ट्रेस ऑपरेटर: Difference between revisions
No edit summary |
No edit summary |
||
Line 26: | Line 26: | ||
<math>\| T u \|_{L^p(\partial \Omega)} \leq C \| u \|_{W^{1,p}(\Omega)}</math> सभी के लिए <math display="inline">u \in W^{1, p}(\Omega)</math> | <math>\| T u \|_{L^p(\partial \Omega)} \leq C \| u \|_{W^{1,p}(\Omega)}</math> सभी के लिए <math display="inline">u \in W^{1, p}(\Omega)</math> | ||
निरंतर के साथ केवल <math display="inline">p</math> तथा <math display="inline">\Omega</math> पर निर्भर करता है। फलन <math display="inline">T u</math> को <math display="inline">u</math> का ट्रेस कहा जाता है और अधिकांश इसे केवल <math display="inline">u |_{\partial \Omega}</math> द्वारा निरूपित किया जाता है। और <math display="inline">T</math> लिए अन्य सामान्य प्रतीकों में <math display="inline">tr</math> तथा <math display="inline">\gamma</math> सम्मालित हैं। | निरंतर के साथ केवल <math display="inline">p</math> तथा <math display="inline">\Omega</math> पर निर्भर करता है। फलन <math display="inline">T u</math> को <math display="inline">u</math> का ट्रेस कहा जाता है और अधिकांश इसे केवल <math display="inline">u |_{\partial \Omega}</math> द्वारा निरूपित किया जाता है। और <math display="inline">T</math> के लिए अन्य सामान्य प्रतीकों में <math display="inline">tr</math> तथा <math display="inline">\gamma</math> सम्मालित हैं। | ||
=== निर्माण === | === निर्माण === | ||
यह पैराग्राफ इवांस का अनुसरण करता है,<ref name="Evans1998,traces" />जहां अधिक विवरण | यह पैराग्राफ इवांस का अनुसरण करता है,<ref name="Evans1998,traces" /> और जहां से अधिक विवरण प्राप्त किया जा सकता है, और यह मान ले कि <math display="inline">\Omega</math> की एक <math display="inline">C^1</math>-सीमा है। लिप्सचिट्ज़ डोमेन के लिए ट्रेस प्रमेय का एक प्रमाण (एक मजबूत संस्करण का) गगलियार्डो में प्राप्त किया जा सकता है।<ref name="Gagliardo1957" /> <math display="inline">C^1</math>-डोमेन पर, ट्रेस ऑपरेटर को ऑपरेटर के [[निरंतर रैखिक विस्तार]] के रूप में परिभाषित किया जा सकता है | ||
: <math>T:C^\infty(\bar \Omega)\to L^p(\partial \Omega)</math> | : <math>T:C^\infty(\bar \Omega)\to L^p(\partial \Omega)</math> | ||
स्पेस के लिए <math display="inline">W^{1, p}(\Omega)</math>. के घने सेट द्वारा <math display="inline">C^\infty(\bar \Omega)</math> में <math display="inline">W^{1, p}(\Omega)</math> ऐसा विस्तार संभव है यदि <math display="inline">T</math> <math display="inline">W^{1, p}(\Omega)</math>-आदर्श के संबंध में निरंतर है। इसका प्रमाण, अर्थात् <math display="inline">C > 0</math> कि उपस्थित है (इस पर निर्भर करते हुए <math display="inline">\Omega</math> तथा <math display="inline">p</math>) जैसे कि | |||
: <math>\|Tu\|_{L^{p}(\partial \Omega)}\le C \|u\|_{W^{1, p}(\Omega)}</math> सभी के लिए <math>u \in C^\infty(\bar \Omega).</math> | : <math>\|Tu\|_{L^{p}(\partial \Omega)}\le C \|u\|_{W^{1, p}(\Omega)}</math> सभी के लिए <math>u \in C^\infty(\bar \Omega).</math> | ||
ट्रेस ऑपरेटर के निर्माण में केंद्रीय घटक है। | ट्रेस ऑपरेटर के निर्माण में केंद्रीय घटक है। <math display="inline">C^1(\bar \Omega)</math> के लिए इस अनुमान का एक स्थानीय संस्करण पहले सिद्ध किया गया है [[विचलन प्रमेय]] का प्रयोग करते हुए स्थानीय रूप से सपाट सीमा के लिए -फलन पहले सिद्ध होते हैं। परिवर्तन द्वारा, एक सामान्य <math display="inline">C^1</math>-इस मामले को कम करने के लिए सीमा को स्थानीय रूप से सीधा किया जा सकता है, जहां <math display="inline">C^1</math>-रूपांतरण की नियमितता के लिए आवश्यक है कि स्थानीय अनुमान <math display="inline">C^1(\bar \Omega)</math>-फलन को धारण करे। | ||
ट्रेस ऑपरेटर की इस निरंतरता के साथ <math display="inline">C^\infty(\bar \Omega)</math> के लिए एक विस्तार <math display="inline">W^{1, p}(\Omega)</math> सार तर्कों से उपस्थित है और <math display="inline">Tu</math> के लिये <math display="inline">u \in W^{1, p}(\Omega)</math> निम्नानुसार चित्रित किया जा सकता है। | ट्रेस ऑपरेटर की इस निरंतरता के साथ <math display="inline">C^\infty(\bar \Omega)</math> के लिए एक विस्तार <math display="inline">W^{1, p}(\Omega)</math> सार तर्कों से उपस्थित है और <math display="inline">Tu</math> के लिये <math display="inline">u \in W^{1, p}(\Omega)</math> निम्नानुसार चित्रित किया जा सकता है। मान ले <math display="inline">u_k \in C^\infty(\bar \Omega)</math> घनत्व द्वारा <math display="inline">u \in W^{1, p}(\Omega)</math> का अनुमान लगाने वाला अनुक्रम हो। <math display="inline">T</math> की <math display="inline">C^\infty(\bar \Omega)</math> अनुक्रम <math display="inline">u_k |_{\partial \Omega}</math> में एक कॉशी अनुक्रम है <math display="inline">L^p(\partial \Omega)</math> तथा <math display="inline">T u = \lim_{k \to \infty} u_k |_{\partial \Omega}</math> सीमा में <math display="inline">L^p(\partial \Omega)</math> लिया गया . | ||
इसके अतिरिक्त गुण <math display="inline">T u = u |_{\partial \Omega}</math> के लिए रखता है <math display="inline">u \in C^{\infty}(\bar \Omega)</math> निर्माण द्वारा, लेकिन किसी के लिए <math display="inline">u \in W^{1, p}(\Omega) \cap C(\bar \Omega)</math> एक क्रम होता है <math display="inline">u_k \in C^\infty(\bar \Omega)</math> जो <math display="inline">\bar \Omega</math> से <math display="inline">u</math> समान रूप से अभिसरण करता है, <math display="inline">W^{1, p}(\Omega) \cap C(\bar \Omega)</math> बड़े सेट पर अतिरिक्त गुण की पुष्टि करता है। | |||
=== मामला पी = ∞ === | === मामला पी = ∞ === | ||
Line 83: | Line 83: | ||
पिछले मानदंड से लैस एक बनच स्पेस है (एक सामान्य परिभाषा <math display="inline">W^{s,p}(\Omega')</math> गैर-पूर्णांक के लिए <math display="inline">s > 0</math> सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेसेस|सोबोलेव-स्लोबोडेकिज स्पेसेस के लिए आलेख में पाया जा सकता है। (N-1)-आयामी लिप्सचिट्ज़ मैनिफोल्ड के लिए <math display="inline">\partial \Omega</math> परिभाषित करना <math display="inline">W^{1-1/p, p}(\partial \Omega)</math> स्थानीय रूप से सीधा करके <math display="inline">\partial \Omega</math> और की परिभाषा के अनुसार आगे बढ़ना <math display="inline">W^{1-1/p, p}(\Omega')</math>. | पिछले मानदंड से लैस एक बनच स्पेस है (एक सामान्य परिभाषा <math display="inline">W^{s,p}(\Omega')</math> गैर-पूर्णांक के लिए <math display="inline">s > 0</math> सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेसेस|सोबोलेव-स्लोबोडेकिज स्पेसेस के लिए आलेख में पाया जा सकता है। (N-1)-आयामी लिप्सचिट्ज़ मैनिफोल्ड के लिए <math display="inline">\partial \Omega</math> परिभाषित करना <math display="inline">W^{1-1/p, p}(\partial \Omega)</math> स्थानीय रूप से सीधा करके <math display="inline">\partial \Omega</math> और की परिभाषा के अनुसार आगे बढ़ना <math display="inline">W^{1-1/p, p}(\Omega')</math>. | ||
स्पेस <math display="inline">W^{1-1/p, p}(\partial \Omega)</math> तब ट्रेस ऑपरेटर की छवि के रूप में पहचाना जा सकता है और वहां होल्ड करता है<ref name="Gagliardo1957" />वह | |||
: <math>T\colon W^{1, p}(\Omega) \to W^{1 - 1/p, p}(\partial \Omega)</math> | : <math>T\colon W^{1, p}(\Omega) \to W^{1 - 1/p, p}(\partial \Omega)</math> |
Revision as of 12:52, 5 December 2022
गणित में, ट्रेस ऑपरेटर सोबोलेव स्पेस में सामान्यीकृत कार्यों के लिए अपने डोमेन की सीमा तक फलन के प्रतिबंध की धारणा को बढ़ाता है। यह निर्धारित सीमा स्थितियों (सीमा मान समस्याओं) के साथ आंशिक अंतर समीकरणों के अध्ययन के लिए विशेष रूप से महत्वपूर्ण है, जहां कमजोर समाधान कार्यों के पारम्परिक अर्थों में सीमा शर्तों को पूरा करने के लिए नियमित रूप से पर्याप्त नहीं हो सकते हैं।
प्रेरणा
एक परिबद्ध, चिकने डोमेन (गणितीय विश्लेषण) पर, विषम के साथ पॉइसन के समीकरण को हल करने की समस्या पर विचार करें डिरिचलेट सीमा शर्तें:
दिए गए फलन तथा के साथ नियमितता के साथ नीचे दिए गए एप्लिकेशन सेक्शन में चर्चा की गई है। इस समीकरण के कमजोर समाधान को संतुष्ट करना चाहिए
- सभी के लिए .
- की नियमितता इस अभिन्न समीकरण की अच्छी तरह से परिभाषित करने के लिए पर्याप्त है। चूँकि, यह स्पष्ट नहीं है कि किस अर्थ में सीमा शर्त पर : को संतुष्ट कर सकते हैं परिभाषा के अनुसार, फलनों का एक तुल्यता वर्ग है जिसका पर मनमाना मान हो सकता है चूंकि यह n-आयामी लेबेस्गु माप के संबंध में एक शून्य सेट है।
यदि में रखने पर, सोबोलेव का एम्बेडिंग प्रमेय, जैसे कि पारम्परिक अर्थों में सीमा की स्थिति को संतुष्ट कर सकता है, अर्थात से आंशिक का प्रतिबंध फलन से सहमत हैं (अधिक उपयुक्त रूप से: में का एक प्रतिनिधि मौजूद है इस गुण के साथ)। के लिये के साथ ऐसा एम्बेडिंग उपस्थित नहीं है और यहां प्रस्तुत ट्रेस ऑपरेटर का प्रयोग का अर्थ देने के लिए किया जाना चाहिए | फिर के साथ को सीमा मान समस्या का एक कमजोर समाधान कहा जाता है यदि ऊपर दिए गए अभिन्न समीकरण को संतुष्ट किया जाता है। ट्रेस ऑपरेटर की परिभाषा उचित होने के लिए, पर्याप्त रूप से नियमित के लिए करना आवश्यक है। |
ट्रेस प्रमेय
ट्रेस ऑपरेटर को सोबोलेव स्पेस में के साथ फलनों के लिए परिभाषित किया जा सकता है, अन्य स्थानों पर ट्रेस के संभावित विस्तार के लिए नीचे दिया गया अनुभाग देखें। माना के लिये लिप्सचिट्ज़ सीमा के साथ एक परिबद्ध डोमेन हो। तब[1]वहाँ एक परिबद्ध रेखीय ट्रेस ऑपरेटर उपस्थित है
जैसे कि पारम्परिक ट्रेस का विस्तार करता है, अर्थात
- सभी के लिए .
की निरंतरता का तात्पर्य है कि
सभी के लिए
निरंतर के साथ केवल तथा पर निर्भर करता है। फलन को का ट्रेस कहा जाता है और अधिकांश इसे केवल द्वारा निरूपित किया जाता है। और के लिए अन्य सामान्य प्रतीकों में तथा सम्मालित हैं।
निर्माण
यह पैराग्राफ इवांस का अनुसरण करता है,[2] और जहां से अधिक विवरण प्राप्त किया जा सकता है, और यह मान ले कि की एक -सीमा है। लिप्सचिट्ज़ डोमेन के लिए ट्रेस प्रमेय का एक प्रमाण (एक मजबूत संस्करण का) गगलियार्डो में प्राप्त किया जा सकता है।[1] -डोमेन पर, ट्रेस ऑपरेटर को ऑपरेटर के निरंतर रैखिक विस्तार के रूप में परिभाषित किया जा सकता है
स्पेस के लिए . के घने सेट द्वारा में ऐसा विस्तार संभव है यदि -आदर्श के संबंध में निरंतर है। इसका प्रमाण, अर्थात् कि उपस्थित है (इस पर निर्भर करते हुए तथा ) जैसे कि
- सभी के लिए
ट्रेस ऑपरेटर के निर्माण में केंद्रीय घटक है। के लिए इस अनुमान का एक स्थानीय संस्करण पहले सिद्ध किया गया है विचलन प्रमेय का प्रयोग करते हुए स्थानीय रूप से सपाट सीमा के लिए -फलन पहले सिद्ध होते हैं। परिवर्तन द्वारा, एक सामान्य -इस मामले को कम करने के लिए सीमा को स्थानीय रूप से सीधा किया जा सकता है, जहां -रूपांतरण की नियमितता के लिए आवश्यक है कि स्थानीय अनुमान -फलन को धारण करे।
ट्रेस ऑपरेटर की इस निरंतरता के साथ के लिए एक विस्तार सार तर्कों से उपस्थित है और के लिये निम्नानुसार चित्रित किया जा सकता है। मान ले घनत्व द्वारा का अनुमान लगाने वाला अनुक्रम हो। की अनुक्रम में एक कॉशी अनुक्रम है तथा सीमा में लिया गया .
इसके अतिरिक्त गुण के लिए रखता है निर्माण द्वारा, लेकिन किसी के लिए एक क्रम होता है जो से समान रूप से अभिसरण करता है, बड़े सेट पर अतिरिक्त गुण की पुष्टि करता है।
मामला पी = ∞
यदि घिरा हुआ है और एक है -सीमा तब मोरे की असमानता से एक सतत एम्बेडिंग उपस्थित है , कहाँ पे Lipschitz निरंतरता कार्यों के स्थान को दर्शाता है। विशेष रूप से, कोई फलन एक पारम्परिक निशान है और वहाँ रखती है
ट्रेस शून्य के साथ कार्य
सोबोलेव रिक्त स्थान के लिये क्लोजर (टोपोलॉजी) के रूप में परिभाषित किया गया है # कॉम्पैक्ट रूप से समर्थित परीक्षण कार्यों के सेट के सेट का क्लोजर के प्रति सम्मान के साथ -आदर्श। निम्नलिखित वैकल्पिक लक्षण वर्णन धारण करता है:
कहाँ पे का कर्नेल (रैखिक बीजगणित) है , अर्थात। में कार्यों का उप-स्थान है ट्रेस जीरो के साथ।
ट्रेस ऑपरेटर की छवि
=== पी> 1 === के लिए
ट्रेस ऑपरेटर पर विशेषण नहीं है यदि , अर्थात् हर फलन में नहीं में एक फलन का निशान है . जैसा कि नीचे दी गई छवि में ऐसे कार्य सम्मालित हैं जो एक को संतुष्ट करते हैं -होल्डर स्थिति का संस्करण|होल्डर निरंतरता।
सार लक्षण वर्णन
की छवि (गणित) का एक सार लक्षण वर्णन निम्नानुसार व्युत्पन्न किया जा सकता है। समरूपता प्रमेयों द्वारा वहाँ धारण किया जाता है
कहाँ पे बानाच स्थान के भागफल स्थान (रैखिक बीजगणित) को दर्शाता है उपक्षेत्र द्वारा और अंतिम पहचान के लक्षण वर्णन से होती है ऊपर से। द्वारा परिभाषित भागफल स्थान को भागफल मानदंड से लैस करना
ट्रेस ऑपरेटर तब एक विशेषण, परिबद्ध रैखिक संकारक है
- .
सोबोलेव-स्लोबोडेकिज रिक्त स्थान का प्रयोग करते हुए अभिलक्षणन
की छवि का अधिक ठोस प्रतिनिधित्व सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेस का प्रयोग करके दिया जा सकता है|सोबोलेव-स्लोबोडेकिज स्पेस जो धारक के निरंतर कार्यों की अवधारणा को सामान्यीकृत करता है -स्थापना। तब से एक (n-1)-आयामी लिप्सचिट्ज़ टोपोलॉजिकल मैनिफोल्ड में एम्बेडेड है इन स्थानों का एक स्पष्ट लक्षण वर्णन तकनीकी रूप से सम्मालित है। सरलता के लिए पहले एक समतलीय डोमेन पर विचार करें . के लिये (संभवतः अनंत) मानक को परिभाषित करें
जो होल्डर की स्थिति को सामान्य करता है . फिर
पिछले मानदंड से लैस एक बनच स्पेस है (एक सामान्य परिभाषा गैर-पूर्णांक के लिए सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेसेस|सोबोलेव-स्लोबोडेकिज स्पेसेस के लिए आलेख में पाया जा सकता है। (N-1)-आयामी लिप्सचिट्ज़ मैनिफोल्ड के लिए परिभाषित करना स्थानीय रूप से सीधा करके और की परिभाषा के अनुसार आगे बढ़ना .
स्पेस तब ट्रेस ऑपरेटर की छवि के रूप में पहचाना जा सकता है और वहां होल्ड करता है[1]वह
एक विशेषण, परिबद्ध रैखिक संकारक है।
=== पी = 1 === के लिए
के लिये ट्रेस ऑपरेटर की छवि है और वहाँ रखती है[1]वह
एक विशेषण, परिबद्ध रैखिक संकारक है।
राइट-इनवर्स: ट्रेस एक्सटेंशन ऑपरेटर
ट्रेस ऑपरेटर कई कार्यों के बाद से इंजेक्शन नहीं है एक ही निशान हो सकता है (या समकक्ष, ). हालांकि ट्रेस ऑपरेटर के पास एक अच्छी तरह से व्यवहार करने वाला राइट-इनवर्स है, जो सीमा पर परिभाषित फ़ंक्शन को पूरे डोमेन तक बढ़ाता है। विशेष तौर पर एक परिबद्ध, रैखिक ट्रेस एक्सटेंशन ऑपरेटर उपस्थित है[3]
- ,
पिछले अनुभाग से ट्रेस ऑपरेटर की छवि के सोबोलेव-स्लोबोडेकिज लक्षण वर्णन का प्रयोग करते हुए, जैसे कि
- सभी के लिए
और, निरंतरता से, उपस्थित है साथ
- .
उल्लेखनीय मात्र अस्तित्व नहीं है बल्कि सही व्युत्क्रम की रैखिकता और निरंतरता है। इस ट्रेस एक्सटेंशन ऑपरेटर को सोबोलेव स्पेस # एक्सटेंशन ऑपरेटर | होल-स्पेस एक्सटेंशन ऑपरेटर के साथ भ्रमित नहीं होना चाहिए जो सोबोलेव रिक्त स्थान के सिद्धांत में मौलिक भूमिका निभाते हैं।
अन्य रिक्त स्थान का विस्तार
उच्च डेरिवेटिव
पिछले कई परिणामों को बढ़ाया जा सकता है उच्च भिन्नता के साथ यदि डोमेन पर्याप्त रूप से नियमित है। होने देना बाहरी इकाई सामान्य क्षेत्र को निरूपित करें . तब से केवल सामान्य व्युत्पन्न स्पर्शरेखा दिशा में विभेदीकरण गुणों को सांकेतिक शब्दों में बदल सकते हैं ट्रेस थ्योरी के लिए अतिरिक्त रुचि है . इसी तरह के तर्क उच्च-क्रम के डेरिवेटिव के लिए लागू होते हैं .
होने देना तथा के साथ एक परिबद्ध डोमेन हो -सीमा। फिर[3]वहाँ एक विशेषण, परिबद्ध रैखिक उच्च-क्रम ट्रेस ऑपरेटर उपस्थित है
सोबोलेव-स्लोबोडेकिज रिक्त स्थान के साथ गैर-पूर्णांक के लिए पर परिभाषित प्लानर मामले में परिवर्तन के माध्यम से के लिये , जिसकी परिभाषा सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेसेस|सोबोलेव-स्लोबोडेकिज स्पेसेस पर लेख में विस्तार से दी गई है। परिचालक इस अर्थ में पारम्परिक सामान्य निशान का विस्तार करता है
- सभी के लिए
इसके अलावा, का एक परिबद्ध, रैखिक दाएँ-प्रतिलोम उपस्थित है , एक उच्च-क्रम ट्रेस एक्सटेंशन ऑपरेटर[3]
- .
अंत में, रिक्त स्थान , का पूरा होना में -नॉर्म, के कर्नेल के रूप में वर्णित किया जा सकता है ,[3]अर्थात।
- .
कम नियमित स्थान
एल में कोई निशान नहींपी </सुप>
निशान की अवधारणा का कोई समझदार विस्तार नहीं है के लिये चूँकि क्लासिकल ट्रेस का विस्तार करने वाला कोई भी परिबद्ध रेखीय संचालिका परीक्षण कार्यों के स्थान पर शून्य होना चाहिए , जो का सघन उपसमुच्चय है , जिसका अर्थ है कि ऐसा ऑपरेटर हर जगह शून्य होगा।
सामान्यीकृत सामान्य ट्रेस
होने देना एक वेक्टर क्षेत्र के वितरण विचलन को निरूपित करें . के लिये और बाउंडेड लिपशिट्ज डोमेन परिभाषित करना
जो आदर्श के साथ एक बनच स्थान है
- .
होने देना बाहरी इकाई सामान्य क्षेत्र को निरूपित करें . फिर[4]वहाँ एक परिबद्ध रैखिक संचालिका उपस्थित है
- ,
कहाँ पे का संयुग्मी घातांक है तथा बनच स्थान के लिए निरंतर दोहरे स्थान को दर्शाता है , ऐसा है कि सामान्य निशान बढ़ाता है के लिये इस अर्थ में कि
- .
सामान्य ट्रेस ऑपरेटर का मान के लिये सदिश क्षेत्र में विचलन प्रमेय के अनुप्रयोग द्वारा परिभाषित किया गया है कहाँ पे ऊपर से ट्रेस एक्सटेंशन ऑपरेटर है।
आवेदन पत्र। कोई कमजोर उपाय प्रति एक सीमित लिप्सचिट्ज़ डोमेन में के अर्थ में एक सामान्य व्युत्पन्न है . यह इस प्रकार है जबसे तथा . यह परिणाम सामान्य रूप से लिप्सचिट्ज़ डोमेन के बाद से उल्लेखनीय है , ऐसा है कि ट्रेस ऑपरेटर के डोमेन में नहीं हो सकता है .
आवेदन
ऊपर प्रस्तुत प्रमेय सीमा मान समस्या की बारीकी से जांच की अनुमति देते हैं
लिप्सचिट्ज़ डोमेन पर प्रेरणा से। केवल हिल्बर्ट स्पेस केस के बाद से यहां जांच की जाती है, नोटेशन निरूपित करने के लिए प्रयोग किया जाता है आदि। जैसा कि प्रेरणा में कहा गया है, एक कमजोर समाधान इस समीकरण को संतुष्ट होना चाहिए तथा
- सभी के लिए ,
जहां दाहिने हाथ की ओर व्याख्या की जानी चाहिए मूल्य के साथ एक द्वैत उत्पाद के रूप में .
कमजोर समाधानों का अस्तित्व और विशिष्टता
की सीमा का लक्षण वर्णन तात्पर्य है कि के लिए नियमितता धारण करना आवश्यक है। यह नियमितता एक दुर्बल विलयन के अस्तित्व के लिए भी पर्याप्त है, जिसे निम्न प्रकार से देखा जा सकता है। ट्रेस एक्सटेंशन प्रमेय द्वारा उपस्थित है ऐसा है कि . परिभाषित द्वारा हमारे पास वह है और इस तरह के लक्षण वर्णन से ट्रेस शून्य के स्थान के रूप में। कार्यक्रम फिर अभिन्न समीकरण को संतुष्ट करता है
- सभी के लिए .
इस प्रकार विषम सीमा मूल्यों के साथ समस्या सजातीय सीमा मूल्यों के साथ एक समस्या के लिए कम किया जा सकता है , एक तकनीक जिसे किसी रैखिक अंतर समीकरण पर लागू किया जा सकता है। रिज प्रतिनिधित्व प्रमेय के अनुसार एक अनूठा समाधान उपस्थित है इस समस्या के लिए। अपघटन की विशिष्टता से , यह एक अद्वितीय कमजोर समाधान के अस्तित्व के बराबर है विषम सीमा मान समस्या के लिए।
डेटा पर निरंतर निर्भरता
की निर्भरता की जांच करना बाकी है पर तथा . होने देना से स्वतंत्र स्थिरांक निरूपित करें तथा . की निरंतर निर्भरता से इसके अभिन्न समीकरण के दाईं ओर, वहाँ है
और इस प्रकार, उसका प्रयोग करना तथा ट्रेस एक्सटेंशन ऑपरेटर की निरंतरता से, यह इस प्रकार है
और समाधान मानचित्र
इसलिए निरंतर है।
यह भी देखें
इस पेज में लापता आंतरिक लिंक की सूची
- अंक शास्त्र
- आंशिक विभेदक समीकरण
- फलन प्रतिबंध
- डोमेन (गणितीय विश्लेषण)
- घना सेट
- लिपशिट्ज निरंतरता
- परीक्षण फलन
- संयुग्मी प्रतिपादक
- निरंतर दोहरी जगह
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Gagliardo, Emilio (1957). "Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili". Rendiconti del Seminario Matematico della Università di Padova. 27: 284–305.
- ↑ Evans, Lawrence (1998). Partial differential equations. Providence, R.I.: American Mathematical Society. pp. 257–261. ISBN 0-8218-0772-2.
- ↑ 3.0 3.1 3.2 3.3 Nečas, Jindřich (1967). Les méthodes directes en théorie des équations elliptiques. Paris: Masson et Cie, Éditeurs, Prague: Academia, Éditeurs. pp. 90–104.
- ↑ Sohr, Hermann (2001). The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts Basler Lehrbücher. Basel: Birkhäuser. pp. 50–51. doi:10.1007/978-3-0348-8255-2. ISBN 978-3-0348-9493-7.
- Leoni, Giovanni (2017). A First Course in Sobolev Spaces: Second Edition. Graduate Studies in Mathematics. 181. American Mathematical Society. pp. 734. ISBN 978-1-4704-2921-8