या ऑपरेटर का अपेक्षित मूल्य, उदाहरण के लिए, राज्य वेक्टर के संबंध में या चरण स्थान औसत के संबंध में लिया जाता है {{mvar|P}}, दो अपेक्षा मान मेल खाते हैं: | ||
:<math>\begin{align}\langle\psi|\hat{n}|\psi\rangle&=\int P(\alpha) |\alpha|^2 \, d^2\alpha \\ | :<math>\begin{align}\langle\psi|\hat{n}|\psi\rangle&=\int P(\alpha) |\alpha|^2 \, d^2\alpha \\ | ||
&=|c_0\alpha_0|^2+|c_1\alpha_1|^2+2e^{-(|\alpha_0|^2+|\alpha_1|^2)/2}\operatorname{Re}\left( c_0^*c_1 \alpha_0^*\alpha_1 e^{\alpha_0^*\alpha_1} \right).\end{align}</math> | &=|c_0\alpha_0|^2+|c_1\alpha_1|^2+2e^{-(|\alpha_0|^2+|\alpha_1|^2)/2}\operatorname{Re}\left( c_0^*c_1 \alpha_0^*\alpha_1 e^{\alpha_0^*\alpha_1} \right).\end{align}</math> |
Revision as of 01:13, 4 December 2023
सुदर्शन-ग्लौबर पी प्रतिनिधित्व क्वांटम यांत्रिकी के चरण स्थान निर्माण में क्वांटम प्रणाली के चरण स्थान वितरण को लिखने की सुझायी गयी विधि है। पी प्रतिनिधित्व अर्धसंभाव्यता वितरण है जिसमें अवलोकनों को सामान्य क्रम में व्यक्त किया जाता है। क्वांटम प्रकाशिकी में, यह प्रतिनिधित्व, औपचारिक रूप से कई अन्य अभ्यावेदन के बराबर है,[1][2] कभी-कभी प्रकाशीय चरण स्थान में प्रकाश का वर्णन करने के लिए ऐसे वैकल्पिक अभ्यावेदन पर प्राथमिकता दी जाती है, क्योंकि विशिष्ट प्रकाशीय अवलोकन, जैसे कि कण संख्या ऑपरेटर, स्वाभाविक रूप से सामान्य क्रम में व्यक्त किए जाते हैं। इसका नाम जॉर्ज सुदर्शन के नाम पर रखा गया है[3] और रॉय जे. ग्लौबर,[4] जिन्होंने 1963 में इस विषय पर काम किया था।[5] लेज़र सिद्धांत और सुसंगतता सिद्धांत में कई उपयोगी अनुप्रयोगों के अतिरिक्त, सुदर्शन-ग्लौबर पी प्रतिनिधित्व की विशिष्टता यह है कि यह सदैव सकारात्मक नहीं होता है, और यह प्रामाणिक संभाव्यता फ़ंक्शन नहीं है।
दैव सकारात्मक नहीं होता है, और यह प्रामाणिक संभाव्यता फ़ंक्शन नहीं है।
परिभाषा
हम फ़ंक्शन बनाना चाहते हैं घनत्व मैट्रिक्स की संपत्ति के साथ सुसंगत अवस्थाओं के आधार पर विकर्ण मैट्रिक्स है , अर्थात।,
हम फ़ंक्शन का निर्माण भी इस तरह करना चाहते हैं कि सामान्य रूप से ऑर्डर किए गए ऑपरेटर का अपेक्षित मूल्य प्रकाशीय तुल्यता प्रमेय को संतुष्ट करे। इसका तात्पर्य यह है कि घनत्व मैट्रिक्स सामान्य-विरोधी क्रम में होना चाहिए ताकि हम घनत्व मैट्रिक्स को शक्ति श्रृंखला के रूप में व्यक्त कर सकें
पहचान ऑपरेटर सम्मिलित करना
हमने देखा कि
और इस प्रकार हम औपचारिक रूप से असाइन करते हैं
के लिए अधिक उपयोगी अभिन्न सूत्र P किसी भी व्यावहारिक गणना के लिए आवश्यक हैं। विधि[6] विशेषता फ़ंक्शन (संभावना सिद्धांत) को परिभाषित करना है
और फिर फूरियर रूपांतरण लें
के लिए एक और उपयोगी अभिन्न सूत्र P है[7]
ध्यान दें कि ये दोनों अभिन्न सूत्र विशिष्ट प्रणालियों के लिए किसी भी सामान्य अर्थ में अभिसरण नहीं करते हैं . हम मैट्रिक्स तत्वों का भी उपयोग कर सकते हैं फॉक अवस्था में . निम्नलिखित सूत्र दर्शाता है कि यह सदैव संभव है[3]व्युत्क्रम का उपयोग करके ऑपरेटर ऑर्डर को अपील किए बिना इस विकर्ण रूप में घनत्व मैट्रिक्स लिखने के लिए (एकल मोड के लिए यहां दिया गया है),
कहाँ r और θ का आयाम और चरण हैं α. यद्यपि यह इस संभावना का पूर्ण औपचारिक समाधान है, इसके लिए डिराक डेल्टा फ़ंक्शन के असीमित कई डेरिवेटिव की आवश्यकता होती है, जो किसी भी सामान्य वितरण (गणित) #टेम्पर्ड वितरण और फूरियर ट्रांसफॉर्म की पहुंच से कहीं परे है।
चर्चा
यदि क्वांटम प्रणाली में शास्त्रीय एनालॉग है, उदा। सुसंगत अवस्था या थर्मल विकिरण, फिर P सामान्य संभाव्यता वितरण की तरह हर जगह गैर-नकारात्मक है। हालाँकि, यदि क्वांटम प्रणाली का कोई शास्त्रीय एनालॉग नहीं है, उदाहरण के लिए असंगत फॉक अवस्था या क्वांटम उलझाव, फिर P डिराक डेल्टा फ़ंक्शन की तुलना में कहीं न कहीं नकारात्मक या अधिक विलक्षण है। (वितरण द्वारा (गणित)#वितरण के रूप में कार्य, डिराक डेल्टा फ़ंक्शन की तुलना में अधिक विलक्षण वितरण सदैव कहीं न कहीं नकारात्मक होते हैं।) ऐसी नकारात्मक संभावना या उच्च स्तर की विलक्षणता प्रतिनिधित्व में निहित विशेषता है और इसकी सार्थकता को कम नहीं करती है अपेक्षा मूल्यों के संबंध में लिया गया P. भले ही P सामान्य संभाव्यता वितरण की तरह व्यवहार करता है, हालाँकि, मामला इतना सरल नहीं है। मंडेल और वुल्फ के अनुसार: विभिन्न सुसंगत राज्य [परस्पर] ऑर्थोगोनल नहीं हैं, भले ही वास्तविक संभाव्यता घनत्व [फ़ंक्शन] की तरह व्यवहार किया जाता है, यह परस्पर अनन्य राज्यों की संभावनाओं का वर्णन नहीं करेगा।[8]
उदाहरण
थर्मल विकिरण
फ़ॉक आधार में सांख्यिकीय यांत्रिकी तर्कों से, वेववेक्टर के साथ मोड की औसत फोटॉन संख्या k और ध्रुवीकरण की स्थिति s तापमान पर काले शरीर के लिए T होना ज्ञात है
P} काले शरीर का प्रतिनिधित्व है
दूसरे शब्दों में, ब्लैक बॉडी का प्रत्येक मोड सुसंगत अवस्थाओं के आधार पर सामान्य वितरण है। तब से P सकारात्मक एवं परिबद्ध है, यह प्रणाली मूलतः शास्त्रीय है। यह वास्तव में काफी उल्लेखनीय परिणाम है क्योंकि थर्मल संतुलन के लिए घनत्व मैट्रिक्स भी फॉक आधार पर विकर्ण है, लेकिन फॉक राज्य गैर-शास्त्रीय हैं।
अत्यधिक विलक्षण उदाहरण
यहां तक कि बहुत साधारण दिखने वाले राज्य भी अत्यधिक गैर-शास्त्रीय व्यवहार प्रदर्शित कर सकते हैं। दो सुसंगत अवस्थाओं के अध्यारोपण पर विचार करें
कहाँ c0 , c1 सामान्यीकरण बाधा के अधीन स्थिरांक हैं
ध्यान दें कि यह qubit से काफी अलग है क्योंकि और ऑर्थोगोनल नहीं हैं. चूँकि इसकी गणना करना सरल है , हम गणना करने के लिए उपरोक्त मेहता सूत्र का उपयोग कर सकते हैं P,
डेल्टा फ़ंक्शंस के अनंत रूप से कई व्युत्पन्न होने के अतिरिक्त, P अभी भी प्रकाशीय तुल्यता प्रमेय का पालन करता है। यदि संख्या ऑपरेटर का अपेक्षित मूल्य, उदाहरण के लिए, राज्य वेक्टर के संबंध में या चरण स्थान औसत के संबंध में लिया जाता है P, दो अपेक्षा मान मेल खाते हैं:
यह भी देखें
- Quasiprobability distribution § Characteristic functions
- अशास्त्रीय प्रकाश
- विग्नर अर्धसंभाव्यता वितरण
- हुसिमी क्यू प्रतिनिधित्व
- नोबेल पुरस्कार विवाद
संदर्भ
उद्धरण
- ↑ L. Cohen (1966). "Generalized phase-space distribution functions". J. Math. Phys. 7 (5): 781–786. Bibcode:1966JMP.....7..781C. doi:10.1063/1.1931206.
- ↑ L. Cohen (1976). "Quantization problem and variational principle in the phase space formulation of quantum mechanics". J. Math. Phys. 17 (10): 1863–1866. Bibcode:1976JMP....17.1863C. doi:10.1063/1.522807.
- ↑ 3.0 3.1 E. C. G. Sudarshan (1963). "Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams". Phys. Rev. Lett. 10 (7): 277–279. Bibcode:1963PhRvL..10..277S. doi:10.1103/PhysRevLett.10.277.
- ↑ R. J. Glauber (1963). "Coherent and incoherent states of the radiation field". Phys. Rev. 131 (6): 2766–2788. Bibcode:1963PhRv..131.2766G. doi:10.1103/PhysRev.131.2766.
- ↑ It was the subject of a controversy when Glauber was awarded a share of the 2005 Nobel Prize in Physics for his work in this field and George Sudarshan's contribution was not recognized, cf. Zhou, Lulu (2005-12-06). "Scientists Question Nobel". The Harvard Crimson. Retrieved 2016-04-28.. Sudarshan's paper was received at Physical Review Letters on March 1, 1963, and published on April 1, 1963, while Glauber's paper was received at Physical Review on April 29, 1963, and published on September 15, 1963.
- ↑ C. L. Mehta; E. C. G. Sudarshan (1965). "Relation between quantum and semiclassical description of optical coherence". Phys. Rev. 138 (1B): B274–B280. Bibcode:1965PhRv..138..274M. doi:10.1103/PhysRev.138.B274.
- ↑ C. L. Mehta (1967). "Diagonal coherent-state representation of quantum operators". Phys. Rev. Lett. 18 (18): 752–754. Bibcode:1967PhRvL..18..752M. doi:10.1103/PhysRevLett.18.752.
- ↑ Mandel & Wolf 1995, p. 541
ग्रन्थसूची
Mandel, L.; Wolf, E. (1995), Optical Coherence and Quantum Optics, Cambridge UK: Cambridge University Press, ISBN 0-521-41711-2