कोणीय त्वरण: Difference between revisions

From Vigyanwiki
m (31 revisions imported from alpha:कोणीय_त्वरण)
No edit summary
Line 103: Line 103:
{{Classical mechanics derived SI units}}
{{Classical mechanics derived SI units}}
{{Authority control}}
{{Authority control}}
[[Category: त्वरण]]
[[Category: गतिज गुण]]
[[Category:रोटेशन]]
[[Category: टॉर्क]]
[[Category:अस्थायी दरें]]


 
[[Category:AC with 0 elements]]
[[Category: Machine Translated Page]]
[[Category:Articles with short description]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 13/11/2022]]
[[Category:Created On 13/11/2022]]
[[Category:Vigyan Ready]]
[[Category:Infobox templates|physical quantity]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]
[[Category:अस्थायी दरें]]
[[Category:गतिज गुण]]
[[Category:टॉर्क]]
[[Category:त्वरण]]
[[Category:रोटेशन]]

Revision as of 14:18, 3 December 2022

कोणीय त्वरण
Si   इकाईrad/s2
SI आधार इकाइयाँ मेंs−2
छद्म वेक्टर
आयामविकिडाटा
रेडियंस प्रति सेकंड वर्ग
इकाई प्रणालीSI व्युत्पन्न इकाई
की इकाईकोणीय त्वरण
चिन्ह, प्रतीकrad/s2

भौतिकी में, कोणीय त्वरण कोणीय वेग के परिवर्तन की समय दर को संदर्भित करता है। जबकि दो प्रकार के कोणीय वेग होते हैं, अर्थात स्पिन कोणीय वेग और कक्षीय कोणीय वेग, स्वाभाविक रूप से भी दो प्रकार के कोणीय त्वरण होते हैं, जिन्हें क्रमशः स्पिन कोणीय त्वरण और कक्षीय कोणीय त्वरण कहा जाता है। स्पिन कोणीय त्वरण एक कठोर शरीर के घूर्णन के केंद्र के बारे में कोणीय त्वरण को संदर्भित करता है, और कक्षीय कोणीय त्वरण एक निश्चित मूल के बारे में एक बिंदु कण के कोणीय त्वरण को संदर्भित करता है।

कोणीय त्वरण को प्रति इकाई समय वर्ग कोण की इकाइयों में मापा जाता है (जो SI इकाइयों में रेडियन प्रति सेकंड वर्ग है), और सामान्यतः प्रतीक अल्फा (α) द्वारा दर्शाया जाता है। दो आयामों में, कोणीय त्वरण एक छद्म अदिश होता है जिसका संकेत धनात्मक लिया जाता है यदि कोणीय गति वामावर्त बढ़ती है या दक्षिणावर्त घटती है, और यदि कोणीय गति दक्षिणावर्त बढ़ती है या वामावर्त घटती है तो इसे ऋणात्मक माना जाता है। तीन आयामों में, कोणीय त्वरण एक स्यूडो छद्म  वेक्टर है।[1] कठोर पिंडों के लिए, कोणीय त्वरण एक शुद्ध बाहरी बलाघूर्ण का कारण होना चाहिए। जबकि, गैर-कठोर निकायों के लिए ऐसा नहीं है: उदाहरण के लिए, एक फिगर स्केटर अपने रोटेशन को तेज कर सकता है (जिससे कोणीय त्वरण प्राप्त कर सकता है) बस अपने हाथों और पैरों को अंदर की ओर अनुबंधित करके, जिसमें कोई बाहरी टार्क सम्मिलित नहीं है।

एक बिंदु कण का कक्षीय कोणीय त्वरण

दो आयामों में कण

दो आयामों में, कक्षीय कोणीय त्वरण वह दर है जिस पर मूल के बारे में कण के द्वि-आयामी कक्षीय कोणीय वेग में परिवर्तन होता है। किसी भी समय पर तात्कालिक कोणीय वेग ω द्वारा दिया जाता है

जहाँ मूल से दूरी है और तात्क्षणिक वेग का क्रॉस-रेडियल घटक है (अर्थात स्थिति सदिश के लम्बवत् घटक), जो सम्मेलन के अनुसार वामावर्त गति के लिए धनात्मक है और दक्षिणावर्त गति के लिए ऋणात्मक होता है।

इसलिए, कण का अस्थायी कोणीय त्वरण α द्वारा दिया जाता है[2]

अवकलन कलन से उत्पाद नियम का उपयोग करके दाएँ हाथ की ओर विस्तार करना, यह बन जाता है

विशेष मामले में जहां कण मूल के बारे में परिपत्र गति से गुजरता है, केवल स्पर्शरेखीय त्वरण बन जाता है , तथा गायब हो जाता है (चूंकि मूल से दूरी स्थिर रहती है), इसलिए उपरोक्त समीकरण सरल हो जाता है

दो आयामों में, कोणीय त्वरण धनात्मक या ऋणात्मक प्रतीक के साथ एक संख्या है जो अभिविन्यास को संकेत करता है, लेकिन दिशा को संकेत नहीं करता है। यदि कोणीय गति वामावर्त दिशा में बढ़ती है या दक्षिणावर्त दिशा में घटती है, तो संकेत को पारंपरिक रूप से सकारात्मक माना जाता है, और यदि कोणीय गति दक्षिणावर्त दिशा में बढ़ती है या वामावर्त दिशा में घटती है, तो संकेत को ऋणात्मक माना जाता है। तब कोणीय त्वरण को एक छद्म अदिश कहा जा सकता है, एक संख्यात्मक मात्रा जो समानता (भौतिकी) के अंतर्गत संकेत बदलती है, जैसे कि एक अक्ष को परिवर्तित करना या दो अक्षों को बदलना।

तीन आयामों में कण

तीन आयामों में, कक्षीय कोणीय त्वरण वह दर है जिस पर समय के साथ त्रि-आयामी कक्षीय कोणीय वेग वेक्टर बदलता है।अस्थायी कोणीय वेग वेक्टर किसी भी समय पर दिया जाता है

जहाँ कण की स्थिति वेक्टर है, मूल से इसकी दूरी, और इसका वेग वेक्टर।[2] इसलिए, कक्षीय कोणीय त्वरण सदिश द्वारा परिभाषित है

क्रॉस-उत्पादों के लिए उत्पाद नियम और सामान्य भागफल नियम का उपयोग करके इस व्युत्पन्न का विस्तार करना, एक समीकरण प्राप्त करता है:

तब से सिर्फ , दूसरे पद के रूप में फिर से लिखा जा सकता है . ऐसे विषय में जहां मूल से कण की दूरी समय के साथ नहीं बदलती है (जिसमें एक उप- विषय के रूप में परिपत्र गति सम्मिलित है), दूसरा पद गायब हो जाता है और उपरोक्त सूत्र सरल हो जाता है

उपरोक्त समीकरण से, इस विशेष मामले में क्रॉस-रेडियल त्वरण को पुनर्प्राप्त किया जा सकता है:

दो आयामों के विपरीत, तीन आयामों में कोणीय त्वरण को कोणीय गति में परिवर्तन के साथ जोड़ने की आवश्यकता नहीं है : यदि कण की स्थिति वेक्टर अंतरिक्ष में मुड़ जाती है, कोणीय विस्थापन के अपने अस्थायी समतल को बदलते हुए, कोणीय वेग की दिशा में परिवर्तन अभी भी एक शून्येतर कोणीय त्वरण उत्पन्न करेगा। ऐसा नहीं हो सकता है यदि स्थिति वेक्टर एक निश्चित तल तक ही सीमित है, जिस स्थिति में की समतल के लंबवत एक निश्चित दिशा  होती है।

कोणीय त्वरण सदिश को स्यूडोवेक्टर कहा जाता है: इसके तीन घटक होते हैं जो एक बिंदु के कार्टेशियन निर्देशांक की तरह ही घूर्णन के तहत रूपांतरित होते हैं, लेकिन जो प्रतिबिंब के अंतर्गत कार्टेशियन निर्देशांक की तरह परिवर्तित नहीं होते हैं।

टॉर्क से संबंध

एक बिंदु कण पर शुद्ध टार्क को छद्म  वेक्टर के रूप में परिभाषित किया गया है

जहाँ कण पर शुद्ध बल है।[3] टॉर्क बल का घूर्णी अनुरूप है: यह किसी  प्रणाली की घूर्णी अवस्था में परिवर्तन को प्रेरित करता है, ठीक उसी तरह  जैसे बल किसी प्रणाली की अनुवादकीय अवस्था में परिवर्तन को प्रेरित करता है। चूंकि एक कण पर बल समीकरण द्वारा त्वरण से जुड़ा होता है , इसीलिए एक कण पर टार्क को कोणीय त्वरण से जोड़ने वाला एक समान समीकरण लिख सकते है, चूंकि यह संबंध आवश्यक रूप से अधिक जटिल है।[4] सबसे पहले, प्रतिस्थापन टार्क के लिए उपरोक्त समीकरण में, एक मिलता है

पिछले खंड से:

जहाँ कक्षीय कोणीय त्वरण है और कक्षीय कोणीय वेग है। इसलिए:

निरंतर दूरी के विशेष मामले में मूल से कण का (), ऊपर के समीकरण में दूसरा पद लुप्त हो जाता है और उपरोक्त समीकरण सरल हो जाता है

जिसे एक घूर्णी अनुरूप के रूप में समझा जा सकता है , जहां मात्रा (कण की जड़ता के क्षण के रूप में जाना जाता है) द्रव्यमान की भूमिका निभाता है . चूंकि, इसके विपरीत , यह समीकरण एक मनमाना प्रक्षेपवक्र पर लागू नहीं होता है, केवल मूल के बारे में एक गोलाकार खोल के भीतर निहित प्रक्षेपवक्र पर लागू होता है।

यह भी देखें


संदर्भ

  1. "घूर्णी चर". LibreTexts. MindTouch. 18 October 2016. Retrieved 1 July 2020.
  2. 2.0 2.1 Singh, Sunil K. "कोणीय गति". Rice University.
  3. Singh, Sunil K. "टॉर्कः". Rice University.
  4. Mashood, K.K. घूर्णी कीनेमेटीक्स में एक अवधारणा सूची का विकास और मूल्यांकन (PDF). Tata Institute of Fundamental Research, Mumbai. pp. 52–54.