सांख्यिकीय यांत्रिकी: Difference between revisions
No edit summary |
|||
Line 11: | Line 11: | ||
*[[योशिय्याह विलार्ड गिब्स]], जिन्होंने 1884 में क्षेत्र का नाम परिणत किया | *[[योशिय्याह विलार्ड गिब्स]], जिन्होंने 1884 में क्षेत्र का नाम परिणत किया | ||
जबकि उत्कृष्ट ऊष्मप्रवैगिकी मुख्य रूप से ऊष्मप्रवैगिकी | जबकि उत्कृष्ट ऊष्मप्रवैगिकी मुख्य रूप से ऊष्मप्रवैगिकी समतुल्यता से संबंधित है, सांख्यिकीय यांत्रिकी को [[गैर-संतुलन सांख्यिकीय यांत्रिकी|गैर-समतुल्यता सांख्यिकीय यांत्रिकी]] में सूक्ष्म रूप से [[अपरिवर्तनीय प्रक्रिया]]ओं की गति के विषयों पर लागू किया गया है जो असमतुल्यता से प्रेरित हैं। ऐसी प्रक्रियाओं के उदाहरणों में [[रासायनिक प्रतिक्रिया]]एं और कणों और ऊष्मा का प्रवाह सम्मिलित है। अस्थिरता-अपव्यय प्रमेय गैर-समतुल्यता सांख्यिकीय यांत्रिकी को लागू करने से प्राप्त मौलिक ज्ञान है जो कई कणों की प्रणाली में स्थिर अवस्था प्रवाह की सरलतम गैर-समतुल्यता स्थिति का अध्ययन करता है। | ||
== सिद्धांत: यांत्रिकी और समुच्चय == | == सिद्धांत: यांत्रिकी और समुच्चय == | ||
Line 19: | Line 19: | ||
*एक निश्चित समय पर यांत्रिक प्रणाली की पूर्ण स्थिति, गणितीय रूप से एक [[चरण स्थान|चरण बिन्दु]] (उत्कृष्ट यांत्रिकी) या एक शुद्ध [[क्वांटम राज्य वेक्टर|क्वांटम अवस्था वेक्टर]] (क्वांटम यांत्रिकी) के रूप में कूटबद्ध है। | *एक निश्चित समय पर यांत्रिक प्रणाली की पूर्ण स्थिति, गणितीय रूप से एक [[चरण स्थान|चरण बिन्दु]] (उत्कृष्ट यांत्रिकी) या एक शुद्ध [[क्वांटम राज्य वेक्टर|क्वांटम अवस्था वेक्टर]] (क्वांटम यांत्रिकी) के रूप में कूटबद्ध है। | ||
* गति का एक समीकरण जो अवस्था को समय में आगे बढ़ाता है: हैमिल्टन के समीकरण या श्रोडिंगर समीकरण (क्वांटम यांत्रिकी)। | * गति का एक समीकरण जो अवस्था को समय में आगे बढ़ाता है: हैमिल्टन के समीकरण या श्रोडिंगर समीकरण (क्वांटम यांत्रिकी)। | ||
इन दो अवधारणाओं का उपयोग करके, किसी अन्य समय, अतीत या भविष्य में अवस्था की गणना सैद्धांतिक रूप से की जा सकती है। हालांकि, इन सिद्धांतों और दैनिक जीवन के अनुभवों के बीच एक संबंध नहीं है, क्योंकि हमें यह आवश्यक नहीं लगता (न ही सैद्धांतिक रूप से संभव है) सूक्ष्म स्तर पर | इन दो अवधारणाओं का उपयोग करके, किसी अन्य समय, अतीत या भविष्य में अवस्था की गणना सैद्धांतिक रूप से की जा सकती है। हालांकि, इन सिद्धांतों और दैनिक जीवन के अनुभवों के बीच एक संबंध नहीं है, क्योंकि हमें यह आवश्यक नहीं लगता (न ही सैद्धांतिक रूप से संभव है) सूक्ष्म स्तर पर समुचित रूप से जानने के लिए कि मानव स्तर पर प्रक्रियाओं को पूरा करते समय प्रत्येक अणु की एक साथ स्थिति और वेग ( उदाहरण के लिए, रासायनिक प्रतिक्रिया करते समय)। सांख्यिकीय यांत्रिकी यांत्रिकी के नियमों और अपूर्ण ज्ञान के व्यावहारिक अनुभव के बीच इस वियोजन को पूर्ण करती है, इस बारे में कुछ अनिश्चितता जोड़कर कि प्रणाली किस स्थिति में है। | ||
जबकि सामान्य यांत्रिकी केवल एक अवस्था के गतिविधि पर विचार करता है, सांख्यिकीय यांत्रिकी सांख्यिकीय समेकन (गणितीय भौतिकी) का परिचय देता है, जो विभिन्न अवस्थाों में प्रणाली की आभासी, स्वतंत्र प्रतियों का एक बड़ा संग्रह है। सांख्यिकीय समुच्चय प्रणाली के सभी संभावित अवस्थाों पर एक प्रायिकता विभाजन है। उत्कृष्ट सांख्यिकीय यांत्रिकी में, समुच्चय चरण बिंदुओं पर एक प्रायिकता विभाजन है (साधारण यांत्रिकी में एकल चरण बिंदु के विपरीत), सामान्यतः [[विहित निर्देशांक]] अक्षों के साथ एक चरण बिन्दु में विभाजन के रूप में दर्शाया जाता है। क्वांटम सांख्यिकीय यांत्रिकी में, समुच्चय शुद्ध अवस्थाों पर प्रायिकता विभाजन है,{{NoteTag|The probabilities in quantum statistical mechanics should not be confused with [[quantum superposition]]. While a quantum ensemble can contain states with quantum superpositions, a single quantum state cannot be used to represent an ensemble.}} और [[घनत्व मैट्रिक्स]] के रूप में संक्षिप्त रूप से संक्षेपित किया जा सकता है। | जबकि सामान्य यांत्रिकी केवल एक अवस्था के गतिविधि पर विचार करता है, सांख्यिकीय यांत्रिकी सांख्यिकीय समेकन (गणितीय भौतिकी) का परिचय देता है, जो विभिन्न अवस्थाों में प्रणाली की आभासी, स्वतंत्र प्रतियों का एक बड़ा संग्रह है। सांख्यिकीय समुच्चय प्रणाली के सभी संभावित अवस्थाों पर एक प्रायिकता विभाजन है। उत्कृष्ट सांख्यिकीय यांत्रिकी में, समुच्चय चरण बिंदुओं पर एक प्रायिकता विभाजन है (साधारण यांत्रिकी में एकल चरण बिंदु के विपरीत), सामान्यतः [[विहित निर्देशांक]] अक्षों के साथ एक चरण बिन्दु में विभाजन के रूप में दर्शाया जाता है। क्वांटम सांख्यिकीय यांत्रिकी में, समुच्चय शुद्ध अवस्थाों पर प्रायिकता विभाजन है,{{NoteTag|The probabilities in quantum statistical mechanics should not be confused with [[quantum superposition]]. While a quantum ensemble can contain states with quantum superpositions, a single quantum state cannot be used to represent an ensemble.}} और [[घनत्व मैट्रिक्स]] के रूप में संक्षिप्त रूप से संक्षेपित किया जा सकता है। | ||
Line 32: | Line 32: | ||
हालांकि प्रायिकता की व्याख्या की जाती है, समेकन में प्रत्येक अवस्था गति के समीकरण के अनुसार समय के साथ विकसित होता है। इस प्रकार, समेकन स्वयं (अवस्थाों पर प्रायिकताविभाजन) भी विकसित होता है, क्योंकि समेकन में आभासी प्रणाली निरन्तर एक अवस्था छोड़ देती है और दूसरे में प्रवेश करता है। समुच्चय विकास लिउविले के प्रमेय ( उत्कृष्ट यांत्रिकी) या [[वॉन न्यूमैन समीकरण]] (क्वांटम यांत्रिकी) द्वारा दिया गया है। इन समीकरणों को केवल गति के यांत्रिक समीकरण के अनुप्रयोग द्वारा अलग-अलग प्रत्येक आभासी प्रणाली में सम्मिलित किया जाता है, जिसमें आभासी प्रणाली की प्रायिकता समय के साथ संरक्षित होती है क्योंकि यह एक अवस्था से दूसरे अवस्था में विकसित होती है। | हालांकि प्रायिकता की व्याख्या की जाती है, समेकन में प्रत्येक अवस्था गति के समीकरण के अनुसार समय के साथ विकसित होता है। इस प्रकार, समेकन स्वयं (अवस्थाों पर प्रायिकताविभाजन) भी विकसित होता है, क्योंकि समेकन में आभासी प्रणाली निरन्तर एक अवस्था छोड़ देती है और दूसरे में प्रवेश करता है। समुच्चय विकास लिउविले के प्रमेय ( उत्कृष्ट यांत्रिकी) या [[वॉन न्यूमैन समीकरण]] (क्वांटम यांत्रिकी) द्वारा दिया गया है। इन समीकरणों को केवल गति के यांत्रिक समीकरण के अनुप्रयोग द्वारा अलग-अलग प्रत्येक आभासी प्रणाली में सम्मिलित किया जाता है, जिसमें आभासी प्रणाली की प्रायिकता समय के साथ संरक्षित होती है क्योंकि यह एक अवस्था से दूसरे अवस्था में विकसित होती है। | ||
समुच्चय का एक विशेष वर्ग वे समूह हैं जो समय के साथ विकसित नहीं होते हैं। इन समूहों को | समुच्चय का एक विशेष वर्ग वे समूह हैं जो समय के साथ विकसित नहीं होते हैं। इन समूहों को समतुल्यता समुच्चय के रूप में जाना जाता है और उनकी स्थिति को सांख्यिकीय समतुल्यता के रूप में जाना जाता है। सांख्यिकीय समतुल्यता तब होता है, जब समुच्चय में प्रत्येक अवस्था के लिए, समुच्चय में उसके भविष्य और पूर्व की सभी अवस्था सम्मिलित होती हैं, जिसमें उस अवस्था में होने की प्रायिकता के बराबर प्रायिकताएं होती हैं।{{NoteTag|Statistical equilibrium should not be confused with ''[[mechanical equilibrium]]''. The latter occurs when a mechanical system has completely ceased to evolve even on a microscopic scale, due to being in a state with a perfect balancing of forces. Statistical equilibrium generally involves states that are very far from mechanical equilibrium.}} पृथक प्रणालियों के समतुल्यता समेकन का अध्ययन सांख्यिकीय ऊष्मप्रवैगिकी का केंद्र है। गैर-समतुल्यता सांख्यिकीय यांत्रिकी समेकन के अधिक सामान्य स्थितियो को संबोधित करती है जो समय के साथ बदलती है, और/या गैर-पृथक प्रणालियों के समेकन। | ||
== सांख्यिकीय ऊष्मप्रवैगिकी == | == सांख्यिकीय ऊष्मप्रवैगिकी == | ||
सांख्यिकीय ऊष्मप्रवैगिकी (जिसे | सांख्यिकीय ऊष्मप्रवैगिकी (जिसे समतुल्यता सांख्यिकीय यांत्रिकी के रूप में भी जाना जाता है) का प्राथमिक लक्ष्य सामग्री के उत्कृष्ट ऊष्मप्रवैगिकी को उनके घटक कणों के गुणों और उनके बीच की परस्पर क्रिया के संदर्भ में प्राप्त करना है। दूसरे शब्दों में, सांख्यिकीय ऊष्मप्रवैगिकी थर्मोडायनामिक समतुल्यता में सामग्री के स्थूल गुणों और सामग्री के अंदर होने वाले सूक्ष्म गतिविधि और गति के बीच एक संबंध प्रदान करती है। | ||
जबकि सांख्यिकीय यांत्रिकी में गतिशीलता सम्मिलित है, यहाँ ध्यान सांख्यिकीय | जबकि सांख्यिकीय यांत्रिकी में गतिशीलता सम्मिलित है, यहाँ ध्यान सांख्यिकीय समतुल्यता (स्थिर अवस्था) पर केंद्रित है। सांख्यिकीय समतुल्यता का तात्पर्य यह नहीं है कि कणों ने गति करना बंद कर दिया है ([[यांत्रिक संतुलन|यांत्रिक समतुल्यता]]), बल्कि, केवल यह कि समुच्चय विकसित नहीं हो रहा है। | ||
=== मौलिक अभिधारणा === | === मौलिक अभिधारणा === | ||
एक पृथक प्रणाली के साथ सांख्यिकीय | एक पृथक प्रणाली के साथ सांख्यिकीय समतुल्यता के लिए एक [[पर्याप्त स्थिति]] (लेकिन आवश्यक नहीं) स्थिति यह है कि प्रायिकता विभाजन केवल संरक्षित गुणों (कुल ऊर्जा, कुल कण संख्या, आदि) का एक कार्य है।<ref name="gibbs" /> ऐसे कई अलग-अलग समतुल्यता समुच्चय हैं जिन पर विचार किया जा सकता है, और उनमें से केवल कुछ थर्मोडायनामिक्स के अनुरूप हैं।<ref name="gibbs" /> यह प्रेरित करने के लिए अतिरिक्त अवधारणाएँ आवश्यक हैं कि किसी दिए गए प्रणाली के समुच्चय का एक या दूसरा रूप क्यों होना चाहिए। | ||
कई पाठ्यपुस्तकों में पाया जाने वाला एक सामान्य तरीका यह है कि | कई पाठ्यपुस्तकों में पाया जाने वाला एक सामान्य तरीका यह है कि समरूप को प्राथमिकता प्रायिकता अभिधारणा के रूप में लिया जाए।<ref name="tolman"/> यह अभिधारणा बताती है कि | ||
: | : समुचित ज्ञात ऊर्जा और समुचित ज्ञात संरचना के साथ एक पृथक प्रणाली के लिए, प्रणाली को उस ज्ञान के अनुरूप किसी भी [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)|सूक्ष्मवस्था (सांख्यिकीय यांत्रिकी)]] में समान प्रायिकता के साथ पाया जा सकता है। | ||
इसलिए समान प्राथमिकता प्रायिकता अभिधारणा नीचे वर्णित सूक्ष्म-विहित समेकन के लिए एक प्रेरणा प्रदान करती है। समान प्राथमिकता प्रायिकता अभिधारणा के पक्ष में विभिन्न तर्क हैं: | इसलिए समान प्राथमिकता प्रायिकता अभिधारणा नीचे वर्णित सूक्ष्म-विहित समेकन के लिए एक प्रेरणा प्रदान करती है। समान प्राथमिकता प्रायिकता अभिधारणा के पक्ष में विभिन्न तर्क हैं: | ||
* [[एर्गोडिक परिकल्पना]]: एक एर्गोडिक प्रणाली वह है जो समय के साथ सभी | * [[एर्गोडिक परिकल्पना]]: एक एर्गोडिक प्रणाली वह है जो समय के साथ सभी अभिगम्य अवस्थाओं का पता लगाने के लिए विकसित होती है: वे सभी जिनमें समान ऊर्जा और संरचना होती है। एक एर्गोडिक प्रणाली में, [[माइक्रोकैनोनिकल पहनावा|सूक्ष्म-विहित समुच्चय]] निश्चित ऊर्जा के साथ एकमात्र संभव समतुल्यता है। इस दृष्टिकोण की सीमित प्रयोज्यता है, क्योंकि अधिकांश प्रणालियाँ एर्गोडिक नहीं हैं। | ||
* [[उदासीनता का सिद्धांत]]: किसी और जानकारी के अभाव में, हम प्रत्येक संगत स्थिति को केवल समान प्रायिकताएँ प्रदान कर सकते हैं। | * [[उदासीनता का सिद्धांत]]: किसी और जानकारी के अभाव में, हम प्रत्येक संगत स्थिति को केवल समान प्रायिकताएँ प्रदान कर सकते हैं। | ||
* [[अधिकतम एन्ट्रापी ऊष्मप्रवैगिकी]]: उदासीनता के सिद्धांत का एक अधिक विस्तृत | * [[अधिकतम एन्ट्रापी ऊष्मप्रवैगिकी]]: उदासीनता के सिद्धांत का एक अधिक विस्तृत विवरण बताता है कि सही समुच्चय वह समुच्चय है जो ज्ञात जानकारी के अनुकूल है और जिसमें सबसे बड़ा [[गिब्स एंट्रॉपी]] ([[सूचना एन्ट्रापी]]) है।<ref>{{cite journal | last = Jaynes | first = E.| author-link = Edwin Thompson Jaynes | title = सूचना सिद्धांत और सांख्यिकीय यांत्रिकी| doi = 10.1103/PhysRev.106.620 | journal = Physical Review | volume = 106 | issue = 4 | pages = 620–630 | year = 1957 |bibcode = 1957PhRv..106..620J }}</ref> | ||
सांख्यिकीय यांत्रिकी के लिए अन्य मौलिक सिद्धांत भी प्रस्तावित किए गए हैं।<ref name="uffink"/><ref name="Gao2019" /><ref name="Gao2022" />उदाहरण के लिए, हाल के अध्ययनों से पता चलता है कि सांख्यिकीय यांत्रिकी के सिद्धांत को समान प्राथमिकता प्रायिकता अभिधारणा के बिना बनाया जा सकता है।<ref name="Gao2019">{{cite journal |last1= Gao |first1= Xiang |last2= Gallicchio |first2= Emilio |first3= Adrian |last3= Roitberg |date= 2019 |title= सामान्यीकृत बोल्ट्जमैन वितरण एकमात्र ऐसा वितरण है जिसमें गिब्स-शैनन एन्ट्रापी थर्मोडायनामिक एन्ट्रॉपी के बराबर होती है|url= https://aip.scitation.org/doi/abs/10.1063/1.5111333|journal= The Journal of Chemical Physics|volume= 151|issue= 3|pages= 034113|doi= 10.1063/1.5111333|pmid= 31325924 |arxiv= 1903.02121 |bibcode= 2019JChPh.151c4113G |s2cid= 118981017 |access-date= }}</ref><ref name="Gao2022">{{cite journal |last1= Gao |first1= Xiang |date= March 2022 |title= एनसेंबल थ्योरी का गणित|url= https://www.sciencedirect.com/science/article/pii/S2211379722000390|journal= Results in Physics|volume= 34|pages= 105230|doi= 10.1016/j.rinp.2022.105230 |bibcode= 2022ResPh..3405230G |s2cid= 221978379 }}</ref> इस तरह की एक औपचारिकता मौलिक उष्मागतिकीय संबंध पर आधारित है, साथ ही निम्नलिखित अभिधारणाओं के | सांख्यिकीय यांत्रिकी के लिए अन्य मौलिक सिद्धांत भी प्रस्तावित किए गए हैं।<ref name="uffink"/><ref name="Gao2019" /><ref name="Gao2022" /> उदाहरण के लिए, हाल के अध्ययनों से पता चलता है कि सांख्यिकीय यांत्रिकी के सिद्धांत को समान प्राथमिकता प्रायिकता अभिधारणा के बिना बनाया जा सकता है।<ref name="Gao2019">{{cite journal |last1= Gao |first1= Xiang |last2= Gallicchio |first2= Emilio |first3= Adrian |last3= Roitberg |date= 2019 |title= सामान्यीकृत बोल्ट्जमैन वितरण एकमात्र ऐसा वितरण है जिसमें गिब्स-शैनन एन्ट्रापी थर्मोडायनामिक एन्ट्रॉपी के बराबर होती है|url= https://aip.scitation.org/doi/abs/10.1063/1.5111333|journal= The Journal of Chemical Physics|volume= 151|issue= 3|pages= 034113|doi= 10.1063/1.5111333|pmid= 31325924 |arxiv= 1903.02121 |bibcode= 2019JChPh.151c4113G |s2cid= 118981017 |access-date= }}</ref><ref name="Gao2022">{{cite journal |last1= Gao |first1= Xiang |date= March 2022 |title= एनसेंबल थ्योरी का गणित|url= https://www.sciencedirect.com/science/article/pii/S2211379722000390|journal= Results in Physics|volume= 34|pages= 105230|doi= 10.1016/j.rinp.2022.105230 |bibcode= 2022ResPh..3405230G |s2cid= 221978379 }}</ref> इस तरह की एक औपचारिकता मौलिक उष्मागतिकीय संबंध पर आधारित है, साथ ही निम्नलिखित अभिधारणाओं के समूह के साथ:<ref name="Gao2019" /> | ||
{{ordered list | {{ordered list | ||
| | |प्रायिकता घनत्व फलन समुच्चय पैरामीटर और यादृच्छिक चर के कुछ फलन के समानुपाती होता है। | ||
| | |थर्मोडायनामिक अवस्था फलन को यादृच्छिक चर के समुच्चय औसत द्वारा वर्णित किया गया है। | ||
| | | गिब्स एंट्रॉपी विधि द्वारा परिभाषित एंट्रॉपी उत्कृष्ट थर्मोडायनामिक में परिभाषित एन्ट्रॉपी के साथ अनुरूप होता है।}} | ||
}} | |||
जहां तीसरे अभिधारणा को निम्नलिखित द्वारा प्रतिस्थापित किया जा सकता है:<ref name="Gao2022" /> | जहां तीसरे अभिधारणा को निम्नलिखित द्वारा प्रतिस्थापित किया जा सकता है:<ref name="Gao2022" /> | ||
{{ordered list|start=3 | {{ordered list|start=3 | ||
| | | अनंत तापमान पर, सभी सूक्ष्म-अवस्था की समान प्रायिकता होती है। | ||
}} | }} | ||
=== तीन थर्मोडायनामिक समुच्चय === | === तीन थर्मोडायनामिक समुच्चय === | ||
{{main|Ensemble (mathematical physics)|Microcanonical ensemble|Canonical ensemble|Grand canonical ensemble}} | {{main|Ensemble (mathematical physics)|Microcanonical ensemble|Canonical ensemble|Grand canonical ensemble}} | ||
एक साधारण रूप के साथ तीन | एक साधारण रूप के साथ तीन समतुल्यता समेकन होते हैं जिन्हें परिमित मात्रा के अंदर बंधे किसी भी पृथक प्रणाली के लिए परिभाषित किया जा सकता है।<ref name="gibbs"/> ये सांख्यिकीय ऊष्मप्रवैगिकी में सबसे अधिक बार चर्चित समूह हैं। स्थूल सीमा (नीचे परिभाषित) में वे सभी उत्कृष्ट ऊष्मप्रवैगिकी के अनुरूप हैं। | ||
; सूक्ष्म-विहित समुच्चय | ; सूक्ष्म-विहित समुच्चय | ||
: | : समुचित रूप से दी गई ऊर्जा और निश्चित संरचना (कणों की समुचित संख्या) के साथ एक प्रणाली का वर्णन करता है। सूक्ष्म-विहित समुच्चय में प्रत्येक संभावित स्थिति की समान प्रायिकता होती है जो उस ऊर्जा और संरचना के अनुरूप होती है। | ||
; [[कैननिकल पहनावा|कैननिकल समुच्चय]] | ; [[कैननिकल पहनावा|कैननिकल समुच्चय]] | ||
: निश्चित संरचना की एक प्रणाली का वर्णन करता है जो [[थर्मल संतुलन]] में है{{NoteTag|The transitive thermal equilibrium (as in, "X is thermal equilibrium with Y") used here means that the ensemble for the first system is not perturbed when the system is allowed to weakly interact with the second system.}} एक | : निश्चित संरचना की एक प्रणाली का वर्णन करता है जो [[थर्मल संतुलन|थर्मल समतुल्यता]] में है{{NoteTag|The transitive thermal equilibrium (as in, "X is thermal equilibrium with Y") used here means that the ensemble for the first system is not perturbed when the system is allowed to weakly interact with the second system.}} एक समुचित [[थर्मोडायनामिक तापमान]] के ताप स्नान के साथ। विहित समुच्चय में अलग-अलग ऊर्जा लेकिन समान संरचना वाले अवस्था होते हैं; समुच्चय में अलग-अलग अवस्थाों को उनकी कुल ऊर्जा के आधार पर अलग-अलग प्रायिकताएँ दी जाती हैं। | ||
; [[भव्य विहित पहनावा|बृहत विहित समुच्चय]] | ; [[भव्य विहित पहनावा|बृहत विहित समुच्चय]] | ||
: गैर-निश्चित संरचना (अनिश्चित कण संख्या) वाली एक प्रणाली का वर्णन करता है जो थर्मोडायनामिक जलाशय के साथ थर्मल और रासायनिक | : गैर-निश्चित संरचना (अनिश्चित कण संख्या) वाली एक प्रणाली का वर्णन करता है जो थर्मोडायनामिक जलाशय के साथ थर्मल और रासायनिक समतुल्यता में है। जलाशय में विभिन्न प्रकार के कणों के लिए समुचित तापमान और समुचित [[रासायनिक क्षमता]] होती है। बृहत विहित समुच्चय में अलग-अलग ऊर्जा और अलग-अलग कणों की संख्या होती है; समुच्चय में अलग-अलग अवस्थाों को उनकी कुल ऊर्जा और कुल कण संख्या के आधार पर अलग-अलग प्रायिकताएं दी जाती हैं। | ||
कई कणों ([[थर्मोडायनामिक सीमा]]) वाले प्रणाली के लिए, ऊपर सूचीबद्ध सभी तीन समेकन समान गतिविधि देते हैं। यह तो केवल गणितीय सुविधा की बात है जो समुच्चय प्रयोग किया जाता है।<ref name="Reif">{{cite book | last = Reif | first = F. | title = सांख्यिकीय और तापीय भौतिकी के मूल सिद्धांत| publisher = McGraw–Hill | year = 1965 | isbn = 9780070518001 | page = [https://archive.org/details/fundamentalsofst00fred/page/227 227] | url-access = registration | url = https://archive.org/details/fundamentalsofst00fred/page/227 }}</ref> समुच्चय की समानता के बारे में गिब्स प्रमेय<ref>{{cite journal |doi=10.1007/s10955-015-1212-2|title=एन्सेम्बल्स की समतुल्यता और गैर-बराबरी: थर्मोडायनामिक, मैक्रोस्टेट और माप स्तर|journal=Journal of Statistical Physics|volume=159|issue=5|pages=987–1016|year=2015|last1=Touchette|first1=Hugo|arxiv=1403.6608|bibcode=2015JSP...159..987T|s2cid=118534661}}</ref> माप घटना की एकाग्रता के सिद्धांत में विकसित किया गया था,<ref>{{cite book |doi=10.1090/surv/089|title=माप घटना की एकाग्रता|volume=89|series=Mathematical Surveys and Monographs|year=2005|isbn=9780821837924|last1=Ledoux|first1=Michel|url=http://www.gbv.de/dms/bowker/toc/9780821837924.pdf }}.</ref> जिसमें कार्यात्मक विश्लेषण से लेकर कृत्रिम बुद्धि और बड़ी डेटा प्रौद्योगिकी के तरीकों तक विज्ञान के कई क्षेत्रों में अनुप्रयोग हैं।<ref>{{cite journal |doi=10.1098/rsta.2017.0237|pmc=5869543|title=विमीयता का आशीर्वाद: डेटा के सांख्यिकीय भौतिकी की गणितीय नींव|journal=Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences|volume=376|issue=2118|pages=20170237|year=2018|last1=Gorban|first1=A. N.|last2=Tyukin|first2=I. Y.|pmid=29555807|arxiv=1801.03421|bibcode=2018RSPTA.37670237G}}</ref> | कई कणों ([[थर्मोडायनामिक सीमा]]) वाले प्रणाली के लिए, ऊपर सूचीबद्ध सभी तीन समेकन समान गतिविधि देते हैं। यह तो केवल गणितीय सुविधा की बात है जो समुच्चय प्रयोग किया जाता है।<ref name="Reif">{{cite book | last = Reif | first = F. | title = सांख्यिकीय और तापीय भौतिकी के मूल सिद्धांत| publisher = McGraw–Hill | year = 1965 | isbn = 9780070518001 | page = [https://archive.org/details/fundamentalsofst00fred/page/227 227] | url-access = registration | url = https://archive.org/details/fundamentalsofst00fred/page/227 }}</ref> समुच्चय की समानता के बारे में गिब्स प्रमेय<ref>{{cite journal |doi=10.1007/s10955-015-1212-2|title=एन्सेम्बल्स की समतुल्यता और गैर-बराबरी: थर्मोडायनामिक, मैक्रोस्टेट और माप स्तर|journal=Journal of Statistical Physics|volume=159|issue=5|pages=987–1016|year=2015|last1=Touchette|first1=Hugo|arxiv=1403.6608|bibcode=2015JSP...159..987T|s2cid=118534661}}</ref> माप घटना की एकाग्रता के सिद्धांत में विकसित किया गया था,<ref>{{cite book |doi=10.1090/surv/089|title=माप घटना की एकाग्रता|volume=89|series=Mathematical Surveys and Monographs|year=2005|isbn=9780821837924|last1=Ledoux|first1=Michel|url=http://www.gbv.de/dms/bowker/toc/9780821837924.pdf }}.</ref> जिसमें कार्यात्मक विश्लेषण से लेकर कृत्रिम बुद्धि और बड़ी डेटा प्रौद्योगिकी के तरीकों तक विज्ञान के कई क्षेत्रों में अनुप्रयोग हैं।<ref>{{cite journal |doi=10.1098/rsta.2017.0237|pmc=5869543|title=विमीयता का आशीर्वाद: डेटा के सांख्यिकीय भौतिकी की गणितीय नींव|journal=Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences|volume=376|issue=2118|pages=20170237|year=2018|last1=Gorban|first1=A. N.|last2=Tyukin|first2=I. Y.|pmid=29555807|arxiv=1801.03421|bibcode=2018RSPTA.37670237G}}</ref> | ||
महत्वपूर्ण स्थितियाँ जहां थर्मोडायनामिक समुच्चय समान परिणाम नहीं देते हैं उनमें सम्मिलित हैं: | महत्वपूर्ण स्थितियाँ जहां थर्मोडायनामिक समुच्चय समान परिणाम नहीं देते हैं उनमें सम्मिलित हैं: | ||
* सूक्ष्म प्रणाली। | * सूक्ष्म प्रणाली। | ||
* एक चरण संक्रमण पर बड़ी प्रणालियाँ। | * एक चरण संक्रमण पर बड़ी प्रणालियाँ। | ||
* लंबी दूरी की परस्पर क्रिया के साथ बड़े प्रणाली। | * लंबी दूरी की परस्पर क्रिया के साथ बड़े प्रणाली। | ||
इन स्थितियो में सही ऊष्मप्रवैगिकी समुच्चय चुना जाना चाहिए क्योंकि न केवल उतार-चढ़ाव के आकार में, बल्कि कणों | इन स्थितियो में सही ऊष्मप्रवैगिकी समुच्चय चुना जाना चाहिए क्योंकि न केवल उतार-चढ़ाव के आकार में, बल्कि कणों के विभाजन जैसे औसत मात्रा में भी इन समुच्चयओं के बीच देखने योग्य अंतर हैं। सही समुच्चय वह है जो उस तरीके से अनुरूप है जिस तरह से प्रणाली को तैयार किया गया है और इसकी विशेषता है- दूसरे शब्दों में, समुच्चय जो उस प्रणाली के बारे में ज्ञान को दर्शाता है।<ref name="tolman" /> | ||
{| class="wikitable" style="text-align: center" | {| class="wikitable" style="text-align: center" | ||
Line 92: | Line 91: | ||
! rowspan="2" | सूक्ष्म विशेषताएं | ! rowspan="2" | सूक्ष्म विशेषताएं | ||
| [[Microstate (statistical mechanics)|सूक्ष्म अवस्था की संख्या]] | | [[Microstate (statistical mechanics)|सूक्ष्म अवस्था की संख्या]] | ||
| [[Canonical partition function|विहित विभाजन | | [[Canonical partition function|विहित विभाजन फलन]] | ||
| [[Grand partition function|बृहत विभाजन | | [[Grand partition function|बृहत विभाजन फलन]] | ||
|- | |- | ||
| <math>W</math> | | <math>W</math> | ||
Line 99: | Line 98: | ||
| <math>\mathcal Z = \sum_k e^{ -(E_k - \mu N_k) /k_B T}</math> | | <math>\mathcal Z = \sum_k e^{ -(E_k - \mu N_k) /k_B T}</math> | ||
|- | |- | ||
! rowspan="2" | स्थूल | ! rowspan="2" | स्थूल फलन | ||
| [[Boltzmann entropy|बोल्ट्जमैन एन्ट्रॉपी]]̈ | | [[Boltzmann entropy|बोल्ट्जमैन एन्ट्रॉपी]]̈ | ||
| [[Helmholtz free energy|हेल्महोल्ट्ज़ मुक्त ऊर्जा]] | | [[Helmholtz free energy|हेल्महोल्ट्ज़ मुक्त ऊर्जा]] | ||
Line 111: | Line 110: | ||
=== गणना के तरीके === | === गणना के तरीके === | ||
एक बार किसी समुच्चय के लिए विशिष्ट अवस्था | एक बार किसी समुच्चय के लिए विशिष्ट अवस्था फलन की गणना किसी दिए गए प्रणाली के लिए की जाती है, तो वह प्रणाली 'हल' हो जाता है (स्थूल वेधशालाओं को विशेषता अवस्था फलन से निकाला जा सकता है)। एक थर्मोडायनामिक समुच्चय के विशिष्ट अवस्था फलन की गणना करना एक सरल कार्य नहीं है, हालांकि, इसमें प्रणाली की हर संभव स्थिति पर विचार करना सम्मिलित है। हालांकि कुछ काल्पनिक प्रणालियां पूरी तरह से हल हो गई हैं, सबसे सामान्य (और यथार्थवादी) स्थिति एक समुचित समाधान के लिए बहुत जटिल है। वास्तविक समुच्चय का अनुमान लगाने और औसत मात्रा की गणना करने के लिए विभिन्न दृष्टिकोण सम्मिलित हैं। | ||
== | == समुचित == | ||
ऐसे कुछ स्थितियाँ हैं जो | ऐसे कुछ स्थितियाँ हैं जो समुचित समाधान की अनुमति देते हैं। | ||
* बहुत छोटे सूक्ष्म प्रणालियों के लिए, प्रणाली के सभी संभावित अवस्थाों (क्वांटम यांत्रिकी में | * बहुत छोटे सूक्ष्म प्रणालियों के लिए, प्रणाली के सभी संभावित अवस्थाों (क्वांटम यांत्रिकी में समुचित विकर्णीकरण का उपयोग करके, याउत्कृष्ट यांत्रिकी में सभी चरण स्थान पर अभिन्न) की गणना करके सीधे समुच्चय की गणना की जा सकती है। | ||
* कुछ बड़ी प्रणालियों में कई वियोज्य सूक्ष्मदर्शी प्रणालियाँ होती हैं, और प्रत्येक उपप्रणाली का स्वतंत्र रूप से विश्लेषण किया जा सकता है। विशेष रूप से, गैर-अंतःक्रियात्मक कणों के आदर्श गैसों में यह गुण होता है, जिससे मैक्सवेल-बोल्ट्जमैन सांख्यिकी, फर्मी-डिराक सांख्यिकी और बोस-आइंस्टीन सांख्यिकी की | * कुछ बड़ी प्रणालियों में कई वियोज्य सूक्ष्मदर्शी प्रणालियाँ होती हैं, और प्रत्येक उपप्रणाली का स्वतंत्र रूप से विश्लेषण किया जा सकता है। विशेष रूप से, गैर-अंतःक्रियात्मक कणों के आदर्श गैसों में यह गुण होता है, जिससे मैक्सवेल-बोल्ट्जमैन सांख्यिकी, फर्मी-डिराक सांख्यिकी और बोस-आइंस्टीन सांख्यिकी की समुचित व्युत्पत्ति की अनुमति मिलती है।<ref name="tolman"/> | ||
*सहभागिता वाली कुछ बड़ी प्रणालियाँ हल की गई हैं। सूक्ष्म गणितीय तकनीकों के उपयोग से, कुछ खिलौनों के मॉडल के लिए समुचित समाधान खोजे गए हैं।<ref>{{cite book | isbn = 9780120831807 | title = सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल| last1 = Baxter | first1 = Rodney J. | year = 1982 | publisher = Academic Press Inc. }}</ref> कुछ उदाहरणों में सम्मिलित हैं [[Bethe ansatz]], शून्य क्षेत्र में [[वर्ग-जाली आइसिंग मॉडल]], कठोर षट्भुज मॉडल। | |||
==== मोंटे कार्लो ==== | ==== मोंटे कार्लो ==== | ||
{{main|Monte Carlo method}} | {{main|Monte Carlo method}} | ||
एक अनुमानित दृष्टिकोण जो कंप्यूटर के लिए विशेष रूप से अच्छी तरह से अनुकूल है, [[मोंटे कार्लो विधि]] है, जो प्रणाली के संभावित अवस्थाों में से कुछ की जांच करता है, अवस्थाों को यादृच्छिक रूप से (उचित वजन के साथ) चुना जाता है। जब तक ये अवस्था प्रणाली के अवस्थाों के पूरे | एक अनुमानित दृष्टिकोण जो कंप्यूटर के लिए विशेष रूप से अच्छी तरह से अनुकूल है, [[मोंटे कार्लो विधि]] है, जो प्रणाली के संभावित अवस्थाों में से कुछ की जांच करता है, अवस्थाों को यादृच्छिक रूप से (उचित वजन के साथ) चुना जाता है। जब तक ये अवस्था प्रणाली के अवस्थाों के पूरे समुच्चय का एक प्रतिनिधि नमूना बनाते हैं, तब तक अनुमानित विशेषता कार्य प्राप्त होता है। जैसे-जैसे अधिक से अधिक यादृच्छिक नमूने सम्मिलित किए जाते हैं, त्रुटियाँ एकपक्षीय रूप से निम्न स्तर तक कम हो जाती हैं। | ||
* मेट्रोपोलिस-हेस्टिंग्स एल्गोरिद्म एक | * मेट्रोपोलिस-हेस्टिंग्स एल्गोरिद्म एक उत्कृष्ट मोंटे कार्लो पद्धति है जिसका उपयोग प्रारंभ में कैनोनिकल समुच्चय का नमूना लेने के लिए किया गया था। | ||
* [[पथ अभिन्न मोंटे कार्लो]], कैनोनिकल समुच्चय का नमूना लेने के लिए भी उपयोग किया जाता है। | * [[पथ अभिन्न मोंटे कार्लो]], कैनोनिकल समुच्चय का नमूना लेने के लिए भी उपयोग किया जाता है। | ||
==== अन्य ==== | ==== अन्य ==== | ||
* दुर्लभ गैर-आदर्श गैसों के लिए, [[क्लस्टर विस्तार]] जैसे दृष्टिकोण कमजोर अंतःक्रियाओं के प्रभाव को सम्मिलित करने के लिए [[गड़बड़ी सिद्धांत]] का उपयोग करते हैं, जिससे [[वायरल विस्तार]] होता है।<ref name="balescu" />* घने तरल पदार्थों के लिए, एक और अनुमानित दृष्टिकोण | * दुर्लभ गैर-आदर्श गैसों के लिए, [[क्लस्टर विस्तार]] जैसे दृष्टिकोण कमजोर अंतःक्रियाओं के प्रभाव को सम्मिलित करने के लिए [[गड़बड़ी सिद्धांत]] का उपयोग करते हैं, जिससे [[वायरल विस्तार]] होता है।<ref name="balescu" /> | ||
* गैर- | *घने तरल पदार्थों के लिए, एक और अनुमानित दृष्टिकोण कम विभाजन कार्यों पर आधारित है, विशेष रूप से [[रेडियल वितरण समारोह|रेडियलविभाजन समारोह]]।<ref name="balescu" /> | ||
*आणविक गतिशीलता कंप्यूटर अनुकृति का उपयोग एर्गोडिक प्रणाली में सूक्ष्म-विहित समेकन औसत की गणना के लिए किया जा सकता है। स्टोचैस्टिक हीट बाथ के लिए एक संयोजन को सम्मिलित करने के साथ, वे विहित और बृहत विहित स्थितियों को भी मॉडल कर सकते हैं। | |||
* गैर-समतुल्यता सांख्यिकीय यांत्रिक परिणामों (नीचे देखें) से जुड़े मिश्रित तरीके उपयोगी हो सकते हैं। | |||
== गैर- | == गैर-समतुल्यता सांख्यिकीय यांत्रिकी == | ||
{{see also|Non-equilibrium thermodynamics}} | {{see also|Non-equilibrium thermodynamics}} | ||
कई भौतिक घटनाओं में | कई भौतिक घटनाओं में समतुल्यता से बाहर अर्ध-थर्मोडायनामिक प्रक्रियाएं सम्मिलित होती हैं, उदाहरण के लिए: | ||
* थर्मल चालन, एक तापमान | * थर्मल चालन, एक तापमान असमतुल्यता से प्रेरित, | ||
* [[विद्युत चालन]], एक वोल्टेज | * [[विद्युत चालन]], एक वोल्टेज असमतुल्यता द्वारा संचालित, | ||
* मुक्त ऊर्जा में कमी से प्रेरित सहज रासायनिक प्रतिक्रियाएँ, | * मुक्त ऊर्जा में कमी से प्रेरित सहज रासायनिक प्रतिक्रियाएँ, | ||
* घर्षण, [[अपव्यय]], क्वांटम विकृति, | * घर्षण, [[अपव्यय]], क्वांटम विकृति, | ||
* प्रणाली को बाहरी बलों द्वारा पंप किया जा रहा है ([[ऑप्टिकल पंपिंग]], आदि), | * प्रणाली को बाहरी बलों द्वारा पंप किया जा रहा है ([[ऑप्टिकल पंपिंग]], आदि), | ||
* और सामान्य रूप से अपरिवर्तनीय प्रक्रियाएं। | * और सामान्य रूप से अपरिवर्तनीय प्रक्रियाएं। | ||
ये सभी प्रक्रियाएं समय के साथ विशिष्ट दरों के साथ होती हैं। इंजीनियरिंग में ये दरें महत्वपूर्ण हैं। गैर- | ये सभी प्रक्रियाएं समय के साथ विशिष्ट दरों के साथ होती हैं। इंजीनियरिंग में ये दरें महत्वपूर्ण हैं। गैर-समतुल्यता सांख्यिकीय यांत्रिकी का क्षेत्र इन गैर-समतुल्यता प्रक्रियाओं को सूक्ष्म स्तर पर समझने से संबंधित है। (सांख्यिकीय ऊष्मप्रवैगिकी का उपयोग केवल अंतिम परिणाम की गणना के लिए किया जा सकता है, बाहरी असमतुल्यता को हटा दिए जाने के बाद और समुच्चय वापस समतुल्यता में आ गया है।) | ||
सिद्धांत रूप में, गैर- | सिद्धांत रूप में, गैर-समतुल्यता सांख्यिकीय यांत्रिकी गणितीय रूप से समुचित हो सकती है: लिउविले के प्रमेय (हैमिल्टनियन) | लिउविले के समीकरण या इसके क्वांटम समकक्ष, वॉन न्यूमैन समीकरण जैसे नियतात्मक समीकरणों के अनुसार समय के साथ एक पृथक प्रणाली के लिए समुच्चय विकसित होता है। ये समीकरण प्रत्येक अवस्था में गति के यांत्रिक समीकरणों को स्वतंत्र रूप से लागू करने का परिणाम हैं। दुर्भाग्य से, इन समुच्चय विकास समीकरणों में अंतर्निहित यांत्रिक गति की जटिलता का बहुत अधिक भाग होता है, और इसलिए समुचित समाधान प्राप्त करना बहुत मुश्किल होता है। इसके अतिरिक्त, समुच्चय विकास समीकरण पूरी तरह से प्रतिवर्ती हैं और जानकारी को नष्ट नहीं करते हैं (समुच्चय की गिब्स एंट्रॉपी संरक्षित है)। मॉडलिंग अपरिवर्तनीय प्रक्रियाओं में आगे बढ़ने के लिए, प्रायिकता और प्रतिवर्ती यांत्रिकी के अतिरिक्त कारकों पर विचार करना आवश्यक है। | ||
गैर- | गैर-समतुल्यता यांत्रिकी इसलिए सैद्धांतिक अनुसंधान का एक सक्रिय क्षेत्र है क्योंकि इन अतिरिक्त मान्यताओं की वैधता की सीमा का पता लगाया जाना जारी है। निम्नलिखित उपखंडों में कुछ दृष्टिकोणों का वर्णन किया गया है। | ||
=== [[स्टोकेस्टिक]] तरीके === | === [[स्टोकेस्टिक]] तरीके === | ||
गैर- | गैर-समतुल्यता सांख्यिकीय यांत्रिकी के लिए एक दृष्टिकोण प्रणाली में स्टोकेस्टिक (यादृच्छिक) गतिविधि को सम्मिलित करना है। स्टोकेस्टिक गतिविधि समुच्चय में निहित जानकारी को नष्ट कर देता है। हालांकि यह तकनीकी रूप से गलत है ([[ब्लैक होल सूचना विरोधाभास]] को छोड़कर, एक प्रणाली अपने आप में सूचना की हानि का कारण नहीं बन सकती है), यादृच्छिकता को यह दर्शाने के लिए जोड़ा जाता है कि ब्याज की जानकारी समय के साथ प्रणाली के अंदर सूक्ष्म सहसंबंधों में परिवर्तित हो जाती है, या बीच के सहसंबंधों के बीच प्रणाली और पर्यावरण। ये सहसंबंध रुचि के चर पर कैओस सिद्धांत या छद्म यादृच्छिक प्रभाव के रूप में दिखाई देते हैं। इन सहसंबंधों को यादृच्छिकता के साथ बदलकर, गणनाओं को बहुत आसान बनाया जा सकता है। | ||
=== निकट- | === निकट-समतुल्यता के तरीके === | ||
गैर- | गैर-समतुल्यता सांख्यिकीय यांत्रिक मॉडल का एक अन्य महत्वपूर्ण वर्ग उन प्रणालियों से संबंधित है जो समतुल्यता से बहुत कम परेशान हैं। बहुत कम गड़बड़ी के साथ, प्रतिक्रिया का विश्लेषण [[रैखिक प्रतिक्रिया सिद्धांत]] में किया जा सकता है। एक उल्लेखनीय परिणाम, उतार-चढ़ाव-अपव्यय प्रमेय द्वारा औपचारिक रूप से, यह है कि एक प्रणाली की प्रतिक्रिया जब समतुल्यता के निकट होती है, तो यह [[सांख्यिकीय उतार-चढ़ाव]] से ठीक से संबंधित होता है, जब प्रणाली कुल समतुल्यता में होती है। अनिवार्य रूप से, एक प्रणाली जो समतुल्यता से थोड़ी दूर है - चाहे वह बाहरी ताकतों द्वारा या उतार-चढ़ाव से हो - उसी तरह से समतुल्यता की ओर आराम करती है, क्योंकि प्रणाली अंतर नहीं बता सकती है या यह नहीं जान सकती है कि यह समतुल्यता से दूर कैसे हो गया।<ref name="balescu"/>{{rp|664}} | ||
यह | |||
यह समतुल्यता सांख्यिकीय यांत्रिकी से परिणाम निकालकर ओम के नियम और तापीय चालकता जैसी संख्याएँ प्राप्त करने के लिए एक अप्रत्यक्ष अवसर प्रदान करता है। चूंकि समतुल्यता सांख्यिकीय यांत्रिकी गणितीय रूप से अच्छी तरह से परिभाषित है और (कुछ स्थितियो में) गणना के लिए अधिक उत्तरदायी है, उतार-चढ़ाव-अपव्यय संयोजन निकट-समतुल्यता सांख्यिकीय यांत्रिकी में गणना के लिए एक सुविधाजनक शॉर्टकट हो सकता है। | |||
इस संबंध को बनाने के लिए उपयोग किए जाने वाले कुछ सैद्धांतिक उपकरणों में सम्मिलित हैं: | इस संबंध को बनाने के लिए उपयोग किए जाने वाले कुछ सैद्धांतिक उपकरणों में सम्मिलित हैं: | ||
Line 163: | Line 166: | ||
=== हाइब्रिड तरीके === | === हाइब्रिड तरीके === | ||
एक उन्नत दृष्टिकोण स्टोकास्टिक विधियों और रैखिक प्रतिक्रिया सिद्धांत के संयोजन का उपयोग करता है। एक उदाहरण के रूप में, एक इलेक्ट्रॉनिक प्रणाली के प्रवाहकत्त्व में क्वांटम सुसंगतता प्रभाव ([[कमजोर स्थानीयकरण]], [[चालन में उतार-चढ़ाव]]) की गणना करने के लिए एक दृष्टिकोण ग्रीन-कुबो संबंधों का उपयोग है, जिसमें विभिन्न इलेक्ट्रॉनों के उपयोग के द्वारा विभिन्न इलेक्ट्रॉनों के बीच परस्पर क्रिया द्वारा स्टोचैस्टिक [[dephasing]] को सम्मिलित किया गया है। क्लेडीश विधि।<ref>{{Cite journal | last1 = Altshuler | first1 = B. L. | last2 = Aronov | first2 = A. G. | last3 = Khmelnitsky | first3 = D. E. | doi = 10.1088/0022-3719/15/36/018 | title = क्वांटम स्थानीयकरण पर छोटे ऊर्जा हस्तांतरण के साथ इलेक्ट्रॉन-इलेक्ट्रॉन टकराव के प्रभाव| journal = Journal of Physics C: Solid State Physics | volume = 15 | issue = 36 | pages = 7367 | year = 1982 |bibcode = 1982JPhC...15.7367A }}</ref><ref>{{Cite journal | last1 = Aleiner | first1 = I. | last2 = Blanter | first2 = Y. | doi = 10.1103/PhysRevB.65.115317 | title = चालन में उतार-चढ़ाव के लिए इनलेस्टिक बिखरने का समय| journal = Physical Review B | volume = 65 | issue = 11 | pages = 115317 | year = 2002 |arxiv = cond-mat/0105436 |bibcode = 2002PhRvB..65k5317A | s2cid = 67801325 | url = http://resolver.tudelft.nl/uuid:e7736134-6c36-47f4-803f-0fdee5074b5a }}</ref> | एक उन्नत दृष्टिकोण स्टोकास्टिक विधियों और रैखिक प्रतिक्रिया सिद्धांत के संयोजन का उपयोग करता है। एक उदाहरण के रूप में, एक इलेक्ट्रॉनिक प्रणाली के प्रवाहकत्त्व में क्वांटम सुसंगतता प्रभाव ([[कमजोर स्थानीयकरण]], [[चालन में उतार-चढ़ाव]]) की गणना करने के लिए एक दृष्टिकोण ग्रीन-कुबो संबंधों का उपयोग है, जिसमें विभिन्न इलेक्ट्रॉनों के उपयोग के द्वारा विभिन्न इलेक्ट्रॉनों के बीच परस्पर क्रिया द्वारा स्टोचैस्टिक [[dephasing]] को सम्मिलित किया गया है। क्लेडीश विधि।<ref>{{Cite journal | last1 = Altshuler | first1 = B. L. | last2 = Aronov | first2 = A. G. | last3 = Khmelnitsky | first3 = D. E. | doi = 10.1088/0022-3719/15/36/018 | title = क्वांटम स्थानीयकरण पर छोटे ऊर्जा हस्तांतरण के साथ इलेक्ट्रॉन-इलेक्ट्रॉन टकराव के प्रभाव| journal = Journal of Physics C: Solid State Physics | volume = 15 | issue = 36 | pages = 7367 | year = 1982 |bibcode = 1982JPhC...15.7367A }}</ref><ref>{{Cite journal | last1 = Aleiner | first1 = I. | last2 = Blanter | first2 = Y. | doi = 10.1103/PhysRevB.65.115317 | title = चालन में उतार-चढ़ाव के लिए इनलेस्टिक बिखरने का समय| journal = Physical Review B | volume = 65 | issue = 11 | pages = 115317 | year = 2002 |arxiv = cond-mat/0105436 |bibcode = 2002PhRvB..65k5317A | s2cid = 67801325 | url = http://resolver.tudelft.nl/uuid:e7736134-6c36-47f4-803f-0fdee5074b5a }}</ref> | ||
== ऊष्मप्रवैगिकी के बाहर अनुप्रयोग == | == ऊष्मप्रवैगिकी के बाहर अनुप्रयोग == | ||
एक प्रणाली की स्थिति के बारे में ज्ञान में अनिश्चितता के साथ सामान्य यांत्रिक प्रणालियों का विश्लेषण करने के लिए समुच्चय औपचारिकता का भी उपयोग किया जा सकता है। एन्सेम्बल का भी उपयोग किया जाता है: | एक प्रणाली की स्थिति के बारे में ज्ञान में अनिश्चितता के साथ सामान्य यांत्रिक प्रणालियों का विश्लेषण करने के लिए समुच्चय औपचारिकता का भी उपयोग किया जा सकता है। एन्सेम्बल का भी उपयोग किया जाता है: | ||
* समय के साथ [[अनिश्चितता का प्रसार]],<ref name="gibbs"/>* गुरुत्वाकर्षण कक्षाओं का [[प्रतिगमन विश्लेषण]], | * समय के साथ [[अनिश्चितता का प्रसार]],<ref name="gibbs"/> | ||
*गुरुत्वाकर्षण कक्षाओं का [[प्रतिगमन विश्लेषण]], | |||
* मौसम की भविष्यवाणी, | * मौसम की भविष्यवाणी, | ||
* तंत्रिका नेटवर्क की गतिशीलता, | * तंत्रिका नेटवर्क की गतिशीलता, | ||
Line 177: | Line 180: | ||
1859 में, [[रुडोल्फ क्लॉसियस]] द्वारा अणुओं के प्रसार पर एक लेख पढ़ने के बाद, स्कॉटिश भौतिक विज्ञानी जेम्स क्लर्क मैक्सवेल ने आणविक वेगों का [[मैक्सवेल वितरण|मैक्सवेलविभाजन]] तैयार किया, जिसने एक विशिष्ट श्रेणी में एक निश्चित वेग वाले अणुओं का अनुपात दिया।<ref>See: | 1859 में, [[रुडोल्फ क्लॉसियस]] द्वारा अणुओं के प्रसार पर एक लेख पढ़ने के बाद, स्कॉटिश भौतिक विज्ञानी जेम्स क्लर्क मैक्सवेल ने आणविक वेगों का [[मैक्सवेल वितरण|मैक्सवेलविभाजन]] तैयार किया, जिसने एक विशिष्ट श्रेणी में एक निश्चित वेग वाले अणुओं का अनुपात दिया।<ref>See: | ||
*Maxwell, J.C. (1860) [https://books.google.com/books?id=-YU7AQAAMAAJ&pg=PA19#v=onepage&q&f=false "Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres,"] ''Philosophical Magazine'', 4th series, '''19''' : 19–32. | *Maxwell, J.C. (1860) [https://books.google.com/books?id=-YU7AQAAMAAJ&pg=PA19#v=onepage&q&f=false "Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres,"] ''Philosophical Magazine'', 4th series, '''19''' : 19–32. | ||
*Maxwell, J.C. (1860) [https://books.google.com/books?id=DIc7AQAAMAAJ&pg=PA21#v=onepage&q&f=false "Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another,"] ''Philosophical Magazine'', 4th series, '''20''' : 21–37.</ref> यह भौतिकी मे अब तक का पहला सांख्यिकीय नियम था।<ref>{{cite book |last = Mahon |first = Basil |title=द मैन हू चेंज्ड एवरीथिंग - द लाइफ ऑफ जेम्स क्लर्क मैक्सवेल|location=Hoboken, NJ |publisher=Wiley |year=2003 |isbn=978-0-470-86171-4 |oclc=52358254}}</ref> मैक्सवेल ने पहला यांत्रिक तर्क भी दिया कि आण्विक संघट्टों के लिए तापमान की समानता आवश्यक है और इसलिए | *Maxwell, J.C. (1860) [https://books.google.com/books?id=DIc7AQAAMAAJ&pg=PA21#v=onepage&q&f=false "Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another,"] ''Philosophical Magazine'', 4th series, '''20''' : 21–37.</ref> यह भौतिकी मे अब तक का पहला सांख्यिकीय नियम था।<ref>{{cite book |last = Mahon |first = Basil |title=द मैन हू चेंज्ड एवरीथिंग - द लाइफ ऑफ जेम्स क्लर्क मैक्सवेल|location=Hoboken, NJ |publisher=Wiley |year=2003 |isbn=978-0-470-86171-4 |oclc=52358254}}</ref> मैक्सवेल ने पहला यांत्रिक तर्क भी दिया कि आण्विक संघट्टों के लिए तापमान की समानता आवश्यक है और इसलिए समतुल्यता की ओर एक प्रवृत्ति है।<ref>{{cite journal | last = Gyenis | first = Balazs | doi = 10.1016/j.shpsb.2017.01.001 | title = मैक्सवेल और सामान्य वितरण: संभाव्यता, स्वतंत्रता और संतुलन की प्रवृत्ति की रंगीन कहानी| journal = Studies in History and Philosophy of Modern Physics | volume = 57 | pages = 53–65 | year = 2017| arxiv = 1702.01411 | bibcode = 2017SHPMP..57...53G | s2cid = 38272381 }}</ref> पांच वर्ष बाद, 1864 में, लुडविग बोल्ट्जमैन, वियना में एक युवा छात्र, मैक्सवेल के लेख के संपर्क मे आए और उन्होंने अपने जीवन का अधिकांश समय इस विषय को विकसित करने में बिताया। | ||
सांख्यिकीय यांत्रिकी का प्रारंभ 1870 के दशक में बोल्ट्जमैन के कार्य से हुई थी, जिनमें से अधिकांश सामूहिक रूप से गैस थ्योरी पर उनके 1896 के व्याख्यान में प्रकाशित हुए थे।<ref>{{cite book |title = स्टैटिस्टिकल थर्मोडायनामिक्स एंड स्टोचैस्टिक थ्योरी ऑफ़ नोनक्विलिब्रियम सिस्टम्स|editor1=Ebeling Werner|editor2=Sokolov Igor M.|publisher=World Scientific Press |volume=8 |last1=Ebeling |first1=Werner |last2=Sokolov |first2=Igor M. |year=2005 |isbn=978-90-277-1674-3 |pages=3–12 |url = https://books.google.com/books?id=KUjFHbid8A0C|bibcode=2005stst.book.....E |doi=10.1142/2012 |series = Series on Advances in Statistical Mechanics }} (section 1.2)</ref> ऊष्मप्रवैगिकी, [[एच-प्रमेय]], [[परिवहन सिद्धांत (सांख्यिकीय भौतिकी)|वाहक सिद्धांत (सांख्यिकीय भौतिकी)]], ऊष्म | सांख्यिकीय यांत्रिकी का प्रारंभ 1870 के दशक में बोल्ट्जमैन के कार्य से हुई थी, जिनमें से अधिकांश सामूहिक रूप से गैस थ्योरी पर उनके 1896 के व्याख्यान में प्रकाशित हुए थे।<ref>{{cite book |title = स्टैटिस्टिकल थर्मोडायनामिक्स एंड स्टोचैस्टिक थ्योरी ऑफ़ नोनक्विलिब्रियम सिस्टम्स|editor1=Ebeling Werner|editor2=Sokolov Igor M.|publisher=World Scientific Press |volume=8 |last1=Ebeling |first1=Werner |last2=Sokolov |first2=Igor M. |year=2005 |isbn=978-90-277-1674-3 |pages=3–12 |url = https://books.google.com/books?id=KUjFHbid8A0C|bibcode=2005stst.book.....E |doi=10.1142/2012 |series = Series on Advances in Statistical Mechanics }} (section 1.2)</ref> ऊष्मप्रवैगिकी, [[एच-प्रमेय]], [[परिवहन सिद्धांत (सांख्यिकीय भौतिकी)|वाहक सिद्धांत (सांख्यिकीय भौतिकी)]], ऊष्म समतुल्यता, गैसों की स्थिति का समीकरण, और इसी तरह के विषयों की सांख्यिकीय व्याख्या पर बोल्ट्जमैन के मूल लेख, वियना अकादमी और अन्य समाजों की कार्यवाही में लगभग 2,000 पृष्ठों पर कब्जा करते हैं। . बोल्ट्जमैन ने एक समतुल्यता सांख्यिकीय समुच्चय की अवधारणा पेश की और अपने एच-प्रमेय|एच-प्रमेय के साथ पहली बार गैर-समतुल्यता सांख्यिकीय यांत्रिकी की जांच भी की। | ||
सांख्यिकीय यांत्रिकी शब्द अमेरिकी गणितीय भौतिक विज्ञानी जोशिया विलार्ड गिब्स | जे। 1884 में विलार्ड गिब्स।<ref>J. W. Gibbs, "On the Fundamental Formula of Statistical Mechanics, with Applications to Astronomy and Thermodynamics." Proceedings of the American Association for the Advancement of Science, '''33''', 57-58 (1884). Reproduced in ''The Scientific Papers of J. Willard Gibbs, Vol II'' (1906), [https://archive.org/stream/scientificpapers02gibbuoft#page/16/mode/2up pp. 16].</ref>{{NoteTag|1 = According to Gibbs, the term "statistical", in the context of mechanics, i.e. statistical mechanics, was first used by the Scottish physicist [[James Clerk Maxwell]] in 1871. From: J. Clerk Maxwell, ''Theory of Heat'' (London, England: Longmans, Green, and Co., 1871), [https://books.google.com/books?id=DqAAAAAAMAAJ&pg=PA309 p. 309]: "In dealing with masses of matter, while we do not perceive the individual molecules, we are compelled to adopt what I have described as the statistical method of calculation, and to abandon the strict dynamical method, in which we follow every motion by the calculus."}} प्रायिकता यांत्रिकी आज एक अधिक उपयुक्त शब्द लग सकता है, लेकिन सांख्यिकीय यांत्रिकी मजबूती से स्थापित है।<ref>{{cite book |title = संभाव्यता और भौतिकी की पहेली|last=Mayants |first=Lazar |year=1984 |publisher=Springer |isbn=978-90-277-1674-3 |page=174 |url = https://books.google.com/books?id=zmwEfXUdBJ8C&pg=PA174 }}</ref> अपनी मृत्यु के कुछ समय पहले, गिब्स ने 1902 में [[सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत]]ों को प्रकाशित किया, एक पुस्तक जिसने सांख्यिकीय यांत्रिकी को सभी यांत्रिक प्रणालियों-स्थूल या सूक्ष्म, गैसीय या गैर-गैसीय को संबोधित करने के लिए एक पूरी तरह से सामान्य दृष्टिकोण के रूप में औपचारिक रूप दिया।<ref name="gibbs" />गिब्स के तरीकों को प्रारंभ में उत्कृष्ट यांत्रिकी के ढांचे में प्राप्त किया गया था, हालांकि वे इस तरह की सामान्यता के थे कि वे बाद के क्वांटम यांत्रिकी के लिए आसानी से अनुकूल पाए गए, और आज भी सांख्यिकीय यांत्रिकी की नींव बनाते हैं।<ref name="tolman" /> | सांख्यिकीय यांत्रिकी शब्द अमेरिकी गणितीय भौतिक विज्ञानी जोशिया विलार्ड गिब्स | जे। 1884 में विलार्ड गिब्स।<ref>J. W. Gibbs, "On the Fundamental Formula of Statistical Mechanics, with Applications to Astronomy and Thermodynamics." Proceedings of the American Association for the Advancement of Science, '''33''', 57-58 (1884). Reproduced in ''The Scientific Papers of J. Willard Gibbs, Vol II'' (1906), [https://archive.org/stream/scientificpapers02gibbuoft#page/16/mode/2up pp. 16].</ref>{{NoteTag|1 = According to Gibbs, the term "statistical", in the context of mechanics, i.e. statistical mechanics, was first used by the Scottish physicist [[James Clerk Maxwell]] in 1871. From: J. Clerk Maxwell, ''Theory of Heat'' (London, England: Longmans, Green, and Co., 1871), [https://books.google.com/books?id=DqAAAAAAMAAJ&pg=PA309 p. 309]: "In dealing with masses of matter, while we do not perceive the individual molecules, we are compelled to adopt what I have described as the statistical method of calculation, and to abandon the strict dynamical method, in which we follow every motion by the calculus."}} प्रायिकता यांत्रिकी आज एक अधिक उपयुक्त शब्द लग सकता है, लेकिन सांख्यिकीय यांत्रिकी मजबूती से स्थापित है।<ref>{{cite book |title = संभाव्यता और भौतिकी की पहेली|last=Mayants |first=Lazar |year=1984 |publisher=Springer |isbn=978-90-277-1674-3 |page=174 |url = https://books.google.com/books?id=zmwEfXUdBJ8C&pg=PA174 }}</ref> अपनी मृत्यु के कुछ समय पहले, गिब्स ने 1902 में [[सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत]]ों को प्रकाशित किया, एक पुस्तक जिसने सांख्यिकीय यांत्रिकी को सभी यांत्रिक प्रणालियों-स्थूल या सूक्ष्म, गैसीय या गैर-गैसीय को संबोधित करने के लिए एक पूरी तरह से सामान्य दृष्टिकोण के रूप में औपचारिक रूप दिया।<ref name="gibbs" />गिब्स के तरीकों को प्रारंभ में उत्कृष्ट यांत्रिकी के ढांचे में प्राप्त किया गया था, हालांकि वे इस तरह की सामान्यता के थे कि वे बाद के क्वांटम यांत्रिकी के लिए आसानी से अनुकूल पाए गए, और आज भी सांख्यिकीय यांत्रिकी की नींव बनाते हैं।<ref name="tolman" /> | ||
Line 217: | Line 220: | ||
*आंकड़े | *आंकड़े | ||
*भौतिक विज्ञान | *भौतिक विज्ञान | ||
*थर्मोडायनामिक | *थर्मोडायनामिक समतुल्यता | ||
*सिद्धांत प्रायिकता | *सिद्धांत प्रायिकता | ||
*ताप की गुंजाइश | *ताप की गुंजाइश |
Revision as of 20:27, 18 December 2022
Statistical mechanics |
---|
भौतिकी में, सांख्यिकीय यांत्रिकी एक गणितीय रूपरेखा है जो सूक्ष्म संस्थाओं की बड़े समुच्चयो के लिए सांख्यिकी और प्रायिकता सिद्धांत को लागू करता है। यह किसी भी प्राकृतिक नियम को ग्रहण या अभिगृहीत नहीं करता है, बल्कि इस तरह के समुच्चय की प्रतिक्रिया से प्रकृति के स्थूल गतिविधि की व्याख्या करता है।
उत्कृष्ट ऊष्मप्रवैगिकी के विकास से सांख्यिकीय यांत्रिकी उत्पन्न हुई, एक ऐसा क्षेत्र जिसके लिए यह स्थूल भौतिक गुणों की व्याख्या करने में सफल रहा - जैसे तापमान, दबाव और ताप क्षमता - सूक्ष्म मापदंडों के संदर्भ में जो औसत मूल्यों के बारे में रूपांतरित करते हैं और प्रायिकता विभाजन की विशेषता है। उन्होंने सांख्यिकीय ऊष्मप्रवैगिकी और सांख्यिकीय भौतिकी के क्षेत्र की स्थापना की।
सांख्यिकीय यांत्रिकी के क्षेत्र की स्थापना का श्रेय सामान्यतः तीन भौतिकविदों को दिया जाता है:
- लुडविग बोल्ट्जमैन, जिन्होंने सूक्ष्मवस्था के संग्रह के संदर्भ में एन्ट्रापी की मौलिक व्याख्या विकसित की
- जेम्स क्लर्क मैक्सवेल, जिन्होंने सदृश अवस्थाओ के प्रायिकता विभाजन के मॉडल विकसित किए
- योशिय्याह विलार्ड गिब्स, जिन्होंने 1884 में क्षेत्र का नाम परिणत किया
जबकि उत्कृष्ट ऊष्मप्रवैगिकी मुख्य रूप से ऊष्मप्रवैगिकी समतुल्यता से संबंधित है, सांख्यिकीय यांत्रिकी को गैर-समतुल्यता सांख्यिकीय यांत्रिकी में सूक्ष्म रूप से अपरिवर्तनीय प्रक्रियाओं की गति के विषयों पर लागू किया गया है जो असमतुल्यता से प्रेरित हैं। ऐसी प्रक्रियाओं के उदाहरणों में रासायनिक प्रतिक्रियाएं और कणों और ऊष्मा का प्रवाह सम्मिलित है। अस्थिरता-अपव्यय प्रमेय गैर-समतुल्यता सांख्यिकीय यांत्रिकी को लागू करने से प्राप्त मौलिक ज्ञान है जो कई कणों की प्रणाली में स्थिर अवस्था प्रवाह की सरलतम गैर-समतुल्यता स्थिति का अध्ययन करता है।
सिद्धांत: यांत्रिकी और समुच्चय
मुख्य लेख ːयांत्रिकी और सांख्यिकीय समुच्चय
भौतिकी में, सामान्यतः दो प्रकार के यांत्रिकी की जांच की जाती है:उत्कृष्ट यांत्रिकी और क्वांटम यांत्रिकी। दोनों प्रकार के यांत्रिकी के लिए, मानक गणितीय दृष्टिकोण दो अवधारणाओं पर विचार करना है:
- एक निश्चित समय पर यांत्रिक प्रणाली की पूर्ण स्थिति, गणितीय रूप से एक चरण बिन्दु (उत्कृष्ट यांत्रिकी) या एक शुद्ध क्वांटम अवस्था वेक्टर (क्वांटम यांत्रिकी) के रूप में कूटबद्ध है।
- गति का एक समीकरण जो अवस्था को समय में आगे बढ़ाता है: हैमिल्टन के समीकरण या श्रोडिंगर समीकरण (क्वांटम यांत्रिकी)।
इन दो अवधारणाओं का उपयोग करके, किसी अन्य समय, अतीत या भविष्य में अवस्था की गणना सैद्धांतिक रूप से की जा सकती है। हालांकि, इन सिद्धांतों और दैनिक जीवन के अनुभवों के बीच एक संबंध नहीं है, क्योंकि हमें यह आवश्यक नहीं लगता (न ही सैद्धांतिक रूप से संभव है) सूक्ष्म स्तर पर समुचित रूप से जानने के लिए कि मानव स्तर पर प्रक्रियाओं को पूरा करते समय प्रत्येक अणु की एक साथ स्थिति और वेग ( उदाहरण के लिए, रासायनिक प्रतिक्रिया करते समय)। सांख्यिकीय यांत्रिकी यांत्रिकी के नियमों और अपूर्ण ज्ञान के व्यावहारिक अनुभव के बीच इस वियोजन को पूर्ण करती है, इस बारे में कुछ अनिश्चितता जोड़कर कि प्रणाली किस स्थिति में है।
जबकि सामान्य यांत्रिकी केवल एक अवस्था के गतिविधि पर विचार करता है, सांख्यिकीय यांत्रिकी सांख्यिकीय समेकन (गणितीय भौतिकी) का परिचय देता है, जो विभिन्न अवस्थाों में प्रणाली की आभासी, स्वतंत्र प्रतियों का एक बड़ा संग्रह है। सांख्यिकीय समुच्चय प्रणाली के सभी संभावित अवस्थाों पर एक प्रायिकता विभाजन है। उत्कृष्ट सांख्यिकीय यांत्रिकी में, समुच्चय चरण बिंदुओं पर एक प्रायिकता विभाजन है (साधारण यांत्रिकी में एकल चरण बिंदु के विपरीत), सामान्यतः विहित निर्देशांक अक्षों के साथ एक चरण बिन्दु में विभाजन के रूप में दर्शाया जाता है। क्वांटम सांख्यिकीय यांत्रिकी में, समुच्चय शुद्ध अवस्थाों पर प्रायिकता विभाजन है,[note 1] और घनत्व मैट्रिक्स के रूप में संक्षिप्त रूप से संक्षेपित किया जा सकता है।
प्रायिकताओं के लिए सदैव की तरह, समुच्चय की अलग-अलग तरीकों से व्याख्या किया जा सकता है:[1]
- विभिन्न संभावित अवस्थाों का प्रतिनिधित्व करने के लिए एक समुच्चय लिया जा सकता है जो एक प्रणाली में हो सकता है ज्ञानात्मक प्रायिकता, ज्ञान का एक रूप), या
- समुच्चय के भाग को स्वतंत्र प्रणालियों पर दोहराए गए प्रयोगों में प्रणालियों की अवस्थाओं के रूप में समझा जा सकता है जो एक समान लेकिन अपूर्ण रूप से नियंत्रित तरीके (अनुभवजन्य प्रायिकता) में तैयार किए गए हैं, अनंत संख्या में परीक्षणों की सीमा में।
ये दो अर्थ कई उद्देश्यों के लिए समान हैं, और इस लेख में एक दूसरे के स्थान पर उपयोग किए जाएंगे।
हालांकि प्रायिकता की व्याख्या की जाती है, समेकन में प्रत्येक अवस्था गति के समीकरण के अनुसार समय के साथ विकसित होता है। इस प्रकार, समेकन स्वयं (अवस्थाों पर प्रायिकताविभाजन) भी विकसित होता है, क्योंकि समेकन में आभासी प्रणाली निरन्तर एक अवस्था छोड़ देती है और दूसरे में प्रवेश करता है। समुच्चय विकास लिउविले के प्रमेय ( उत्कृष्ट यांत्रिकी) या वॉन न्यूमैन समीकरण (क्वांटम यांत्रिकी) द्वारा दिया गया है। इन समीकरणों को केवल गति के यांत्रिक समीकरण के अनुप्रयोग द्वारा अलग-अलग प्रत्येक आभासी प्रणाली में सम्मिलित किया जाता है, जिसमें आभासी प्रणाली की प्रायिकता समय के साथ संरक्षित होती है क्योंकि यह एक अवस्था से दूसरे अवस्था में विकसित होती है।
समुच्चय का एक विशेष वर्ग वे समूह हैं जो समय के साथ विकसित नहीं होते हैं। इन समूहों को समतुल्यता समुच्चय के रूप में जाना जाता है और उनकी स्थिति को सांख्यिकीय समतुल्यता के रूप में जाना जाता है। सांख्यिकीय समतुल्यता तब होता है, जब समुच्चय में प्रत्येक अवस्था के लिए, समुच्चय में उसके भविष्य और पूर्व की सभी अवस्था सम्मिलित होती हैं, जिसमें उस अवस्था में होने की प्रायिकता के बराबर प्रायिकताएं होती हैं।[note 2] पृथक प्रणालियों के समतुल्यता समेकन का अध्ययन सांख्यिकीय ऊष्मप्रवैगिकी का केंद्र है। गैर-समतुल्यता सांख्यिकीय यांत्रिकी समेकन के अधिक सामान्य स्थितियो को संबोधित करती है जो समय के साथ बदलती है, और/या गैर-पृथक प्रणालियों के समेकन।
सांख्यिकीय ऊष्मप्रवैगिकी
सांख्यिकीय ऊष्मप्रवैगिकी (जिसे समतुल्यता सांख्यिकीय यांत्रिकी के रूप में भी जाना जाता है) का प्राथमिक लक्ष्य सामग्री के उत्कृष्ट ऊष्मप्रवैगिकी को उनके घटक कणों के गुणों और उनके बीच की परस्पर क्रिया के संदर्भ में प्राप्त करना है। दूसरे शब्दों में, सांख्यिकीय ऊष्मप्रवैगिकी थर्मोडायनामिक समतुल्यता में सामग्री के स्थूल गुणों और सामग्री के अंदर होने वाले सूक्ष्म गतिविधि और गति के बीच एक संबंध प्रदान करती है।
जबकि सांख्यिकीय यांत्रिकी में गतिशीलता सम्मिलित है, यहाँ ध्यान सांख्यिकीय समतुल्यता (स्थिर अवस्था) पर केंद्रित है। सांख्यिकीय समतुल्यता का तात्पर्य यह नहीं है कि कणों ने गति करना बंद कर दिया है (यांत्रिक समतुल्यता), बल्कि, केवल यह कि समुच्चय विकसित नहीं हो रहा है।
मौलिक अभिधारणा
एक पृथक प्रणाली के साथ सांख्यिकीय समतुल्यता के लिए एक पर्याप्त स्थिति (लेकिन आवश्यक नहीं) स्थिति यह है कि प्रायिकता विभाजन केवल संरक्षित गुणों (कुल ऊर्जा, कुल कण संख्या, आदि) का एक कार्य है।[1] ऐसे कई अलग-अलग समतुल्यता समुच्चय हैं जिन पर विचार किया जा सकता है, और उनमें से केवल कुछ थर्मोडायनामिक्स के अनुरूप हैं।[1] यह प्रेरित करने के लिए अतिरिक्त अवधारणाएँ आवश्यक हैं कि किसी दिए गए प्रणाली के समुच्चय का एक या दूसरा रूप क्यों होना चाहिए।
कई पाठ्यपुस्तकों में पाया जाने वाला एक सामान्य तरीका यह है कि समरूप को प्राथमिकता प्रायिकता अभिधारणा के रूप में लिया जाए।[2] यह अभिधारणा बताती है कि
- समुचित ज्ञात ऊर्जा और समुचित ज्ञात संरचना के साथ एक पृथक प्रणाली के लिए, प्रणाली को उस ज्ञान के अनुरूप किसी भी सूक्ष्मवस्था (सांख्यिकीय यांत्रिकी) में समान प्रायिकता के साथ पाया जा सकता है।
इसलिए समान प्राथमिकता प्रायिकता अभिधारणा नीचे वर्णित सूक्ष्म-विहित समेकन के लिए एक प्रेरणा प्रदान करती है। समान प्राथमिकता प्रायिकता अभिधारणा के पक्ष में विभिन्न तर्क हैं:
- एर्गोडिक परिकल्पना: एक एर्गोडिक प्रणाली वह है जो समय के साथ सभी अभिगम्य अवस्थाओं का पता लगाने के लिए विकसित होती है: वे सभी जिनमें समान ऊर्जा और संरचना होती है। एक एर्गोडिक प्रणाली में, सूक्ष्म-विहित समुच्चय निश्चित ऊर्जा के साथ एकमात्र संभव समतुल्यता है। इस दृष्टिकोण की सीमित प्रयोज्यता है, क्योंकि अधिकांश प्रणालियाँ एर्गोडिक नहीं हैं।
- उदासीनता का सिद्धांत: किसी और जानकारी के अभाव में, हम प्रत्येक संगत स्थिति को केवल समान प्रायिकताएँ प्रदान कर सकते हैं।
- अधिकतम एन्ट्रापी ऊष्मप्रवैगिकी: उदासीनता के सिद्धांत का एक अधिक विस्तृत विवरण बताता है कि सही समुच्चय वह समुच्चय है जो ज्ञात जानकारी के अनुकूल है और जिसमें सबसे बड़ा गिब्स एंट्रॉपी (सूचना एन्ट्रापी) है।[3]
सांख्यिकीय यांत्रिकी के लिए अन्य मौलिक सिद्धांत भी प्रस्तावित किए गए हैं।[4][5][6] उदाहरण के लिए, हाल के अध्ययनों से पता चलता है कि सांख्यिकीय यांत्रिकी के सिद्धांत को समान प्राथमिकता प्रायिकता अभिधारणा के बिना बनाया जा सकता है।[5][6] इस तरह की एक औपचारिकता मौलिक उष्मागतिकीय संबंध पर आधारित है, साथ ही निम्नलिखित अभिधारणाओं के समूह के साथ:[5]
- प्रायिकता घनत्व फलन समुच्चय पैरामीटर और यादृच्छिक चर के कुछ फलन के समानुपाती होता है।
- थर्मोडायनामिक अवस्था फलन को यादृच्छिक चर के समुच्चय औसत द्वारा वर्णित किया गया है।
- गिब्स एंट्रॉपी विधि द्वारा परिभाषित एंट्रॉपी उत्कृष्ट थर्मोडायनामिक में परिभाषित एन्ट्रॉपी के साथ अनुरूप होता है।
जहां तीसरे अभिधारणा को निम्नलिखित द्वारा प्रतिस्थापित किया जा सकता है:[6]
- अनंत तापमान पर, सभी सूक्ष्म-अवस्था की समान प्रायिकता होती है।
तीन थर्मोडायनामिक समुच्चय
एक साधारण रूप के साथ तीन समतुल्यता समेकन होते हैं जिन्हें परिमित मात्रा के अंदर बंधे किसी भी पृथक प्रणाली के लिए परिभाषित किया जा सकता है।[1] ये सांख्यिकीय ऊष्मप्रवैगिकी में सबसे अधिक बार चर्चित समूह हैं। स्थूल सीमा (नीचे परिभाषित) में वे सभी उत्कृष्ट ऊष्मप्रवैगिकी के अनुरूप हैं।
- सूक्ष्म-विहित समुच्चय
- समुचित रूप से दी गई ऊर्जा और निश्चित संरचना (कणों की समुचित संख्या) के साथ एक प्रणाली का वर्णन करता है। सूक्ष्म-विहित समुच्चय में प्रत्येक संभावित स्थिति की समान प्रायिकता होती है जो उस ऊर्जा और संरचना के अनुरूप होती है।
- कैननिकल समुच्चय
- निश्चित संरचना की एक प्रणाली का वर्णन करता है जो थर्मल समतुल्यता में है[note 3] एक समुचित थर्मोडायनामिक तापमान के ताप स्नान के साथ। विहित समुच्चय में अलग-अलग ऊर्जा लेकिन समान संरचना वाले अवस्था होते हैं; समुच्चय में अलग-अलग अवस्थाों को उनकी कुल ऊर्जा के आधार पर अलग-अलग प्रायिकताएँ दी जाती हैं।
- बृहत विहित समुच्चय
- गैर-निश्चित संरचना (अनिश्चित कण संख्या) वाली एक प्रणाली का वर्णन करता है जो थर्मोडायनामिक जलाशय के साथ थर्मल और रासायनिक समतुल्यता में है। जलाशय में विभिन्न प्रकार के कणों के लिए समुचित तापमान और समुचित रासायनिक क्षमता होती है। बृहत विहित समुच्चय में अलग-अलग ऊर्जा और अलग-अलग कणों की संख्या होती है; समुच्चय में अलग-अलग अवस्थाों को उनकी कुल ऊर्जा और कुल कण संख्या के आधार पर अलग-अलग प्रायिकताएं दी जाती हैं।
कई कणों (थर्मोडायनामिक सीमा) वाले प्रणाली के लिए, ऊपर सूचीबद्ध सभी तीन समेकन समान गतिविधि देते हैं। यह तो केवल गणितीय सुविधा की बात है जो समुच्चय प्रयोग किया जाता है।[7] समुच्चय की समानता के बारे में गिब्स प्रमेय[8] माप घटना की एकाग्रता के सिद्धांत में विकसित किया गया था,[9] जिसमें कार्यात्मक विश्लेषण से लेकर कृत्रिम बुद्धि और बड़ी डेटा प्रौद्योगिकी के तरीकों तक विज्ञान के कई क्षेत्रों में अनुप्रयोग हैं।[10]
महत्वपूर्ण स्थितियाँ जहां थर्मोडायनामिक समुच्चय समान परिणाम नहीं देते हैं उनमें सम्मिलित हैं:
- सूक्ष्म प्रणाली।
- एक चरण संक्रमण पर बड़ी प्रणालियाँ।
- लंबी दूरी की परस्पर क्रिया के साथ बड़े प्रणाली।
इन स्थितियो में सही ऊष्मप्रवैगिकी समुच्चय चुना जाना चाहिए क्योंकि न केवल उतार-चढ़ाव के आकार में, बल्कि कणों के विभाजन जैसे औसत मात्रा में भी इन समुच्चयओं के बीच देखने योग्य अंतर हैं। सही समुच्चय वह है जो उस तरीके से अनुरूप है जिस तरह से प्रणाली को तैयार किया गया है और इसकी विशेषता है- दूसरे शब्दों में, समुच्चय जो उस प्रणाली के बारे में ज्ञान को दर्शाता है।[2]
सूक्ष्म-विहित | कैनोनिकल | बृहत् विहित | |
---|---|---|---|
निश्चित चर | |||
सूक्ष्म विशेषताएं | सूक्ष्म अवस्था की संख्या | विहित विभाजन फलन | बृहत विभाजन फलन |
स्थूल फलन | बोल्ट्जमैन एन्ट्रॉपी̈ | हेल्महोल्ट्ज़ मुक्त ऊर्जा | बृहत क्षमता |
गणना के तरीके
एक बार किसी समुच्चय के लिए विशिष्ट अवस्था फलन की गणना किसी दिए गए प्रणाली के लिए की जाती है, तो वह प्रणाली 'हल' हो जाता है (स्थूल वेधशालाओं को विशेषता अवस्था फलन से निकाला जा सकता है)। एक थर्मोडायनामिक समुच्चय के विशिष्ट अवस्था फलन की गणना करना एक सरल कार्य नहीं है, हालांकि, इसमें प्रणाली की हर संभव स्थिति पर विचार करना सम्मिलित है। हालांकि कुछ काल्पनिक प्रणालियां पूरी तरह से हल हो गई हैं, सबसे सामान्य (और यथार्थवादी) स्थिति एक समुचित समाधान के लिए बहुत जटिल है। वास्तविक समुच्चय का अनुमान लगाने और औसत मात्रा की गणना करने के लिए विभिन्न दृष्टिकोण सम्मिलित हैं।
समुचित
ऐसे कुछ स्थितियाँ हैं जो समुचित समाधान की अनुमति देते हैं।
- बहुत छोटे सूक्ष्म प्रणालियों के लिए, प्रणाली के सभी संभावित अवस्थाों (क्वांटम यांत्रिकी में समुचित विकर्णीकरण का उपयोग करके, याउत्कृष्ट यांत्रिकी में सभी चरण स्थान पर अभिन्न) की गणना करके सीधे समुच्चय की गणना की जा सकती है।
- कुछ बड़ी प्रणालियों में कई वियोज्य सूक्ष्मदर्शी प्रणालियाँ होती हैं, और प्रत्येक उपप्रणाली का स्वतंत्र रूप से विश्लेषण किया जा सकता है। विशेष रूप से, गैर-अंतःक्रियात्मक कणों के आदर्श गैसों में यह गुण होता है, जिससे मैक्सवेल-बोल्ट्जमैन सांख्यिकी, फर्मी-डिराक सांख्यिकी और बोस-आइंस्टीन सांख्यिकी की समुचित व्युत्पत्ति की अनुमति मिलती है।[2]
- सहभागिता वाली कुछ बड़ी प्रणालियाँ हल की गई हैं। सूक्ष्म गणितीय तकनीकों के उपयोग से, कुछ खिलौनों के मॉडल के लिए समुचित समाधान खोजे गए हैं।[11] कुछ उदाहरणों में सम्मिलित हैं Bethe ansatz, शून्य क्षेत्र में वर्ग-जाली आइसिंग मॉडल, कठोर षट्भुज मॉडल।
मोंटे कार्लो
एक अनुमानित दृष्टिकोण जो कंप्यूटर के लिए विशेष रूप से अच्छी तरह से अनुकूल है, मोंटे कार्लो विधि है, जो प्रणाली के संभावित अवस्थाों में से कुछ की जांच करता है, अवस्थाों को यादृच्छिक रूप से (उचित वजन के साथ) चुना जाता है। जब तक ये अवस्था प्रणाली के अवस्थाों के पूरे समुच्चय का एक प्रतिनिधि नमूना बनाते हैं, तब तक अनुमानित विशेषता कार्य प्राप्त होता है। जैसे-जैसे अधिक से अधिक यादृच्छिक नमूने सम्मिलित किए जाते हैं, त्रुटियाँ एकपक्षीय रूप से निम्न स्तर तक कम हो जाती हैं।
- मेट्रोपोलिस-हेस्टिंग्स एल्गोरिद्म एक उत्कृष्ट मोंटे कार्लो पद्धति है जिसका उपयोग प्रारंभ में कैनोनिकल समुच्चय का नमूना लेने के लिए किया गया था।
- पथ अभिन्न मोंटे कार्लो, कैनोनिकल समुच्चय का नमूना लेने के लिए भी उपयोग किया जाता है।
अन्य
- दुर्लभ गैर-आदर्श गैसों के लिए, क्लस्टर विस्तार जैसे दृष्टिकोण कमजोर अंतःक्रियाओं के प्रभाव को सम्मिलित करने के लिए गड़बड़ी सिद्धांत का उपयोग करते हैं, जिससे वायरल विस्तार होता है।[12]
- घने तरल पदार्थों के लिए, एक और अनुमानित दृष्टिकोण कम विभाजन कार्यों पर आधारित है, विशेष रूप से रेडियलविभाजन समारोह।[12]
- आणविक गतिशीलता कंप्यूटर अनुकृति का उपयोग एर्गोडिक प्रणाली में सूक्ष्म-विहित समेकन औसत की गणना के लिए किया जा सकता है। स्टोचैस्टिक हीट बाथ के लिए एक संयोजन को सम्मिलित करने के साथ, वे विहित और बृहत विहित स्थितियों को भी मॉडल कर सकते हैं।
- गैर-समतुल्यता सांख्यिकीय यांत्रिक परिणामों (नीचे देखें) से जुड़े मिश्रित तरीके उपयोगी हो सकते हैं।
गैर-समतुल्यता सांख्यिकीय यांत्रिकी
कई भौतिक घटनाओं में समतुल्यता से बाहर अर्ध-थर्मोडायनामिक प्रक्रियाएं सम्मिलित होती हैं, उदाहरण के लिए:
- थर्मल चालन, एक तापमान असमतुल्यता से प्रेरित,
- विद्युत चालन, एक वोल्टेज असमतुल्यता द्वारा संचालित,
- मुक्त ऊर्जा में कमी से प्रेरित सहज रासायनिक प्रतिक्रियाएँ,
- घर्षण, अपव्यय, क्वांटम विकृति,
- प्रणाली को बाहरी बलों द्वारा पंप किया जा रहा है (ऑप्टिकल पंपिंग, आदि),
- और सामान्य रूप से अपरिवर्तनीय प्रक्रियाएं।
ये सभी प्रक्रियाएं समय के साथ विशिष्ट दरों के साथ होती हैं। इंजीनियरिंग में ये दरें महत्वपूर्ण हैं। गैर-समतुल्यता सांख्यिकीय यांत्रिकी का क्षेत्र इन गैर-समतुल्यता प्रक्रियाओं को सूक्ष्म स्तर पर समझने से संबंधित है। (सांख्यिकीय ऊष्मप्रवैगिकी का उपयोग केवल अंतिम परिणाम की गणना के लिए किया जा सकता है, बाहरी असमतुल्यता को हटा दिए जाने के बाद और समुच्चय वापस समतुल्यता में आ गया है।)
सिद्धांत रूप में, गैर-समतुल्यता सांख्यिकीय यांत्रिकी गणितीय रूप से समुचित हो सकती है: लिउविले के प्रमेय (हैमिल्टनियन) | लिउविले के समीकरण या इसके क्वांटम समकक्ष, वॉन न्यूमैन समीकरण जैसे नियतात्मक समीकरणों के अनुसार समय के साथ एक पृथक प्रणाली के लिए समुच्चय विकसित होता है। ये समीकरण प्रत्येक अवस्था में गति के यांत्रिक समीकरणों को स्वतंत्र रूप से लागू करने का परिणाम हैं। दुर्भाग्य से, इन समुच्चय विकास समीकरणों में अंतर्निहित यांत्रिक गति की जटिलता का बहुत अधिक भाग होता है, और इसलिए समुचित समाधान प्राप्त करना बहुत मुश्किल होता है। इसके अतिरिक्त, समुच्चय विकास समीकरण पूरी तरह से प्रतिवर्ती हैं और जानकारी को नष्ट नहीं करते हैं (समुच्चय की गिब्स एंट्रॉपी संरक्षित है)। मॉडलिंग अपरिवर्तनीय प्रक्रियाओं में आगे बढ़ने के लिए, प्रायिकता और प्रतिवर्ती यांत्रिकी के अतिरिक्त कारकों पर विचार करना आवश्यक है।
गैर-समतुल्यता यांत्रिकी इसलिए सैद्धांतिक अनुसंधान का एक सक्रिय क्षेत्र है क्योंकि इन अतिरिक्त मान्यताओं की वैधता की सीमा का पता लगाया जाना जारी है। निम्नलिखित उपखंडों में कुछ दृष्टिकोणों का वर्णन किया गया है।
स्टोकेस्टिक तरीके
गैर-समतुल्यता सांख्यिकीय यांत्रिकी के लिए एक दृष्टिकोण प्रणाली में स्टोकेस्टिक (यादृच्छिक) गतिविधि को सम्मिलित करना है। स्टोकेस्टिक गतिविधि समुच्चय में निहित जानकारी को नष्ट कर देता है। हालांकि यह तकनीकी रूप से गलत है (ब्लैक होल सूचना विरोधाभास को छोड़कर, एक प्रणाली अपने आप में सूचना की हानि का कारण नहीं बन सकती है), यादृच्छिकता को यह दर्शाने के लिए जोड़ा जाता है कि ब्याज की जानकारी समय के साथ प्रणाली के अंदर सूक्ष्म सहसंबंधों में परिवर्तित हो जाती है, या बीच के सहसंबंधों के बीच प्रणाली और पर्यावरण। ये सहसंबंध रुचि के चर पर कैओस सिद्धांत या छद्म यादृच्छिक प्रभाव के रूप में दिखाई देते हैं। इन सहसंबंधों को यादृच्छिकता के साथ बदलकर, गणनाओं को बहुत आसान बनाया जा सकता है।
निकट-समतुल्यता के तरीके
गैर-समतुल्यता सांख्यिकीय यांत्रिक मॉडल का एक अन्य महत्वपूर्ण वर्ग उन प्रणालियों से संबंधित है जो समतुल्यता से बहुत कम परेशान हैं। बहुत कम गड़बड़ी के साथ, प्रतिक्रिया का विश्लेषण रैखिक प्रतिक्रिया सिद्धांत में किया जा सकता है। एक उल्लेखनीय परिणाम, उतार-चढ़ाव-अपव्यय प्रमेय द्वारा औपचारिक रूप से, यह है कि एक प्रणाली की प्रतिक्रिया जब समतुल्यता के निकट होती है, तो यह सांख्यिकीय उतार-चढ़ाव से ठीक से संबंधित होता है, जब प्रणाली कुल समतुल्यता में होती है। अनिवार्य रूप से, एक प्रणाली जो समतुल्यता से थोड़ी दूर है - चाहे वह बाहरी ताकतों द्वारा या उतार-चढ़ाव से हो - उसी तरह से समतुल्यता की ओर आराम करती है, क्योंकि प्रणाली अंतर नहीं बता सकती है या यह नहीं जान सकती है कि यह समतुल्यता से दूर कैसे हो गया।[12]: 664
यह समतुल्यता सांख्यिकीय यांत्रिकी से परिणाम निकालकर ओम के नियम और तापीय चालकता जैसी संख्याएँ प्राप्त करने के लिए एक अप्रत्यक्ष अवसर प्रदान करता है। चूंकि समतुल्यता सांख्यिकीय यांत्रिकी गणितीय रूप से अच्छी तरह से परिभाषित है और (कुछ स्थितियो में) गणना के लिए अधिक उत्तरदायी है, उतार-चढ़ाव-अपव्यय संयोजन निकट-समतुल्यता सांख्यिकीय यांत्रिकी में गणना के लिए एक सुविधाजनक शॉर्टकट हो सकता है।
इस संबंध को बनाने के लिए उपयोग किए जाने वाले कुछ सैद्धांतिक उपकरणों में सम्मिलित हैं:
- उतार-चढ़ाव-अपव्यय प्रमेय
- ऑनसेगर पारस्परिक संबंध
- हरा-कुबो संबंध
- बैलिस्टिक चालन#Landauer-Buttiker औपचारिकता|Landauer–Büttiker औपचारिकता
- मोरी-ज़्वानज़िग औपचारिकता
हाइब्रिड तरीके
एक उन्नत दृष्टिकोण स्टोकास्टिक विधियों और रैखिक प्रतिक्रिया सिद्धांत के संयोजन का उपयोग करता है। एक उदाहरण के रूप में, एक इलेक्ट्रॉनिक प्रणाली के प्रवाहकत्त्व में क्वांटम सुसंगतता प्रभाव (कमजोर स्थानीयकरण, चालन में उतार-चढ़ाव) की गणना करने के लिए एक दृष्टिकोण ग्रीन-कुबो संबंधों का उपयोग है, जिसमें विभिन्न इलेक्ट्रॉनों के उपयोग के द्वारा विभिन्न इलेक्ट्रॉनों के बीच परस्पर क्रिया द्वारा स्टोचैस्टिक dephasing को सम्मिलित किया गया है। क्लेडीश विधि।[13][14]
ऊष्मप्रवैगिकी के बाहर अनुप्रयोग
एक प्रणाली की स्थिति के बारे में ज्ञान में अनिश्चितता के साथ सामान्य यांत्रिक प्रणालियों का विश्लेषण करने के लिए समुच्चय औपचारिकता का भी उपयोग किया जा सकता है। एन्सेम्बल का भी उपयोग किया जाता है:
- समय के साथ अनिश्चितता का प्रसार,[1]
- गुरुत्वाकर्षण कक्षाओं का प्रतिगमन विश्लेषण,
- मौसम की भविष्यवाणी,
- तंत्रिका नेटवर्क की गतिशीलता,
- खेल सिद्धांत और अर्थशास्त्र में परिबद्ध-तर्कसंगत संभावित खेल।
इतिहास
1738 में, स्विस भौतिक विज्ञानी और गणितज्ञ डेनियल बर्नौली ने हाइड्रोडायनामिका को प्रकाशित किया जिसने गैसों के गतिज सिद्धांत का आधार रखा। इस कार्य में, बर्नौली ने उस तर्क को प्रस्तुत किया, जो आज भी प्रयोग किया जाता है, कि गैसों में बड़ी संख्या में अणु सभी दिशाओं में चलते हैं, कि सतह पर उनका प्रभाव गैस के दबाव का कारण बनता है जिसे हम महसूस करते हैं, और जिसे हम ऊष्मा के रूप में अनुभव करते हैं वह केवल उनकी गति की गतिज ऊर्जा है।[4]
1859 में, रुडोल्फ क्लॉसियस द्वारा अणुओं के प्रसार पर एक लेख पढ़ने के बाद, स्कॉटिश भौतिक विज्ञानी जेम्स क्लर्क मैक्सवेल ने आणविक वेगों का मैक्सवेलविभाजन तैयार किया, जिसने एक विशिष्ट श्रेणी में एक निश्चित वेग वाले अणुओं का अनुपात दिया।[15] यह भौतिकी मे अब तक का पहला सांख्यिकीय नियम था।[16] मैक्सवेल ने पहला यांत्रिक तर्क भी दिया कि आण्विक संघट्टों के लिए तापमान की समानता आवश्यक है और इसलिए समतुल्यता की ओर एक प्रवृत्ति है।[17] पांच वर्ष बाद, 1864 में, लुडविग बोल्ट्जमैन, वियना में एक युवा छात्र, मैक्सवेल के लेख के संपर्क मे आए और उन्होंने अपने जीवन का अधिकांश समय इस विषय को विकसित करने में बिताया।
सांख्यिकीय यांत्रिकी का प्रारंभ 1870 के दशक में बोल्ट्जमैन के कार्य से हुई थी, जिनमें से अधिकांश सामूहिक रूप से गैस थ्योरी पर उनके 1896 के व्याख्यान में प्रकाशित हुए थे।[18] ऊष्मप्रवैगिकी, एच-प्रमेय, वाहक सिद्धांत (सांख्यिकीय भौतिकी), ऊष्म समतुल्यता, गैसों की स्थिति का समीकरण, और इसी तरह के विषयों की सांख्यिकीय व्याख्या पर बोल्ट्जमैन के मूल लेख, वियना अकादमी और अन्य समाजों की कार्यवाही में लगभग 2,000 पृष्ठों पर कब्जा करते हैं। . बोल्ट्जमैन ने एक समतुल्यता सांख्यिकीय समुच्चय की अवधारणा पेश की और अपने एच-प्रमेय|एच-प्रमेय के साथ पहली बार गैर-समतुल्यता सांख्यिकीय यांत्रिकी की जांच भी की।
सांख्यिकीय यांत्रिकी शब्द अमेरिकी गणितीय भौतिक विज्ञानी जोशिया विलार्ड गिब्स | जे। 1884 में विलार्ड गिब्स।[19][note 4] प्रायिकता यांत्रिकी आज एक अधिक उपयुक्त शब्द लग सकता है, लेकिन सांख्यिकीय यांत्रिकी मजबूती से स्थापित है।[20] अपनी मृत्यु के कुछ समय पहले, गिब्स ने 1902 में सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांतों को प्रकाशित किया, एक पुस्तक जिसने सांख्यिकीय यांत्रिकी को सभी यांत्रिक प्रणालियों-स्थूल या सूक्ष्म, गैसीय या गैर-गैसीय को संबोधित करने के लिए एक पूरी तरह से सामान्य दृष्टिकोण के रूप में औपचारिक रूप दिया।[1]गिब्स के तरीकों को प्रारंभ में उत्कृष्ट यांत्रिकी के ढांचे में प्राप्त किया गया था, हालांकि वे इस तरह की सामान्यता के थे कि वे बाद के क्वांटम यांत्रिकी के लिए आसानी से अनुकूल पाए गए, और आज भी सांख्यिकीय यांत्रिकी की नींव बनाते हैं।[2]
यह भी देखें
- ऊष्मप्रवैगिकी: गैर-संतुलन ऊष्मप्रवैगिकी | गैर-संतुलन, रासायनिक ऊष्मप्रवैगिकी
- यांत्रिकी: शास्त्रीय यांत्रिकी, क्वांटम यांत्रिकी
- संभावना, सांख्यिकीय पहनावा (गणितीय भौतिकी)
- संख्यात्मक तरीके: मोंटे कार्लो विधि, आणविक गतिकी
- सांख्यिकीय भौतिकी
- क्वांटम सांख्यिकीय यांत्रिकी
- सांख्यिकीय यांत्रिकी में उल्लेखनीय पाठ्यपुस्तकों की सूची
- भौतिकी#सांख्यिकीय यांत्रिकी में प्रकाशनों की सूची
- लाप्लास_ट्रांसफ़ॉर्म#सांख्यिकीय_यांत्रिकी
टिप्पणियाँ
- ↑ The probabilities in quantum statistical mechanics should not be confused with quantum superposition. While a quantum ensemble can contain states with quantum superpositions, a single quantum state cannot be used to represent an ensemble.
- ↑ Statistical equilibrium should not be confused with mechanical equilibrium. The latter occurs when a mechanical system has completely ceased to evolve even on a microscopic scale, due to being in a state with a perfect balancing of forces. Statistical equilibrium generally involves states that are very far from mechanical equilibrium.
- ↑ The transitive thermal equilibrium (as in, "X is thermal equilibrium with Y") used here means that the ensemble for the first system is not perturbed when the system is allowed to weakly interact with the second system.
- ↑ According to Gibbs, the term "statistical", in the context of mechanics, i.e. statistical mechanics, was first used by the Scottish physicist James Clerk Maxwell in 1871. From: J. Clerk Maxwell, Theory of Heat (London, England: Longmans, Green, and Co., 1871), p. 309: "In dealing with masses of matter, while we do not perceive the individual molecules, we are compelled to adopt what I have described as the statistical method of calculation, and to abandon the strict dynamical method, in which we follow every motion by the calculus."
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons.
- ↑ 2.0 2.1 2.2 2.3 Tolman, R. C. (1938). The Principles of Statistical Mechanics. Dover Publications. ISBN 9780486638966.
- ↑ Jaynes, E. (1957). "सूचना सिद्धांत और सांख्यिकीय यांत्रिकी". Physical Review. 106 (4): 620–630. Bibcode:1957PhRv..106..620J. doi:10.1103/PhysRev.106.620.
- ↑ 4.0 4.1 J. Uffink, "Compendium of the foundations of classical statistical physics." (2006)
- ↑ 5.0 5.1 5.2 Gao, Xiang; Gallicchio, Emilio; Roitberg, Adrian (2019). "सामान्यीकृत बोल्ट्जमैन वितरण एकमात्र ऐसा वितरण है जिसमें गिब्स-शैनन एन्ट्रापी थर्मोडायनामिक एन्ट्रॉपी के बराबर होती है". The Journal of Chemical Physics. 151 (3): 034113. arXiv:1903.02121. Bibcode:2019JChPh.151c4113G. doi:10.1063/1.5111333. PMID 31325924. S2CID 118981017.
- ↑ 6.0 6.1 6.2 Gao, Xiang (March 2022). "एनसेंबल थ्योरी का गणित". Results in Physics. 34: 105230. Bibcode:2022ResPh..3405230G. doi:10.1016/j.rinp.2022.105230. S2CID 221978379.
- ↑ Reif, F. (1965). सांख्यिकीय और तापीय भौतिकी के मूल सिद्धांत. McGraw–Hill. p. 227. ISBN 9780070518001.
- ↑ Touchette, Hugo (2015). "एन्सेम्बल्स की समतुल्यता और गैर-बराबरी: थर्मोडायनामिक, मैक्रोस्टेट और माप स्तर". Journal of Statistical Physics. 159 (5): 987–1016. arXiv:1403.6608. Bibcode:2015JSP...159..987T. doi:10.1007/s10955-015-1212-2. S2CID 118534661.
- ↑ Ledoux, Michel (2005). माप घटना की एकाग्रता (PDF). Mathematical Surveys and Monographs. Vol. 89. doi:10.1090/surv/089. ISBN 9780821837924..
- ↑ Gorban, A. N.; Tyukin, I. Y. (2018). "विमीयता का आशीर्वाद: डेटा के सांख्यिकीय भौतिकी की गणितीय नींव". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376 (2118): 20170237. arXiv:1801.03421. Bibcode:2018RSPTA.37670237G. doi:10.1098/rsta.2017.0237. PMC 5869543. PMID 29555807.
- ↑ Baxter, Rodney J. (1982). सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल. Academic Press Inc. ISBN 9780120831807.
- ↑ 12.0 12.1 12.2 Balescu, Radu (1975). Equilibrium and Non-Equilibrium Statistical Mechanics. John Wiley & Sons. ISBN 9780471046004.
- ↑ Altshuler, B. L.; Aronov, A. G.; Khmelnitsky, D. E. (1982). "क्वांटम स्थानीयकरण पर छोटे ऊर्जा हस्तांतरण के साथ इलेक्ट्रॉन-इलेक्ट्रॉन टकराव के प्रभाव". Journal of Physics C: Solid State Physics. 15 (36): 7367. Bibcode:1982JPhC...15.7367A. doi:10.1088/0022-3719/15/36/018.
- ↑ Aleiner, I.; Blanter, Y. (2002). "चालन में उतार-चढ़ाव के लिए इनलेस्टिक बिखरने का समय". Physical Review B. 65 (11): 115317. arXiv:cond-mat/0105436. Bibcode:2002PhRvB..65k5317A. doi:10.1103/PhysRevB.65.115317. S2CID 67801325.
- ↑ See:
- Maxwell, J.C. (1860) "Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres," Philosophical Magazine, 4th series, 19 : 19–32.
- Maxwell, J.C. (1860) "Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another," Philosophical Magazine, 4th series, 20 : 21–37.
- ↑ Mahon, Basil (2003). द मैन हू चेंज्ड एवरीथिंग - द लाइफ ऑफ जेम्स क्लर्क मैक्सवेल. Hoboken, NJ: Wiley. ISBN 978-0-470-86171-4. OCLC 52358254.
- ↑ Gyenis, Balazs (2017). "मैक्सवेल और सामान्य वितरण: संभाव्यता, स्वतंत्रता और संतुलन की प्रवृत्ति की रंगीन कहानी". Studies in History and Philosophy of Modern Physics. 57: 53–65. arXiv:1702.01411. Bibcode:2017SHPMP..57...53G. doi:10.1016/j.shpsb.2017.01.001. S2CID 38272381.
- ↑ Ebeling, Werner; Sokolov, Igor M. (2005). Ebeling Werner; Sokolov Igor M. (eds.). स्टैटिस्टिकल थर्मोडायनामिक्स एंड स्टोचैस्टिक थ्योरी ऑफ़ नोनक्विलिब्रियम सिस्टम्स. Series on Advances in Statistical Mechanics. Vol. 8. World Scientific Press. pp. 3–12. Bibcode:2005stst.book.....E. doi:10.1142/2012. ISBN 978-90-277-1674-3. (section 1.2)
- ↑ J. W. Gibbs, "On the Fundamental Formula of Statistical Mechanics, with Applications to Astronomy and Thermodynamics." Proceedings of the American Association for the Advancement of Science, 33, 57-58 (1884). Reproduced in The Scientific Papers of J. Willard Gibbs, Vol II (1906), pp. 16.
- ↑ Mayants, Lazar (1984). संभाव्यता और भौतिकी की पहेली. Springer. p. 174. ISBN 978-90-277-1674-3.
इस पेज में लापता आंतरिक लिंक की सूची
- आंकड़े
- भौतिक विज्ञान
- थर्मोडायनामिक समतुल्यता
- सिद्धांत प्रायिकता
- ताप की गुंजाइश
- सांख्यिकीय समुच्चय (गणितीय भौतिकी)
- महामारी प्रायिकता
- मौलिक थर्मोडायनामिक संबंध
- अलग निकाय
- गर्मी स्नान
- माप की एकाग्रता
- बड़ा डेटा
- कृत्रिम होशियारी
- खिलौना मॉडल
- कठिन षट्भुज मॉडल
- आणविक गतिकी
- तापीय चालकता
- क्वांटम असंगति
- टकराव
- अराजकता सिद्धांत
- कूट-यादृच्छिक
- ऊष्मीय चालकता
- समुच्चय पूर्वानुमान
- तंत्रिका - तंत्र
- की परिक्रमा
- गैसों का गतिज सिद्धांत
- स्थिति के समीकरण
बाहरी संबंध
- Philosophy of Statistical Mechanics article by Lawrence Sklar for the Stanford Encyclopedia of Philosophy.
- Sklogwiki - Thermodynamics, statistical mechanics, and the computer simulation of materials. SklogWiki is particularly orientated towards liquids and soft condensed matter.
- Thermodynamics and Statistical Mechanics by Richard Fitzpatrick
- Lecture Notes in Statistical Mechanics and Mesoscopics by Doron Cohen
- Videos of lecture series in statistical mechanics on YouTube taught by Leonard Susskind.
- Vu-Quoc, L., Configuration integral (statistical mechanics), 2008. this wiki site is down; see this article in the web archive on 2012 April 28.