धनात्मक रैखिक फलनात्मक: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
गणित में, विशेष रूप से कार्यात्मक विश्लेषण में, एक क्रमबद्ध सदिश स्थान <math>(V, \leq)</math> पर एक सकारात्मक रैखिक कार्यात्मक, <math>V</math> पर एक रैखिक कार्यात्मक <math>f</math> है जिससे सभी सकारात्मक तत्वों <math>v \in V,</math> यानी कि <math>v \geq 0,</math> के लिए यह माना जा सके कि | गणित में, विशेष रूप से कार्यात्मक विश्लेषण में, एक क्रमबद्ध सदिश स्थान <math>(V, \leq)</math> पर एक सकारात्मक रैखिक कार्यात्मक, <math>V</math> पर एक रैखिक कार्यात्मक <math>f</math> है जिससे सभी सकारात्मक तत्वों <math>v \in V,</math> यानी कि <math>v \geq 0,</math> के लिए यह माना जा सके कि | ||
<math display="block">f(v) \geq 0.</math> | <math display="block">f(v) \geq 0.</math> | ||
दूसरे शब्दों में, एक सकारात्मक रैखिक कार्यात्मकता को सकारात्मक तत्वों के लिए गैर-ऋणात्मक | दूसरे शब्दों में, एक सकारात्मक रैखिक कार्यात्मकता को सकारात्मक तत्वों के लिए गैर-ऋणात्मक मान लेने की गारंटी दी जाती है। जो कि सकारात्मक रैखिक कार्यात्मकताओं का महत्व रिज़्ज़-मार्कोव-काकुतानी प्रतिनिधित्व प्रमेय जैसे परिणामों में निहित है। | ||
जब <math>V</math> एक जटिल सदिश समष्टि है, तो यह माना जाता है कि सभी <math>v\ge0,</math> के लिए <math>f(v)</math> वास्तविक है। जैसा कि उस स्थिति में जब <math>V</math> एक C*-बीजगणित है जिसमें स्व-सहायक तत्वों का आंशिक रूप से क्रमबद्ध उप-स्थान होता है, कभी-कभी आंशिक क्रम केवल एक उप-स्थान <math>W\subseteq V,</math> पर रखा जाता है और आंशिक क्रम पूरे <math>V,</math> तक विस्तारित नहीं होता है, जिसमें यदि संकेतन के दुरुपयोग से <math>V,</math> के सकारात्मक तत्व <math>W,</math> के सकारात्मक तत्व हैं। इसका तात्पर्य यह है कि C*-बीजगणित के लिए, एक सकारात्मक रैखिक कार्यात्मक किसी भी <math>x \in V</math> को किसी वास्तविक संख्या में कुछ <math>s \in V</math> के लिए | जब <math>V</math> एक जटिल सदिश समष्टि है, तो यह माना जाता है कि सभी <math>v\ge0,</math> के लिए <math>f(v)</math> वास्तविक है। जैसा कि उस स्थिति में जब <math>V</math> एक C*-बीजगणित है जिसमें स्व-सहायक तत्वों का आंशिक रूप से क्रमबद्ध उप-स्थान होता है, कभी-कभी आंशिक क्रम केवल एक उप-स्थान <math>W\subseteq V,</math> पर रखा जाता है और आंशिक क्रम पूरे <math>V,</math> तक विस्तारित नहीं होता है, जिसमें यदि संकेतन के दुरुपयोग से <math>V,</math> के सकारात्मक तत्व <math>W,</math> के सकारात्मक तत्व हैं। इसका तात्पर्य यह है कि C*-बीजगणित के लिए, एक सकारात्मक रैखिक कार्यात्मक किसी भी <math>x \in V</math> को किसी वास्तविक संख्या में कुछ <math>s \in V</math> के लिए <math>s^{\ast}s</math> के समान भेजता है, जो इसके जटिल संयुग्म के समान है, और इसलिए सभी सकारात्मक रैखिक कार्यात्मक ऐसे <math>x.</math> की स्व-संयुक्तता को सुरक्षित रखें। सी*-बीजगणित पर सकारात्मक रैखिक कार्यात्मकताओं को आंतरिक उत्पादों से जोड़ने के लिए जीएनएस निर्माण में इस संपत्ति का उपयोग किया जाता है। | ||
== सभी सकारात्मक रैखिक कार्यात्मकताओं की निरंतरता के लिए पर्याप्त नियम == | == सभी सकारात्मक रैखिक कार्यात्मकताओं की निरंतरता के लिए पर्याप्त नियम == | ||
Line 11: | Line 11: | ||
क्रमबद्ध टोपोलॉजिकल सदिश रिक्त स्थान का एक तुलनात्मक रूप से बड़ा वर्ग है जिस पर प्रत्येक सकारात्मक रैखिक रूप आवश्यक रूप से निरंतर है।{{sfn|Schaefer|Wolff|1999|pp=225-229}} | क्रमबद्ध टोपोलॉजिकल सदिश रिक्त स्थान का एक तुलनात्मक रूप से बड़ा वर्ग है जिस पर प्रत्येक सकारात्मक रैखिक रूप आवश्यक रूप से निरंतर है।{{sfn|Schaefer|Wolff|1999|pp=225-229}} | ||
इसमें सभी [[ टोपोलॉजिकल वेक्टर जाली | टोपोलॉजिकल सदिश जालक]] | इसमें सभी [[ टोपोलॉजिकल वेक्टर जाली |टोपोलॉजिकल सदिश जालक]] सम्मिलित हैं जो अनु[[क्रमिक रूप से पूर्ण टोपोलॉजिकल वेक्टर स्पेस|क्रमिक रूप से पूर्ण टोपोलॉजिकल सदिश स्पेस]] हैं।{{sfn|Schaefer|Wolff|1999|pp=225-229}} | ||
प्रमेय मान लीजिए कि <math>X</math> धनात्मक शंकु <math>C \subseteq X</math> के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश समष्टि है और मान लीजिए कि <math>\mathcal{B} \subseteq \mathcal{P}(X)</math> | प्रमेय मान लीजिए कि <math>X</math> धनात्मक शंकु <math>C \subseteq X</math> के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश समष्टि है और मान लीजिए कि <math>\mathcal{B} \subseteq \mathcal{P}(X)</math> | ||
फिर निम्नलिखित में से प्रत्येक नियम यह गारंटी देने के लिए पर्याप्त है कि <math>X.</math> पर प्रत्येक सकारात्मक रैखिक कार्यात्मकता निरंतर है: | फिर निम्नलिखित में से प्रत्येक नियम यह गारंटी देने के लिए पर्याप्त है कि <math>X.</math> पर प्रत्येक सकारात्मक रैखिक कार्यात्मकता निरंतर है: | ||
# <math>C</math> इसमें गैर-खाली टोपोलॉजिकल इंटीरियर (इंच) <math>X</math> है | # <math>C</math> इसमें गैर-खाली टोपोलॉजिकल इंटीरियर (इंच) <math>X</math> है {{sfn|Schaefer|Wolff|1999|pp=225-229}} | ||
# <math>X</math> [[पूर्ण स्थान]] और [[मेट्रिज़ेबल]] और <math>X = C - C.</math> है {{sfn|Schaefer|Wolff|1999|pp=225-229}} | # <math>X</math> [[पूर्ण स्थान]] और [[मेट्रिज़ेबल]] और <math>X = C - C.</math> है {{sfn|Schaefer|Wolff|1999|pp=225-229}} | ||
#X [[बोर्नोलॉजिकल स्पेस]] है और <math>C</math> <math>X.</math> में एक अर्ध-पूर्ण सख्त <math>\mathcal{B}</math> -शंकु है।{{sfn|Schaefer|Wolff|1999|pp=225-229}} | #X [[बोर्नोलॉजिकल स्पेस]] है और <math>C</math> <math>X.</math> में एक अर्ध-पूर्ण सख्त <math>\mathcal{B}</math> -शंकु है।{{sfn|Schaefer|Wolff|1999|pp=225-229}} | ||
Line 25: | Line 25: | ||
निम्नलिखित प्रमेय एच. बाउर और स्वतंत्र रूप से नामियोका के कारण है।{{sfn|Schaefer|Wolff|1999|pp=225-229}} | निम्नलिखित प्रमेय एच. बाउर और स्वतंत्र रूप से नामियोका के कारण है।{{sfn|Schaefer|Wolff|1999|pp=225-229}} | ||
:प्रमेय:{{sfn|Schaefer|Wolff|1999|pp=225-229}} मान लीजिए कि <math>X</math> धनात्मक शंकु के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश स्पेस (टीवीएस) है <math>C,</math> मान लीजिए कि <math>M</math>, <math>E,</math> का एक सदिश उपसमष्टि है और मान लीजिए कि <math>f</math>, <math>M.</math> पर एक रैखिक रूप है, तो <math>f</math> के पास <math>X</math> पर एक सतत धनात्मक रैखिक रूप का विस्तार है, यदि और केवल यदि X में <math>0</math> का कुछ उत्तल निकट | :प्रमेय:{{sfn|Schaefer|Wolff|1999|pp=225-229}} मान लीजिए कि <math>X</math> धनात्मक शंकु के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश स्पेस (टीवीएस) है <math>C,</math> मान लीजिए कि <math>M</math>, <math>E,</math> का एक सदिश उपसमष्टि है और मान लीजिए कि <math>f</math>, <math>M.</math> पर एक रैखिक रूप है, तो <math>f</math> के पास <math>X</math> पर एक सतत धनात्मक रैखिक रूप का विस्तार है, यदि और केवल यदि X में <math>0</math> का कुछ उत्तल निकट U उपस्थित है इस प्रकार कि <math>\operatorname{Re} f</math> ऊपर <math>M \cap (U - C).</math> पर परिबद्ध है। | ||
: | : | ||
:परिणाम:{{sfn|Schaefer|Wolff|1999|pp=225-229}} मान लीजिए कि <math>X</math> धनात्मक शंकु के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश स्थान है <math>C,</math> मान लीजिए <math>M</math>, <math>E.</math> का एक सदिश उपसमष्टि है। यदि <math>C \cap M</math> में <math>C</math> का आंतरिक बिंदु है तो <math>M</math> पर प्रत्येक सतत धनात्मक रैखिक रूप का <math>X.</math> पर सतत धनात्मक रैखिक रूप का विस्तार होता है। | :परिणाम:{{sfn|Schaefer|Wolff|1999|pp=225-229}} मान लीजिए कि <math>X</math> धनात्मक शंकु के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश स्थान है <math>C,</math> मान लीजिए <math>M</math>, <math>E.</math> का एक सदिश उपसमष्टि है। यदि <math>C \cap M</math> में <math>C</math> का आंतरिक बिंदु है तो <math>M</math> पर प्रत्येक सतत धनात्मक रैखिक रूप का <math>X.</math> पर सतत धनात्मक रैखिक रूप का विस्तार होता है। | ||
:'''परिणाम:{{sfn|Schaefer|Wolff|1999|pp=225-229}} होने देना <math>X</math> धनात्मक शंकु के साथ एक''' क्रमित सदिश समष्टि हो <math>C,</math> होने देना <math>M</math> का एक सदिश उपसमष्टि हो <math>E,</math> और जाने <math>f</math> पर एक रेखीय रूप हो <math>M.</math> तब <math>f</math> पर एक सकारात्मक रैखिक रूप का विस्तार है <math>X</math> यदि और केवल यदि कुछ उत्तल [[अवशोषक सेट]] उपस्थित है <math>W</math> में <math>X</math> की उत्पत्ति से युक्त <math>X</math> ऐसा है कि <math>\operatorname{Re} f</math> ऊपर से घिरा हुआ है <math>M \cap (W - C).</math> | :'''परिणाम:{{sfn|Schaefer|Wolff|1999|pp=225-229}} होने देना <math>X</math> धनात्मक शंकु के साथ एक''' क्रमित सदिश समष्टि हो <math>C,</math> होने देना <math>M</math> का एक सदिश उपसमष्टि हो <math>E,</math> और जाने <math>f</math> पर एक रेखीय रूप हो <math>M.</math> तब <math>f</math> पर एक सकारात्मक रैखिक रूप का विस्तार है <math>X</math> यदि और केवल यदि कुछ उत्तल [[अवशोषक सेट]] उपस्थित है <math>W</math> में <math>X</math> की उत्पत्ति से युक्त <math>X</math> ऐसा है कि <math>\operatorname{Re} f</math> ऊपर से घिरा हुआ है <math>M \cap (W - C).</math> | ||
प्रमाण: यह समर्थन करने के लिए पर्याप्त है <math>X</math> बेहतरीन स्थानीय उत्तल टोपोलॉजी निर्माण के साथ <math>W</math> के एक निकट | प्रमाण: यह समर्थन करने के लिए पर्याप्त है <math>X</math> बेहतरीन स्थानीय उत्तल टोपोलॉजी निर्माण के साथ <math>W</math> के एक निकट में <math>0 \in X.</math> | ||
Line 67: | Line 67: | ||
* [[Kadison, Richard]], ''Fundamentals of the Theory of Operator Algebras, Vol. I : Elementary Theory'', American Mathematical Society. {{ISBN|978-0821808191}}. | * [[Kadison, Richard]], ''Fundamentals of the Theory of Operator Algebras, Vol. I : Elementary Theory'', American Mathematical Society. {{ISBN|978-0821808191}}. | ||
* {{Narici Beckenstein Topological Vector Spaces|edition=2}} | * {{Narici Beckenstein Topological Vector Spaces|edition=2}} | ||
* {{Schaefer Wolff Topological Vector Spaces|edition=2}} | * {{Schaefer Wolff Topological Vector Spaces|edition=2}} | ||
* {{Trèves François Topological vector spaces, distributions and kernels | * {{Trèves François Topological vector spaces, distributions and kernels}} | ||
{{DEFAULTSORT:Positive Linear Functional}}[[Category: कार्यात्मक विश्लेषण]] [[Category: रैखिक क्रियाएँ]] | {{DEFAULTSORT:Positive Linear Functional}}[[Category: कार्यात्मक विश्लेषण]] [[Category: रैखिक क्रियाएँ]] |
Revision as of 21:42, 28 November 2023
गणित में, विशेष रूप से कार्यात्मक विश्लेषण में, एक क्रमबद्ध सदिश स्थान पर एक सकारात्मक रैखिक कार्यात्मक, पर एक रैखिक कार्यात्मक है जिससे सभी सकारात्मक तत्वों यानी कि के लिए यह माना जा सके कि
जब एक जटिल सदिश समष्टि है, तो यह माना जाता है कि सभी के लिए वास्तविक है। जैसा कि उस स्थिति में जब एक C*-बीजगणित है जिसमें स्व-सहायक तत्वों का आंशिक रूप से क्रमबद्ध उप-स्थान होता है, कभी-कभी आंशिक क्रम केवल एक उप-स्थान पर रखा जाता है और आंशिक क्रम पूरे तक विस्तारित नहीं होता है, जिसमें यदि संकेतन के दुरुपयोग से के सकारात्मक तत्व के सकारात्मक तत्व हैं। इसका तात्पर्य यह है कि C*-बीजगणित के लिए, एक सकारात्मक रैखिक कार्यात्मक किसी भी को किसी वास्तविक संख्या में कुछ के लिए के समान भेजता है, जो इसके जटिल संयुग्म के समान है, और इसलिए सभी सकारात्मक रैखिक कार्यात्मक ऐसे की स्व-संयुक्तता को सुरक्षित रखें। सी*-बीजगणित पर सकारात्मक रैखिक कार्यात्मकताओं को आंतरिक उत्पादों से जोड़ने के लिए जीएनएस निर्माण में इस संपत्ति का उपयोग किया जाता है।
सभी सकारात्मक रैखिक कार्यात्मकताओं की निरंतरता के लिए पर्याप्त नियम
क्रमबद्ध टोपोलॉजिकल सदिश रिक्त स्थान का एक तुलनात्मक रूप से बड़ा वर्ग है जिस पर प्रत्येक सकारात्मक रैखिक रूप आवश्यक रूप से निरंतर है।[1]
इसमें सभी टोपोलॉजिकल सदिश जालक सम्मिलित हैं जो अनुक्रमिक रूप से पूर्ण टोपोलॉजिकल सदिश स्पेस हैं।[1]
प्रमेय मान लीजिए कि धनात्मक शंकु के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश समष्टि है और मान लीजिए कि
फिर निम्नलिखित में से प्रत्येक नियम यह गारंटी देने के लिए पर्याप्त है कि पर प्रत्येक सकारात्मक रैखिक कार्यात्मकता निरंतर है:
- इसमें गैर-खाली टोपोलॉजिकल इंटीरियर (इंच) है [1]
- पूर्ण स्थान और मेट्रिज़ेबल और है [1]
- X बोर्नोलॉजिकल स्पेस है और में एक अर्ध-पूर्ण सख्त -शंकु है।[1]
- , सकारात्मक रैखिक मानचित्रों के वर्ग के संबंध में आदेशित फ़्रेचेट रिक्त स्थान के वर्ग की आगमनात्मक सीमा है, जहां सभी के लिए है, जहां का सकारात्मक शंकु है।[1]
निरंतर सकारात्मक विस्तार
निम्नलिखित प्रमेय एच. बाउर और स्वतंत्र रूप से नामियोका के कारण है।[1]
- प्रमेय:[1] मान लीजिए कि धनात्मक शंकु के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश स्पेस (टीवीएस) है मान लीजिए कि , का एक सदिश उपसमष्टि है और मान लीजिए कि , पर एक रैखिक रूप है, तो के पास पर एक सतत धनात्मक रैखिक रूप का विस्तार है, यदि और केवल यदि X में का कुछ उत्तल निकट U उपस्थित है इस प्रकार कि ऊपर पर परिबद्ध है।
- परिणाम:[1] मान लीजिए कि धनात्मक शंकु के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश स्थान है मान लीजिए , का एक सदिश उपसमष्टि है। यदि में का आंतरिक बिंदु है तो पर प्रत्येक सतत धनात्मक रैखिक रूप का पर सतत धनात्मक रैखिक रूप का विस्तार होता है।
- परिणाम:[1] होने देना धनात्मक शंकु के साथ एक क्रमित सदिश समष्टि हो होने देना का एक सदिश उपसमष्टि हो और जाने पर एक रेखीय रूप हो तब पर एक सकारात्मक रैखिक रूप का विस्तार है यदि और केवल यदि कुछ उत्तल अवशोषक सेट उपस्थित है में की उत्पत्ति से युक्त ऐसा है कि ऊपर से घिरा हुआ है
प्रमाण: यह समर्थन करने के लिए पर्याप्त है बेहतरीन स्थानीय उत्तल टोपोलॉजी निर्माण के साथ के एक निकट में
उदाहरण
के उदाहरण के रूप में, जटिल वर्ग आव्यूहों के C*-बीजगणित पर विचार करें, जिसमें सकारात्मक तत्व सकारात्मक-निश्चित आव्यूह हैं। इस C*-बीजगणित पर परिभाषित ट्रेस फ़ंक्शन एक सकारात्मक कार्यात्मक है, क्योंकि किसी भी सकारात्मक-निश्चित मैट्रिक्स के आइजेनवैल्यू सकारात्मक हैं, और इसलिए इसका ट्रेस सकारात्मक है।
स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ स्पेस पर कॉम्पैक्ट समर्थन के सभी निरंतर जटिल-मूल्य वाले कार्यों के रीज़ स्पेस पर विचार करें। पर एक बोरेल नियमित माप और द्वारा परिभाषित एक कार्यात्मक पर विचार करें
सकारात्मक रैखिक कार्यात्मक (सी*-बीजगणित)
होने देना C*-बीजगणित हो (अधिक सामान्यतः, C*-बीजगणित में एक ऑपरेटर प्रणाली ) पहचान के साथ होने देना में सकारात्मक तत्वों के सेट को निरूपित करें एक रैखिक कार्यात्मक पर बताया गया positive अगर सभी के लिए :प्रमेय. एक रैखिक कार्यात्मक पर सकारात्मक है यदि और केवल यदि घिरा हुआ है और [2]
कॉची-श्वार्ज़ असमानता
C*-बीजगणित पर एक सकारात्मक रैखिक कार्यात्मक है, तो कोई पर एक अर्धनिश्चित सेसक्विलिनियर रूप को द्वारा परिभाषित कर सकता है, इस प्रकार कॉची-श्वार्ज़ असमानता से हमारे पास है
अर्थशास्त्र में अनुप्रयोग
स्थान को देखते हुए, एक मूल्य प्रणाली को पर एक सतत, सकारात्मक, रैखिक कार्यात्मक के रूप में देखा जा सकता है।
यह भी देखें
संदर्भ
ग्रन्थसूची
- Kadison, Richard, Fundamentals of the Theory of Operator Algebras, Vol. I : Elementary Theory, American Mathematical Society. ISBN 978-0821808191.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.