प्रभावी क्षेत्र सिद्धांत: Difference between revisions
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
===बीटा क्षय का फर्मी सिद्धांत=== | ===बीटा क्षय का फर्मी सिद्धांत=== | ||
प्रभावी क्षेत्र सिद्धांत का सबसे प्रसिद्ध उदाहरण बीटा क्षय का फर्मी सिद्धांत है। यह सिद्धांत [[परमाणु नाभिक]] के कमजोर क्षय के प्रारंभिक अध्ययन के समय विकसित किया गया था जब केवल कमजोर क्षय से निकलने वाले [[हैड्रान]] और [[लेपटोन|लेप्टान]] ज्ञात थे। अध्ययन की गई विशिष्ट [[प्राथमिक कण प्रतिक्रिया]]एँ थीं: | |||
::<math> | ::<math> | ||
Line 18: | Line 18: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
इस सिद्धांत ने इन प्रतिक्रियाओं में सम्मिलित चार [[fermion]] | इस सिद्धांत ने इन प्रतिक्रियाओं में सम्मिलित चार [[fermion|फर्मियनों]] के बीच एक बिंदु जैसी बातचीत प्रस्तुत की। इस सिद्धांत को बड़ी घटनात्मक सफलता मिली और अंततः [[इलेक्ट्रोवीक इंटरैक्शन]] के [[गेज सिद्धांत]] से उत्पन्न होने के बारे में समझा गया, जो कण भौतिकी के [[मानक मॉडल]] का एक भाग है। इस अधिक मौलिक सिद्धांत में, अंतःक्रियाओं की मध्यस्थता [[स्वाद (कण भौतिकी)|फ्लेवर (कण भौतिकी)]] बदलने वाले [[गेज बोसोन]], W± द्वारा की जाती है। फर्मी सिद्धांत की अपार सफलता इसलिए थी क्योंकि W कण का द्रव्यमान लगभग 80 [[GeV]] है, जबकि प्रारंभिक प्रयोग 10 [[MeV]] से कम के ऊर्जा पैमाने पर किए गए थे। परिमाण के 3 से अधिक आदेशों द्वारा तराजू का ऐसा पृथक्करण, अभी तक किसी भी अन्य स्थिति में पूरा नहीं किया गया है। | ||
=== [[अतिचालकता]] का [[बीसीएस सिद्धांत]] === | === [[अतिचालकता]] का [[बीसीएस सिद्धांत]] === |
Revision as of 08:29, 5 December 2023
Quantum field theory |
---|
History |
भौतिक विज्ञान में, एक प्रभावी क्षेत्र सिद्धांत एक अंतर्निहित भौतिक सिद्धांत, जैसे क्वांटम क्षेत्र सिद्धांत या एक सांख्यिकीय यांत्रिकी मॉडल के लिए एक प्रकार का सन्निकटन या प्रभावी सिद्धांत है। एक प्रभावी क्षेत्र सिद्धांत में चयनित लंबाई पैमाने या ऊर्जा पैमाने पर होने वाली भौतिक घटनाओं का वर्णन करने के लिए स्वतंत्रता की उचित डिग्री (भौतिकी और रसायन विज्ञान) सम्मिलित होती है, जबकि कम दूरी (या, समकक्ष, उच्च ऊर्जा पर) पर उपसंरचना और स्वतंत्रता की डिग्री की अनदेखी की जाती है। सहज रूप से, छोटी लंबाई के पैमाने पर अंतर्निहित सिद्धांत के व्यवहार का औसत निकाला जाता है, जिससे लंबी लंबाई के पैमाने पर एक सरलीकृत मॉडल होने की उम्मीद की जाती है। प्रभावी क्षेत्र सिद्धांत सामान्यतः सबसे अच्छा काम करते हैं जब अभिरुचि की लंबाई के पैमाने और अंतर्निहित गतिशीलता की लंबाई के पैमाने के बीच एक बड़ा अलगाव होता है। प्रभावी क्षेत्र सिद्धांतों का उपयोग कण भौतिकी, सांख्यिकीय यांत्रिकी, संघनित पदार्थ भौतिकी, सामान्य सापेक्षता और हाइड्रोडायनामिक्स में पाया गया है। वे गणनाओं को सरल करते हैं, और अपव्यय प्रणाली और विकिरण प्रभावों के उपचार की अनुमति देते हैं।[1][2]
पुनर्सामान्यीकरण समूह
वर्तमान में, प्रभावी क्षेत्र सिद्धांतों पर पुनर्सामान्यीकरण समूह (आरजी) के संदर्भ में चर्चा की जाती है जहां कम दूरी की स्वतंत्रता की डिग्री को एकीकृत करने की प्रक्रिया को व्यवस्थित बनाया जाता है। यद्यपि यह विधि प्रभावी क्षेत्र सिद्धांतों के वास्तविक निर्माण की अनुमति देने के लिए पर्याप्त रूप से ठोस नहीं है, लेकिन आरजी विश्लेषण के माध्यम से उनकी उपयोगिता की सकल समझ स्पष्ट हो जाती है। यह पद्धति समरूपता के विश्लेषण के माध्यम से प्रभावी क्षेत्र सिद्धांतों के निर्माण की मुख्य तकनीक को भी विश्वसनीयता प्रदान करती है। यदि सूक्ष्म सिद्धांत में एकल द्रव्यमान पैमाना 'M' है, तो प्रभावी क्षेत्र सिद्धांत को '1/M' में विस्तार के रूप में देखा जा सकता है। '1/M' की कुछ शक्ति के लिए सटीक एक प्रभावी क्षेत्र सिद्धांत के निर्माण के लिए '1/M' में विस्तार के प्रत्येक क्रम पर मुक्त मापदंडों के एक नए सेट की आवश्यकता होती है। यह तकनीक प्रकीर्णन या अन्य प्रक्रियाओं के लिए उपयोगी है जहां अधिकतम संवेग स्केल 'k' शर्त 'k/M≪1' को संतुष्ट करता है। चूंकि प्रभावी क्षेत्र सिद्धांत छोटे लंबाई के पैमाने पर मान्य नहीं हैं, इसलिए उन्हें पुन: सामान्य करने की आवश्यकता नहीं है। वास्तव में, एक प्रभावी क्षेत्र सिद्धांत के लिए आवश्यक '1/M' में प्रत्येक क्रम में मापदंडों की निरंतर बढ़ती संख्या का अर्थ है कि वे सामान्यतः क्वांटम इलेक्ट्रोडायनामिक्स के समान अर्थ में पुनर्सामान्यीकरण योग्य नहीं हैं, जिसके लिए केवल दो मापदंडों के पुनर्सामान्यीकरण की आवश्यकता होती है।
प्रभावी क्षेत्र सिद्धांतों के उदाहरण
बीटा क्षय का फर्मी सिद्धांत
प्रभावी क्षेत्र सिद्धांत का सबसे प्रसिद्ध उदाहरण बीटा क्षय का फर्मी सिद्धांत है। यह सिद्धांत परमाणु नाभिक के कमजोर क्षय के प्रारंभिक अध्ययन के समय विकसित किया गया था जब केवल कमजोर क्षय से निकलने वाले हैड्रान और लेप्टान ज्ञात थे। अध्ययन की गई विशिष्ट प्राथमिक कण प्रतिक्रियाएँ थीं:
इस सिद्धांत ने इन प्रतिक्रियाओं में सम्मिलित चार फर्मियनों के बीच एक बिंदु जैसी बातचीत प्रस्तुत की। इस सिद्धांत को बड़ी घटनात्मक सफलता मिली और अंततः इलेक्ट्रोवीक इंटरैक्शन के गेज सिद्धांत से उत्पन्न होने के बारे में समझा गया, जो कण भौतिकी के मानक मॉडल का एक भाग है। इस अधिक मौलिक सिद्धांत में, अंतःक्रियाओं की मध्यस्थता फ्लेवर (कण भौतिकी) बदलने वाले गेज बोसोन, W± द्वारा की जाती है। फर्मी सिद्धांत की अपार सफलता इसलिए थी क्योंकि W कण का द्रव्यमान लगभग 80 GeV है, जबकि प्रारंभिक प्रयोग 10 MeV से कम के ऊर्जा पैमाने पर किए गए थे। परिमाण के 3 से अधिक आदेशों द्वारा तराजू का ऐसा पृथक्करण, अभी तक किसी भी अन्य स्थिति में पूरा नहीं किया गया है।
अतिचालकता का बीसीएस सिद्धांत
एक अन्य प्रसिद्ध उदाहरण सुपरकंडक्टिविटी का बीसीएस सिद्धांत है। यहाँ अंतर्निहित सिद्धांत एक धातु में इलेक्ट्रॉनों का सिद्धांत है जो फोनोन नामक जाली कंपन के साथ परस्पर क्रिया करता है। फ़ोनोन कुछ इलेक्ट्रॉनों के बीच आकर्षक परस्पर क्रिया का कारण बनते हैं, जिससे वे कूपर जोड़े बनाते हैं। इन जोड़ियों की लंबाई का पैमाना फोनन की तरंग दैर्ध्य की तुलना में बहुत बड़ा है, जिससे फ़ोनों की गतिशीलता की उपेक्षा करना और एक सिद्धांत का निर्माण करना संभव हो जाता है जिसमें दो इलेक्ट्रॉन एक बिंदु पर प्रभावी रूप से परस्पर क्रिया करते हैं। अतिचालकता पर प्रयोगों के परिणामों का वर्णन और भविष्यवाणी करने में इस सिद्धांत को उल्लेखनीय सफलता मिली है।
गुरुत्वाकर्षण में प्रभावी क्षेत्र सिद्धांत
सामान्य सापेक्षता से अपेक्षा की जाती है कि वह क्वांटम गुरुत्वाकर्षण के पूर्ण सिद्धांत का निम्न ऊर्जा प्रभावी क्षेत्र सिद्धांत हो, जैसे कि स्ट्रिंग सिद्धांत या लूप क्वांटम ग्रेविटी। विस्तार पैमाना प्लैंक द्रव्यमान है। सामान्य सापेक्षता में समस्याओं को सरल बनाने के लिए प्रभावी क्षेत्र सिद्धांतों का भी उपयोग किया गया है, विशेष रूप से प्रेरक परिमित आकार की वस्तुओं के गुरुत्वाकर्षण तरंग हस्ताक्षर की गणना में।[3] जीआर में सबसे आम ईएफ़टी गैर-सापेक्षवादी सामान्य सापेक्षता (एनआरजीआर) है,[4][5][6] जो न्यूटन के बाद के विस्तार के समान है।[7] एक अन्य सामान्य जीआर ईएफटी एक्सट्रीम मास रेशियो (ईएमआर) है, जिसे प्रेरक समस्या के संदर्भ में अत्यधिक द्रव्यमान अनुपात प्रेरक कहा जाता है।
अन्य उदाहरण
वर्तमान में, कई स्थितियों के लिए प्रभावी क्षेत्र सिद्धांत लिखे गए हैं।
- परमाणु भौतिकी की एक प्रमुख शाखा क्वांटम हैरोडायनामिक्स है, जहां हैड्रोन की परस्पर क्रियाओं को एक क्षेत्र सिद्धांत के रूप में माना जाता है, जो क्वांटम क्रोमोडायनामिक्स के अंतर्निहित सिद्धांत से व्युत्पन्न होना चाहिए। क्वांटम हाइड्रोडायनामिक्स परमाणु बल का सिद्धांत है, इसी तरह क्वांटम क्रोमोडायनामिक्स मजबूत अंतःक्रिया का सिद्धांत है और क्वांटम इलेक्ट्रोडायनामिक्स विद्युत चुम्बकीय बल का सिद्धांत है। यहाँ लंबाई के पैमाने के छोटे पृथक्करण के कारण, इस प्रभावी सिद्धांत में कुछ वर्गीकरण शक्ति है, लेकिन फर्मी सिद्धांत की शानदार सफलता नहीं है।
- कण भौतिकी में क्वांटम क्रोमोडायनामिक्स के प्रभावी क्षेत्र सिद्धांत जिसे चिरल पर्टर्बेशन सिद्धांत कहा जाता है, को बेहतर सफलता मिली है।[8] यह सिद्धांत पियोन या खाना के साथ हैड्रोन की बातचीत से संबंधित है, जो सहज चिरल समरूपता तोड़ने वाले गोल्डस्टोन बोसोन हैं। विस्तार पैरामीटर pion ऊर्जा/संवेग है।
- एक भारी क्वार्क (जैसे निचला क्वार्क या आकर्षण क्वार्क ) वाले हैड्रोन के लिए, एक प्रभावी क्षेत्र सिद्धांत जो क्वार्क द्रव्यमान की शक्तियों में विस्तार करता है, जिसे भारी क्वार्क प्रभावी सिद्धांत (एचक्यूईटी) कहा जाता है, उपयोगी पाया गया है।
- दो भारी क्वार्क वाले हैड्रोन के लिए, एक प्रभावी क्षेत्र सिद्धांत जो भारी क्वार्क के सापेक्ष वेग की शक्तियों में विस्तार करता है, जिसे गैर-सापेक्षवादी QCD (NRQCD) कहा जाता है, उपयोगी पाया गया है, खासकर जब जाली QCD के साथ संयोजन में उपयोग किया जाता है।
- हल्के ऊर्जावान (समरेख) कणों के साथ हैड्रोन प्रतिक्रियाओं के लिए, स्वतंत्रता की कम-ऊर्जावान (नरम) डिग्री के साथ बातचीत को नरम संरेख प्रभावी सिद्धांत (SCET) द्वारा वर्णित किया गया है।
- अधिकांश संघनित पदार्थ भौतिकी में अध्ययन किए जा रहे पदार्थ की विशेष संपत्ति के लिए प्रभावी क्षेत्र सिद्धांतों को लिखना सम्मिलित है।
- प्रभावी क्षेत्र सिद्धांतों का उपयोग करके हाइड्रोडायनामिक्स का भी इलाज किया जा सकता है[9]
यह भी देखें
- फॉर्म फैक्टर (क्वांटम फील्ड थ्योरी)
- पुनर्सामान्यीकरण समूह
- क्वांटम क्षेत्र सिद्धांत
- क्वांटम तुच्छता
- गिन्ज़बर्ग-लैंडौ सिद्धांत
संदर्भ
- ↑ Galley, Chad R. (2013). "गैर-रूढ़िवादी प्रणालियों के शास्त्रीय यांत्रिकी". Physical Review Letters. 110 (17): 174301. arXiv:1210.2745. Bibcode:2013PhRvL.110q4301G. doi:10.1103/PhysRevLett.110.174301. PMID 23679733. S2CID 14591873.
- ↑ Birnholtz, Ofek; Hadar, Shahar; Kol, Barak (2014). "कार्रवाई के स्तर पर विकिरण प्रतिक्रिया". International Journal of Modern Physics A. 29 (24): 1450132–1450190. arXiv:1402.2610. Bibcode:2014IJMPA..2950132B. doi:10.1142/S0217751X14501322. S2CID 118541484.
- ↑ Goldberger, Walter; Rothstein, Ira (2004). "विस्तारित वस्तुओं के लिए गुरुत्वाकर्षण का एक प्रभावी क्षेत्र सिद्धांत". Physical Review D. 73 (10). arXiv:hep-th/0409156. doi:10.1103/PhysRevD.73.104029. S2CID 54188791.
- ↑ http://online.kitp.ucsb.edu/online/numrel-m08/buonanno/pdf1/Porto_NumRelData_KITP.pdf[bare URL PDF]
- ↑ Kol, Barak; Smolkin, Lee (2008). "Non-Relativistic Gravitation: From Newton to Einstein and Back". Classical and Quantum Gravity. 25 (14): 145011. arXiv:0712.4116. Bibcode:2008CQGra..25n5011K. doi:10.1088/0264-9381/25/14/145011. S2CID 119216835.
- ↑ Porto, Rafael A (2006). "NRGR में स्पिनिंग बॉडीज की गति के बाद न्यूटोनियन सुधार". Physical Review D. 73 (104031): 104031. arXiv:gr-qc/0511061. doi:10.1103/PhysRevD.73.104031. S2CID 119377563.
- ↑ Birnholtz, Ofek; Hadar, Shahar; Kol, Barak (2013). "न्यूटोनियन विकिरण और प्रतिक्रिया के बाद का सिद्धांत". Physical Review D. 88 (10): 104037. arXiv:1305.6930. Bibcode:2013PhRvD..88j4037B. doi:10.1103/PhysRevD.88.104037. S2CID 119170985.
- ↑ Leutwyler, H (1994). "चिराल पर्टर्बेशन थ्योरी की नींव पर". Annals of Physics. 235 (1): 165–203. arXiv:hep-ph/9311274. Bibcode:1994AnPhy.235..165L. doi:10.1006/aphy.1994.1094. S2CID 16739698.
- ↑ Endlich, Solomon; Nicolis, Alberto; Porto, Rafael; Wang, Junpu (2013). "Dissipation in the effective field theory for hydrodynamics: First order effects". Physical Review D. 88 (10): 105001. arXiv:1211.6461. Bibcode:2013PhRvD..88j5001E. doi:10.1103/PhysRevD.88.105001. S2CID 118441607.
पुस्तकें
- ए.ए. पेट्रोव और ए। ब्लेचमैन, प्रभावी क्षेत्र सिद्धांत, सिंगापुर: विश्व वैज्ञानिक (2016)। ISBN 978-981-4434-92-8
- सी.पी. बर्गेस, इंट्रोडक्शन टू इफेक्टिव फील्ड थ्योरी, कैम्ब्रिज यूनिवर्सिटी प्रेस (2020)। ISBN 978-052-1195-47-8
बाहरी संबंध
- Birnholtz, Ofek; Hadar, Shahar; Kol, Barak (1998). "Effective Field Theory". arXiv:hep-ph/9806303.
- Hartmann, Stephan (2001). "Effective Field Theories, Reductionism and Scientific Explanation" (PDF). Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 32 (2): 267–304. Bibcode:2001SHPMP..32..267H. doi:10.1016/S1355-2198(01)00005-3.
- Birnholtz, Ofek; Hadar, Shahar; Kol, Barak (1997). "Aspects of Heavy Quark Theory". Annual Review of Nuclear and Particle Science. 47: 591–661. arXiv:hep-ph/9703290. Bibcode:1997ARNPS..47..591B. doi:10.1146/annurev.nucl.47.1.591. S2CID 13843227.
- Effective field theory (Interactions, Symmetry Breaking and Effective Fields - from Quarks to Nuclei. an Internet Lecture by Jacek Dobaczewski)