मौलिक डोमेन: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Subset of a space that contains exactly one point from each orbit of the action of a group}} {{More citations needed|date=August 2018}} एक टोप...")
 
Line 46: Line 46:




==इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची==
*वोरोनोई सेल
*शून्य मापें
*अलग सेट
*मुफ्त नियमित सेट
*उपाय (गणित)
*आदिम कोशिका
*अनुवाद संबंधी समरूपता
*समानांतर खात
*मॉड्यूलर फ़ंक्शन
*ऊपरी आधा विमान
== बाहरी संबंध ==
== बाहरी संबंध ==
* {{MathWorld | urlname=FundamentalDomain | title=Fundamental domain }}
* {{MathWorld | urlname=FundamentalDomain | title=Fundamental domain }}

Revision as of 11:15, 17 November 2022

एक टोपोलॉजिकल स्पेस और उस पर एक समूह (गणित) समूह क्रिया (गणित) को देखते हुए, समूह क्रिया के तहत एक बिंदु की छवियां एक समूह क्रिया (गणित) #Orbits_and_stabilizers of action बनाती हैं। एक मौलिक डोमेन या मौलिक क्षेत्र अंतरिक्ष का एक सबसेट है जिसमें इनमें से प्रत्येक कक्षा से ठीक एक बिंदु होता है। यह कक्षाओं के प्रतिनिधियों के सार सेट के लिए एक ज्यामितीय अहसास के रूप में कार्य करता है।

मौलिक डोमेन चुनने के कई तरीके हैं। आम तौर पर, एक मौलिक डोमेन को इसकी सीमा पर कुछ प्रतिबंधों के साथ एक कनेक्टेड स्पेस सबसेट होना आवश्यक है, उदाहरण के लिए, चिकनी या पॉलीहेड्रल। समूह कार्रवाई के तहत चुने गए मौलिक डोमेन की छवियां फिर अंतरिक्ष को चौकोर करती हैं। मौलिक डोमेन का एक सामान्य निर्माण वोरोनोई कोशिकाओं का उपयोग करता है।

एक सामान्य परिभाषा पर संकेत

भागफल एक टोरस के साथ जटिल तल और उसके मौलिक डोमेन में एक जाली।

होमियोमोर्फिज्म द्वारा एक टोपोलॉजिकल स्पेस एक्स पर एक समूह (गणित) जी के समूह क्रिया (गणित) को देखते हुए, इस क्रिया के लिए एक मौलिक डोमेन कक्षाओं के प्रतिनिधियों का एक सेट डी है। यह आमतौर पर कई सटीक परिभाषित तरीकों में से एक में, स्थलीय रूप से एक उचित रूप से अच्छा सेट होना आवश्यक है। एक विशिष्ट शर्त यह है कि डी लगभग एक खुला सेट है, इस अर्थ में कि डी एक्स में एक निश्चित (अर्ध) अपरिवर्तनीय माप (गणित) के लिए एक्स में एक खुले सेट का सममित अंतर है। एक मौलिक डोमेन में हमेशा एक नि:शुल्क नियमित सेट U होता है, एक खुला सेट G द्वारा असंबद्ध सेट प्रतियों में घुमाया जाता है, और कक्षाओं का प्रतिनिधित्व करने में D जितना ही अच्छा होता है। अक्सर डी को कुछ दोहराव के साथ कोसेट प्रतिनिधियों का एक पूरा सेट होना आवश्यक है, लेकिन दोहराए गए हिस्से में शून्य माप है। यह एर्गोडिक सिद्धांत में एक विशिष्ट स्थिति है। यदि एक्स/जी पर एक अभिन्न की गणना के लिए एक मौलिक डोमेन का उपयोग किया जाता है, तो शून्य माप के सेट कोई फर्क नहीं पड़ता।

उदाहरण के लिए, जब X यूक्लिडियन स्पेस 'R' हैn आयाम n का, और G जाली (समूह सिद्धांत) 'Z' हैn अनुवाद द्वारा इस पर कार्य करते हुए, भागफल X/G n-आयामी टोरस्र्स है। यहाँ एक मूलभूत डोमेन D को [0,1) के रूप में लिया जा सकता हैn, जो खुले सेट (0,1) से भिन्न हैn माप शून्य के एक सेट द्वारा, या बंद सेट यूनिट क्यूब [0,1]n, जिसकी सीमा (टोपोलॉजी) में वे बिंदु होते हैं जिनकी कक्षा में D में एक से अधिक प्रतिनिधि होते हैं।

उदाहरण

त्रि-आयामी यूक्लिडियन अंतरिक्ष आर में उदाहरण3</सुप>.

  • एन-फोल्ड रोटेशन के लिए: एक कक्षा या तो अक्ष के चारों ओर n बिंदुओं का एक सेट है, या अक्ष पर एक एकल बिंदु है; मौलिक डोमेन एक सेक्टर है
  • एक समतल में परावर्तन के लिए: एक कक्षा या तो 2 बिंदुओं का समुच्चय है, विमान के प्रत्येक तरफ एक, या समतल में एक बिंदु; मौलिक डोमेन उस विमान से घिरा आधा स्थान है
  • एक बिंदु में प्रतिबिंब के लिए: एक कक्षा 2 बिंदुओं का एक समूह है, केंद्र के प्रत्येक तरफ एक, एक कक्षा को छोड़कर, जिसमें केवल केंद्र होता है; मौलिक डोमेन केंद्र के माध्यम से किसी भी विमान से घिरा आधा स्थान है
  • एक रेखा के परितः 180° घूर्णन के लिए: कक्षा या तो अक्ष के सापेक्ष एक दूसरे के विपरीत 2 बिंदुओं का एक समूह है, या अक्ष पर एक बिंदु है; मौलिक डोमेन एक आधा स्थान है जो किसी भी विमान द्वारा रेखा के माध्यम से घिरा हुआ है
  • एक दिशा में असतत अनुवादकीय समरूपता के लिए: कक्षाएँ अनुवाद वेक्टर की दिशा में 1D जाली का अनुवाद करती हैं; मौलिक डोमेन एक अनंत स्लैब है
  • दो दिशाओं में असतत अनुवादकीय समरूपता के लिए: कक्षाएं अनुवाद वैक्टर के माध्यम से विमान में एक 2D जाली का अनुवाद करती हैं; मौलिक डोमेन समानांतर चतुर्भुज क्रॉस सेक्शन के साथ एक अनंत बार है
  • तीन दिशाओं में असतत अनुवादकीय समरूपता के लिए: कक्षाएँ जाली का अनुवाद हैं; मौलिक डोमेन एक आदिम सेल है जो उदा। एक समानांतर चतुर्भुज, या एक विग्नर-सीट्ज़ सेल , जिसे वोरोनोई आरेख /आरेख भी कहा जाता है।

अन्य समरूपताओं के साथ संयुक्त रूपांतर समरूपता के मामले में, मौलिक डोमेन आदिम सेल का हिस्सा है। उदाहरण के लिए, वॉलपेपर समूह ों के लिए मौलिक डोमेन एक कारक 1, 2, 3, 4, 6, 8, या 12 है जो आदिम सेल से छोटा है।

मॉड्यूलर समूह के लिए मौलिक डोमेन

प्रत्येक त्रिभुजाकार क्षेत्र H/Γ का एक निःशुल्क नियमित समुच्चय है; ग्रे वन (अनंत पर त्रिभुज के तीसरे बिंदु के साथ) विहित मौलिक डोमेन है।

दाईं ओर का आरेख मॉड्यूलर समूह की कार्रवाई के लिए मौलिक डोमेन के निर्माण का हिस्सा दिखाता है Γ ऊपरी आधे विमान एच पर।

यह प्रसिद्ध आरेख मॉड्यूलर कार्यों पर सभी शास्त्रीय पुस्तकों में दिखाई देता है। (यह शायद सीएफ गॉस के लिए अच्छी तरह से जाना जाता था, जो बाइनरी_क्वाड्रैटिक_फॉर्म # रिडक्शन_एंड_क्लास_नंबर्स ऑफ द्विघात रूप की आड़ में मौलिक डोमेन से निपटते थे।) यहां, प्रत्येक त्रिकोणीय क्षेत्र (नीली रेखाओं से घिरा) Γ की कार्रवाई का एक नि: शुल्क नियमित सेट है। एच पर। सीमाएं (नीली रेखाएं) मुक्त नियमित सेट का हिस्सा नहीं हैं। एच / Γ के एक मौलिक डोमेन का निर्माण करने के लिए, किसी को भी इस बात पर विचार करना चाहिए कि सीमा पर बिंदुओं को कैसे निर्दिष्ट किया जाए, सावधान रहें कि ऐसे बिंदुओं को दोबारा न गिना जाए। इस प्रकार, इस उदाहरण में मुक्त नियमित सेट है

मौलिक डोमेन बाईं ओर की सीमा को जोड़कर बनाया गया है और बीच में बिंदु सहित तल पर आधे चाप को जोड़ा गया है:

मौलिक डोमेन के एक हिस्से के रूप में शामिल करने के लिए सीमा के किन बिंदुओं का चुनाव मनमाना है, और लेखक से लेखक में भिन्न होता है।

मौलिक डोमेन को परिभाषित करने की मुख्य कठिनाई सेट प्रति की परिभाषा के साथ इतनी अधिक नहीं है, बल्कि डोमेन की सीमा पर ध्रुवों और शून्यों के साथ कार्यों को एकीकृत करते समय मौलिक डोमेन पर इंटीग्रल का इलाज कैसे करें।

यह भी देखें


बाहरी संबंध

  • Weisstein, Eric W. "Fundamental domain". MathWorld.