धनात्मक रैखिक फलनात्मक

From Vigyanwiki

गणित में, विशेष रूप से फलनात्मक विश्लेषण में, एक क्रमबद्ध सदिश समष्टि पर एक धनात्मक रैखिक फलनात्मक, पर एक रैखिक फलनात्मक है जिससे सभी धनात्मक अवयव अथार्त कि के लिए यह माना जा सकता है कि

दूसरे शब्दों में, एक धनात्मक रैखिक कार्यात्मकता को धनात्मक अवयव के लिए गैर-ऋणात्मक मान लेने की आश्वासन दी जाती है। जो कि धनात्मक रैखिक कार्यात्मकताओं का महत्व रिज़्ज़-मार्कोव-काकुतानी प्रतिनिधित्व प्रमेय जैसे परिणामों में निहित है।

जब एक सम्मिश्र सदिश समष्टि है, तो यह माना जाता है कि सभी के लिए वास्तविक है। जैसा कि उस स्थिति में जब एक C*-बीजगणित है जिसमें स्व-सहायक अवयव का आंशिक रूप से क्रमबद्ध उप-समष्टि होता है, कभी-कभी आंशिक क्रम केवल एक उप-समष्टि पर रखा जाता है और आंशिक क्रम पूरे तक विस्तारित नहीं होता है, जिसमें यदि संकेतन के दुरुपयोग से के धनात्मक तत्व के धनात्मक तत्व हैं। इसका तात्पर्य यह है कि C*-बीजगणित के लिए, एक धनात्मक रैखिक फलनात्मक किसी भी को किसी वास्तविक संख्या में कुछ के लिए के समान भेजता है, जो इसके सम्मिश्र संयुग्म के समान है, और इसलिए सभी धनात्मक रैखिक फलनात्मक ऐसे की स्व-संयुक्तता को सुरक्षित रखें। C*-बीजगणित पर धनात्मक रैखिक कार्यात्मकताओं को आंतरिक उत्पादों से जोड़ने के लिए जीएनएस निर्माण में इस गुण का उपयोग किया जाता है।

सभी धनात्मक रैखिक कार्यात्मकताओं की निरंतरता के लिए पर्याप्त नियम

क्रमबद्ध टोपोलॉजिकल सदिश रिक्त समष्टि का एक तुलनात्मक रूप से बड़ा वर्ग है जिस पर प्रत्येक धनात्मक रैखिक रूप आवश्यक रूप से निरंतर है।[1]

इसमें सभी टोपोलॉजिकल सदिश जालक सम्मिलित हैं जो अनुक्रमिक रूप से पूर्ण टोपोलॉजिकल सदिश स्पेस हैं।[1]

प्रमेय मान लीजिए कि धनात्मक शंकु के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश समष्टि है और मान लीजिए कि

फिर निम्नलिखित में से प्रत्येक नियम यह आश्वासन देने के लिए पर्याप्त है कि पर प्रत्येक धनात्मक रैखिक कार्यात्मकता निरंतर है:

  1. इसमें गैर-खाली टोपोलॉजिकल इंटीरियर (इंच) है [1]
  2. पूर्ण समष्टि और मेट्रिज़ेबल और है [1]
  3. X बोर्नोलॉजिकल स्पेस है और में एक अर्ध-पूर्ण सख्त -शंकु है।[1]
  4. , धनात्मक रैखिक मानचित्रों के वर्ग के संबंध में आदेशित फ़्रेचेट रिक्त समष्टि के वर्ग की आगमनात्मक सीमा है, जहां सभी के लिए है, जहां का धनात्मक शंकु है।[1]

निरंतर धनात्मक विस्तार

निम्नलिखित प्रमेय एच. बाउर और स्वतंत्र रूप से नामियोका के कारण है।[1]

प्रमेय:[1] मान लीजिए कि धनात्मक शंकु के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश स्पेस (टीवीएस) है मान लीजिए कि , का एक सदिश उपसमष्टि है और मान लीजिए कि , पर एक रैखिक रूप है, तो के पास पर एक सतत धनात्मक रैखिक रूप का विस्तार है, यदि और केवल यदि X में का कुछ उत्तल निकट U उपस्थित है इस प्रकार कि ऊपर पर परिबद्ध है।
परिणाम:[1] मान लीजिए कि धनात्मक शंकु के साथ एक क्रमबद्ध टोपोलॉजिकल सदिश समष्टि है मान लीजिए , का एक सदिश उपसमष्टि है। यदि में का आंतरिक बिंदु है तो पर प्रत्येक सतत धनात्मक रैखिक रूप का पर सतत धनात्मक रैखिक रूप का विस्तार होता है।
परिणाम:[1] मान लीजिए कि धनात्मक शंकु के साथ एक क्रमित सदिश समष्टि है   मान लीजिए कि , का एक सदिश उपसमष्टि है और मान लीजिए कि , का एक रैखिक रूप है तब के पास पर एक धनात्मक रैखिक रूप का विस्तार होता है यदि और केवल यदि में कुछ उत्तल अवशोषक उपसमुच्चय उपस्थित होता है जिसमें की उत्पत्ति होती है जैसे कि ऊपर से घिरा होता है।

प्रमाण: यह को उत्तम स्थानीय उत्तल टोपोलॉजी प्रदान करने के लिए पर्याप्त है, जिससे को के निकट में बनाया जा सकता है।

उदाहरण

के उदाहरण के रूप में, सम्मिश्र वर्ग आव्यूहों के C*-बीजगणित पर विचार करें, जिसमें धनात्मक तत्व धनात्मक-निश्चित आव्यूह हैं। इस C*-बीजगणित पर परिभाषित ट्रेस फलन एक धनात्मक फलनात्मक है, क्योंकि किसी भी धनात्मक-निश्चित मैट्रिक्स के आइजेनवैल्यू धनात्मक हैं, और इसलिए इसका ट्रेस धनात्मक है।

स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ स्पेस पर कॉम्पैक्ट समर्थन के सभी निरंतर सम्मिश्र-मूल्य वाले कार्यों के रीज़ स्पेस पर विचार करें। जो कि पर एक बोरेल नियमित माप और द्वारा परिभाषित एक फलनात्मक पर विचार करें

फिर, यह फलनात्मक धनात्मक है (किसी भी धनात्मक फलन का अभिन्न अंग एक धनात्मक संख्या है)। इसके अतिरिक्त, इस समष्टि पर किसी भी धनात्मक कार्यात्मकता का यह रूप होता है, जैसा कि रिज़्ज़-मार्कोव-काकुतानी प्रतिनिधित्व प्रमेय से निम्नानुसार है।

धनात्मक रैखिक फलनात्मक (सी*-बीजगणित)

मान लीजिए कि M एक C*-बीजगणित है (अधिक सामान्यतः, C*-बीजगणित A में एक ऑपरेटर प्रणाली) जिसकी पहचान 1 है। मान लीजिए कि में धनात्मक अवयव के समुच्चय को दर्शाता है।

पर एक रैखिक फलनात्मक को धनात्मक कहा जाता है यदि सभी के लिए है।

प्रमेय. पर एक रैखिक फलनात्मक धनात्मक है यदि और केवल यदि घिरा हुआ है और है।[2]


कॉची-श्वार्ज़ असमानता

C*-बीजगणित पर एक धनात्मक रैखिक फलनात्मक है, तो कोई पर एक अर्धनिश्चित सेसक्विलिनियर रूप को द्वारा परिभाषित कर सकता है, इस प्रकार कॉची-श्वार्ज़ असमानता से हमारे पास है

अर्थशास्त्र में अनुप्रयोग

समष्टि को देखते हुए, एक मूल्य प्रणाली को पर एक सतत, धनात्मक, रैखिक फलनात्मक के रूप में देखा जा सकता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Schaefer & Wolff 1999, pp. 225–229.
  2. Murphy, Gerard. "3.3.4". सी*-बीजगणित और संचालिका सिद्धांत (1st ed.). Academic Press, Inc. p. 89. ISBN 978-0125113601.


ग्रन्थसूची