समय अवकलन: Difference between revisions
Line 66: | Line 66: | ||
== विभेदक ज्यामिति में == | == विभेदक ज्यामिति में == | ||
विभेदक ज्यामिति में, मात्राएँ अक्सर स्थानीय सहसंयोजक | विभेदक ज्यामिति में, मात्राएँ अक्सर स्थानीय सहसंयोजक आधार <math>\mathbf{e}_i </math> के संबंध में व्यक्त की जाती हैं, जहां i आयामों की संख्या से अधिक होती है। एक सदिश <math>\mathbf{U} </math> के घटकों ने इस तरह व्यक्त किया कि एक प्रतिपरिवर्ती [[टेन्सर क्षेत्र|प्रदिश क्षेत्र]] के रूप में रूपांतरित होता है, जैसा कि [[आइंस्टीन योग सम्मेलन|आइंस्टीन सारांश सम्मेलन]] का आह्वान करते हुए, अभिव्यक्ति <math>\mathbf{U}=U^i\mathbf{e}_i </math> में दिखाया गया है। यदि हम एक प्रक्षेपवक्र के साथ इन घटकों के समय के अवकलज की गणना करना चाहते हैं, ताकि हमारे पास <math>\mathbf{U}(t)=U^i(t)\mathbf{e}_i(t) </math> हो, तो हम एक नए प्रचालक ,अपरिवर्तनीय अवकलज <math>\delta </math> को परिभाषित कर सकते हैं , जो कि प्रतिपरिवर्ती प्रदिश की पुनरावृत्ति जारी रखेगा,<ref>{{cite web|last1=Grinfeld|first1=Pavel|title=टेंसर कैलकुलस 6d: वेग, त्वरण, झटका और नया δ/δt-व्युत्पन्न|website=[[YouTube]] |url=https://www.youtube.com/watch?v=yx0oql3LIiU&list=PLlXfTHzgMRULkodlIEqfgTS-H1AY_bNtq&index=19 |archive-url=https://ghostarchive.org/varchive/youtube/20211213/yx0oql3LIiU |archive-date=2021-12-13 |url-status=live}}{{cbignore}}</ref> | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\frac{\delta U^i}{\delta t} | \frac{\delta U^i}{\delta t} | ||
Line 73: | Line 73: | ||
जहां <math>V^j=\frac{d x^j}{d t} </math> (<math>x^j</math> के साथ jवाँ निर्देशांक है) | जहां <math>V^j=\frac{d x^j}{d t} </math> (<math>x^j</math> के साथ jवाँ निर्देशांक है) | ||
स्थानीय सहसंयोजक आधार में वेग के घटकों को | स्थानीय सहसंयोजक आधार में वेग के घटकों को अधिकृत करता है, और <math> \Gamma^i_{jk} </math> समन्वय प्रणाली के लिए [[क्रिस्टोफेल प्रतीक]] हैं। ध्यान दें कि संकेतन में t पर स्पष्ट निर्भरता को दबा दिया गया है। तब हम लिख सकते हैं, | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 93: | Line 93: | ||
== अर्थशास्त्र में प्रयोग == | == अर्थशास्त्र में प्रयोग == | ||
[[अर्थशास्त्र]] में, विभिन्न आर्थिक चरों के विकास के कई सैद्धांतिक प्रतिरूप [[निरंतर समय|सतत समय]] में निर्मित होते हैं और इसलिए समय अवकलजों को नियोजित करते हैं।<ref>See for example {{cite book |last=Romer |first=David |title=Advanced Macroeconomics |publisher=McGraw-Hill |year=1996 |isbn=0-07-053667-8 }}</ref>{{rp|at=ch. 1-3}} एक स्थिति में एक [[स्टॉक और प्रवाह|स्टॉक चर]] और एक [[प्रवाह चर]], तथा उसका समय अवकलज | [[अर्थशास्त्र]] में, विभिन्न आर्थिक चरों के विकास के कई सैद्धांतिक प्रतिरूप [[निरंतर समय|सतत समय]] में निर्मित होते हैं और इसलिए समय अवकलजों को नियोजित करते हैं।<ref>See for example {{cite book |last=Romer |first=David |title=Advanced Macroeconomics |publisher=McGraw-Hill |year=1996 |isbn=0-07-053667-8 }}</ref>{{rp|at=ch. 1-3}} एक स्थिति में एक [[स्टॉक और प्रवाह|स्टॉक चर]] और एक [[प्रवाह चर]], तथा उसका समय अवकलज सम्मिलित होता है। जिसमे निम्न उदाहरणों सम्मिलित है, | ||
* शुद्ध [[निश्चित निवेश]] का प्रवाह [[पूंजीगत स्टॉक]] का समय अवकलज है। | * शुद्ध [[निश्चित निवेश]] का प्रवाह [[पूंजीगत स्टॉक]] का समय अवकलज है। | ||
* [[माल|विवरण]] [[निवेश]] का प्रवाह [[विवरण]] के स्टॉक का समय अवकलज है। | * [[माल|विवरण]] [[निवेश]] का प्रवाह [[विवरण]] के स्टॉक का समय अवकलज है। | ||
Line 99: | Line 99: | ||
कभी-कभी एक प्रवाह चर का समय अवकलज एक प्रतिरूप में प्रकट हो सकता है, | कभी-कभी एक प्रवाह चर का समय अवकलज एक प्रतिरूप में प्रकट हो सकता है, | ||
* [[आउटपुट (अर्थशास्त्र)|निर्गत | * [[आउटपुट (अर्थशास्त्र)|निर्गत]] की विकास दर निर्गत के प्रवाह का समय अवकलज है जो निर्गत द्वारा ही विभाजित किया जाता है | ||
* [[श्रम बल]] की वृद्धि दर श्रम बल द्वारा विभाजित श्रम बल का समय अवकलज है। | * [[श्रम बल]] की वृद्धि दर श्रम बल द्वारा विभाजित श्रम बल का समय अवकलज है। | ||
और कभी-कभी एक चर का समय अवकलज दिखाई देता है, जो ऊपर के उदाहरणों के विपरीत होता है, और मुद्रा की इकाइयों में नहीं मापा | और कभी-कभी एक चर का समय अवकलज दिखाई देता है, जो ऊपर के उदाहरणों के विपरीत होता है, और मुद्रा की इकाइयों में नहीं मापा जा सकता है, | ||
* एक प्रमुख [[ब्याज दर]] का समय अवकलज प्रकट हो सकता है। | * एक प्रमुख [[ब्याज दर]] का समय अवकलज प्रकट हो सकता है। | ||
* मुद्रास्फीति की दर [[मूल्य स्तर]] की वृद्धि दर | * मूल्य स्तर से विभाजित मूल्य स्तर का समय अवकलज ,अर्थात- मुद्रास्फीति की दर [[मूल्य स्तर]] की वृद्धि दर है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 08:49, 16 December 2022
एक समय अवकलज समय के संबंध में एक फलन का अवकलज है, जिसकी आमतौर पर फलन के मान के परिवर्तन की दर के रूप में व्याख्या कि जाती है।[1] चर निरूपण समय को आमतौर पर के रूप में लिखा जाता है।
संकेतन
समय अवकलज को निरूपित करने के लिए विभिन्न प्रकार के संकेतन का उपयोग किया जाता है। सामान्य (लीबनिज संकेतन) संकेतन के अतिरिक्त,
विशेष रूप से भौतिकी में उपयोग किया जाने वाला एक बहुत ही सामान्य छोटी-भुजा संकेतन 'शेष-बिंदु' है। अर्थात।
(इसे न्यूटन का संकेतन कहते हैं)
उच्च समय अवकलज का भी उपयोग किया जाता है, समय के संबंध में दूसरा अवकलज
के रूप में लिखा जाता है, जिसमें की संगत संक्षिप्त लिपि होती है।
इसे एक सामान्यीकरण के रूप में, सदिश का समय अवकलज,कहते हैं,
इस समीकरण को सदिश के रूप में परिभाषित किया गया है, जिसके घटक मूल सदिश के घटकों के अवकलज हैं। जोकि है,
भौतिकी में प्रयोग
भौतिक विज्ञान में समय अवकलज एक महत्वपूर्ण अवधारणा है। उदाहरण के लिए, एक बदलती स्थिति के लिए , इसका समय अवकलज इसका वेग है, और समय के संबंध में इसका दूसरा अवकलज, इसका त्वरण है। यहां तक कि कभी-कभी उच्च अवकलज स्थिति का भी उपयोग किया जाता है, और समय के संबंध में का तीसरे अवकलज को जर्क के रूप में जाना जाता है। जिसके लिए गति रेखांकन और अवकलज देखें।
भौतिकी में बड़ी संख्या में मौलिक समीकरणों में मात्राओं का पहली या दूसरी बार अवकलज सम्मिलित होता है। विज्ञान में कई अन्य मौलिक मात्राएँ एक दूसरे की समय अवकलज हैं,
और इसी तरह,
वेग या विस्थापन जैसी सामान्य घटनाए, भौतिकी में एक सामान्य घटनाओ की तरह एक सदिश का समय अवकलज है। इस तरह के अवकलज से निपटने में परिमाण और अभिविन्यास दोनों समय पर निर्भर हो सकते हैं।
उदाहरण, वृत्तीय गति
उदाहरण के लिए, एक कण को एक वृत्ताकार पथ में गतिमान माना जाता है। इसकी स्थिति विस्थापन सदिश द्वारा दी गई है , जो कोण, θ, और त्रिज्यीय दूरी, r से संबंधित है, जैसा कि चित्र में परिभाषित किया गया है,
इस उदाहरण के लिए, हम मानते हैं कि θ = t । इसलिए, किसी समय t पर विस्थापन (स्थिति)
द्वारा दिया जाता है।
यह रूप दर्शाता है कि r(t) द्वारा वर्णित गति त्रिज्या r के एक वृत्त में है क्योंकि r(t) का परिमाण नीचे दिए गए समीकरण द्वारा दिया गया है
जहाँ पर त्रिकोणमितीय पहचान sin2(t) + cos2(t) = 1 का उपयोग करके दिया जाता है, और जहाँ (बिन्दु) सामान्य यूक्लिडियन बिन्दु उत्पाद है।
विस्थापन के इस रूप से अब वेग को ज्ञात किया जा सकता है। विस्थापन सदिश का समय अवकलज वेग सदिश है। सामान्य तौर पर, एक सदिश का अवकलज एक सदिश होता है जो घटकों से बना होता है, जिनमें से प्रत्येक मूल सदिश के संबंधित घटक का अवकलज होता है। इस प्रकार, इस स्थिति में वेग सदिश है,
इस प्रकार स्थिति का परिमाण (अर्थात् पथ की त्रिज्या) स्थिर होने पर भी कण का वेग अशून्य है। वेग को विस्थापन के लंबवत निर्देशित किया जाता है, जैसा कि बिन्दु उत्पाद का उपयोग करके स्थापित किया जा सकता है,
- ।
त्वरण तो वेग का समय-अवकलज है,
त्वरण को अंदर की ओर, घूर्णन के अक्ष की ओर निर्देशित किया जाता है । यह स्थिति सदिश के विपरीत और वेग सदिश के लंबवत होती है। इस अंतर्मुखी त्वरण को अभिकेन्द्री बल कहते हैं।
विभेदक ज्यामिति में
विभेदक ज्यामिति में, मात्राएँ अक्सर स्थानीय सहसंयोजक आधार के संबंध में व्यक्त की जाती हैं, जहां i आयामों की संख्या से अधिक होती है। एक सदिश के घटकों ने इस तरह व्यक्त किया कि एक प्रतिपरिवर्ती प्रदिश क्षेत्र के रूप में रूपांतरित होता है, जैसा कि आइंस्टीन सारांश सम्मेलन का आह्वान करते हुए, अभिव्यक्ति में दिखाया गया है। यदि हम एक प्रक्षेपवक्र के साथ इन घटकों के समय के अवकलज की गणना करना चाहते हैं, ताकि हमारे पास हो, तो हम एक नए प्रचालक ,अपरिवर्तनीय अवकलज को परिभाषित कर सकते हैं , जो कि प्रतिपरिवर्ती प्रदिश की पुनरावृत्ति जारी रखेगा,[2]
जहां ( के साथ jवाँ निर्देशांक है)
स्थानीय सहसंयोजक आधार में वेग के घटकों को अधिकृत करता है, और समन्वय प्रणाली के लिए क्रिस्टोफेल प्रतीक हैं। ध्यान दें कि संकेतन में t पर स्पष्ट निर्भरता को दबा दिया गया है। तब हम लिख सकते हैं,
साथ ही,
सहपरिवर्ती अवकलज के संदर्भ में, , अपने पास है,
अर्थशास्त्र में प्रयोग
अर्थशास्त्र में, विभिन्न आर्थिक चरों के विकास के कई सैद्धांतिक प्रतिरूप सतत समय में निर्मित होते हैं और इसलिए समय अवकलजों को नियोजित करते हैं।[3]: ch. 1-3 एक स्थिति में एक स्टॉक चर और एक प्रवाह चर, तथा उसका समय अवकलज सम्मिलित होता है। जिसमे निम्न उदाहरणों सम्मिलित है,
- शुद्ध निश्चित निवेश का प्रवाह पूंजीगत स्टॉक का समय अवकलज है।
- विवरण निवेश का प्रवाह विवरण के स्टॉक का समय अवकलज है।
- पैसे की आपूर्ति की वृद्धि दर पैसे की आपूर्ति से विभाजित पैसे की आपूर्ति का समय अवकलज है।
कभी-कभी एक प्रवाह चर का समय अवकलज एक प्रतिरूप में प्रकट हो सकता है,
- निर्गत की विकास दर निर्गत के प्रवाह का समय अवकलज है जो निर्गत द्वारा ही विभाजित किया जाता है
- श्रम बल की वृद्धि दर श्रम बल द्वारा विभाजित श्रम बल का समय अवकलज है।
और कभी-कभी एक चर का समय अवकलज दिखाई देता है, जो ऊपर के उदाहरणों के विपरीत होता है, और मुद्रा की इकाइयों में नहीं मापा जा सकता है,
- एक प्रमुख ब्याज दर का समय अवकलज प्रकट हो सकता है।
- मूल्य स्तर से विभाजित मूल्य स्तर का समय अवकलज ,अर्थात- मुद्रास्फीति की दर मूल्य स्तर की वृद्धि दर है।
यह भी देखें
संदर्भ
- ↑ Chiang, Alpha C., Fundamental Methods of Mathematical Economics, McGraw-Hill, third edition, 1984, ch. 14, 15, 18.
- ↑ Grinfeld, Pavel. "टेंसर कैलकुलस 6d: वेग, त्वरण, झटका और नया δ/δt-व्युत्पन्न". YouTube. Archived from the original on 2021-12-13.
- ↑ See for example Romer, David (1996). Advanced Macroeconomics. McGraw-Hill. ISBN 0-07-053667-8.