द्विघात अपरिमेय संख्या: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[:hi:गणित|गणित]] में, एक द्विघात अपरिमेय संख्या(जिसे एक द्विघात अपरिमेय, एक द्विघात अपरिमेयता या द्विघात करणी के रूप में भी जाना जाता है) [[:hi:अपरिमेय संख्या|अपरिमेय संख्या]] है जो [[:hi:परिमेय संख्या|परिमेय]] [[:hi:गुणक|गुणांकों]] के साथ कुछ [[:hi:द्विघात समीकरण|द्विघात समीकरण]] का समाधान है जो [[:hi:परिमेय संख्या|परिमेय संख्याओं]] पर [[:hi:अलघुकरणीय बहुपद|अप्रासंगिक]] है। <ref>Jörn Steuding, ''Diophantine Analysis'', (2005), Chapman & Hall, p.72.</ref> चूंकि एक द्विघात समीकरण के गुणांकों में अंशों को दोनों पक्षों में उनके [[:hi:अल्प सामान्य विभाजक|सबसे कम सामान्य भाजक]] से गुणा करके निश्चित किया जा सकता है, एक द्विघात अपरिमेय [[:hi:पूर्णांक|पूर्णांक]] गुणांक वाले कुछ द्विघात समीकरण का एक अपरिमेय मूल है। द्विघात अपरिमेय संख्या, [[:hi:समिश्र संख्या|सम्मिश्र संख्याओं]] का एक [[:hi:उपसमुच्चय|उपसमुच्चय]], [[:hi:बीजीय संख्या|डिग्री 2]] की [[बीजगणितीय संख्याएँ]] हैं, और इसलिए इन्हें व्यक्त किया जा सकता है
[[:hi:गणित|गणित]] में, एक द्विघात अपरिमेय संख्या (जिसे एक द्विघात अपरिमेय, एक द्विघात अपरिमेयता या द्विघात करणी के रूप में भी जाना जाता है) [[:hi:अपरिमेय संख्या|अपरिमेय संख्या]] है जो [[:hi:परिमेय संख्या|परिमेय]] [[:hi:गुणक|गुणांकों]] के साथ कुछ [[:hi:द्विघात समीकरण|द्विघात समीकरण]] का समाधान है जो [[:hi:परिमेय संख्या|परिमेय संख्याओं]] पर [[:hi:अलघुकरणीय बहुपद|अप्रासंगिक]] है। <ref>Jörn Steuding, ''Diophantine Analysis'', (2005), Chapman & Hall, p.72.</ref> चूंकि एक द्विघात समीकरण के गुणांकों में अंशों को दोनों पक्षों में उनके [[:hi:अल्प सामान्य विभाजक|सबसे कम सामान्य भाजक]] से गुणा करके निश्चित किया जा सकता है, एक द्विघात अपरिमेय [[:hi:पूर्णांक|पूर्णांक]] गुणांक वाले कुछ द्विघात समीकरण का एक अपरिमेय मूल है। द्विघात अपरिमेय संख्या, [[:hi:समिश्र संख्या|सम्मिश्र संख्याओं]] का एक [[:hi:उपसमुच्चय|उपसमुच्चय]], [[:hi:बीजीय संख्या|डिग्री 2]] की [[बीजगणितीय संख्याएँ]] हैं, और इसलिए इन्हें व्यक्त किया जा सकता है


:<math>{a+b\sqrt{c} \over d},</math>
:<math>{a+b\sqrt{c} \over d},</math>
पूर्णांकों के लिए {{math|''a'', ''b'', ''c'', ''d''}}; साथ {{math|''b''}}, {{math|''c''}} तथा {{math|''d''}} गैर-शून्य, और वर्ग-मुक्त पूर्णांक {{math|''c''}}  की सकारात्मकता का निर्धारण कर हमें वास्तविक द्विघात अपरिमेय संख्याएँ मिलती हैं, जबकि एक ऋणात्मक {{math|''c''}} जटिल द्विघात अपरिमेय संख्याएँ देता है जो वास्तविक संख्याएँ नहीं हैं। यह द्विघात अपरिमेय से चौगुनी पूर्णांकों के लिए एक अंतःक्षेपी फलन को परिभाषित करता है, इसलिए उनकी संख्यात्मकता सबसे अधिक गणना योग्य है; चूँकि दूसरी ओर एक अभाज्य संख्या का प्रत्येक वर्गमूल एक विशिष्ट द्विघात अपरिमेय है, और कई अभाज्य संख्याएँ हैं, वे न्यूनतम गणनीय हैं; इसलिए द्विघात अपरिमेय एक गणनीय समुच्चय हैं।
पूर्णांकों के लिए {{math|''a'', ''b'', ''c'', ''d''}}; साथ {{math|''b''}}, {{math|''c''}} तथा {{math|''d''}} गैर-शून्य, और वर्ग-मुक्त पूर्णांक {{math|''c''}}  की सकारात्मकता का निर्धारण कर हमें वास्तविक द्विघात अपरिमेय संख्याएँ मिलती हैं, जबकि एक ऋणात्मक {{math|''c''}} जटिल द्विघात अपरिमेय संख्याएँ देता है जो वास्तविक संख्याएँ नहीं हैं। यह द्विघात अपरिमेय से चौगुनी पूर्णांकों के लिए एक अंतःक्षेपी फलन को परिभाषित करता है, इसलिए उनकी संख्यात्मकता सबसे अधिक गणना योग्य है; चूँकि दूसरी ओर एक अभाज्य संख्या का प्रत्येक वर्गमूल एक विशिष्ट द्विघात अपरिमेय है, और कई अभाज्य संख्याएँ हैं, वे न्यूनतम गणनीय हैं; इसलिए द्विघात अपरिमेय एक गणनीय समुच्चय हैं।


परिमेय संख्याओं के क्षेत्र(गणित) के क्षेत्र विस्तार के निर्माण के लिए क्षेत्र सिद्धांत(गणित) में द्विघात अपरिमेय का उपयोग किया जाता है {{math|'''Q'''}}. वर्ग मुक्त पूर्णांक दिया गया है {{math|''c''}}, की वृद्धि {{math|'''Q'''}} द्विघात अपरिमेय का उपयोग करके {{math|{{sqrt|''c''}}}} द्विघात क्षेत्र उत्पन्न करता है {{math|'''Q'''({{sqrt|''c''}}}}). उदाहरण के लिए, तत्वों का गुणात्मक व्युत्क्रम {{math|'''Q'''({{sqrt|''c''}}}}) उपरोक्त बीजगणितीय संख्याओं के समान रूप हैं:
परिमेय संख्याओं के क्षेत्र (गणित) के क्षेत्र विस्तार के निर्माण के लिए क्षेत्र सिद्धांत (गणित) में द्विघात अपरिमेय का उपयोग किया जाता है {{math|'''Q'''}}. वर्ग मुक्त पूर्णांक दिया गया है {{math|''c''}}, की वृद्धि {{math|'''Q'''}} द्विघात अपरिमेय का उपयोग करके {{math|{{sqrt|''c''}}}} द्विघात क्षेत्र उत्पन्न करता है {{math|'''Q'''({{sqrt|''c''}}}}). उदाहरण के लिए, तत्वों का गुणात्मक व्युत्क्रम {{math|'''Q'''({{sqrt|''c''}}}}) उपरोक्त बीजगणितीय संख्याओं के समान रूप हैं:


:<math>{d \over a+b\sqrt{c}} = {ad - bd\sqrt{c} \over a^2-b^2c}. </math>
:<math>{d \over a+b\sqrt{c}} = {ad - bd\sqrt{c} \over a^2-b^2c}. </math>
Line 10: Line 10:


:<math>\sqrt{3} = 1.732\ldots=[1;1,2,1,2,1,2,\ldots]</math>
:<math>\sqrt{3} = 1.732\ldots=[1;1,2,1,2,1,2,\ldots]</math>
आवधिक निरंतर अंशों को तर्कसंगत संख्याओं के साथ एक-से-एक पत्राचार में रखा जा सकता है। पत्राचार स्पष्ट रूप से मिंकोस्की के प्रश्न चिह्न समारोह द्वारा प्रदान किया गया है, और उस लेख में एक स्पष्ट निर्माण दिया गया है। यह पूरी तरह से परिमेय संख्याओं और द्विआधारी अंकों के तार के बीच पत्राचार के अनुरूप है, जिसमें अंततः दोहराई जाने वाली कड़ी होती है, जो प्रश्न चिह्न फलन द्वारा भी प्रदान की जाती है। इस तरह के दोहराए जाने वाले अनुक्रम डायाडिक परिवर्तन(द्विआधारी अंकों के लिए) और गॉस-कुज़मिन-विर्सिंग ऑपरेटर की आवधिक कक्षाओं के अनुरूप हैं। <math>h(x)=1/x-\lfloor 1/x \rfloor</math> निरंतर अंशों के लिए व्यक्त किया गया है।
आवधिक निरंतर अंशों को तर्कसंगत संख्याओं के साथ एक-से-एक पत्राचार में रखा जा सकता है। पत्राचार स्पष्ट रूप से मिंकोस्की के प्रश्न चिह्न समारोह द्वारा प्रदान किया गया है, और उस लेख में एक स्पष्ट निर्माण दिया गया है। यह पूरी तरह से परिमेय संख्याओं और द्विआधारी अंकों के तार के बीच पत्राचार के अनुरूप है, जिसमें अंततः दोहराई जाने वाली कड़ी होती है, जो प्रश्न चिह्न फलन द्वारा भी प्रदान की जाती है। इस तरह के दोहराए जाने वाले अनुक्रम डायाडिक परिवर्तन (द्विआधारी अंकों के लिए) और गॉस-कुज़मिन-विर्सिंग ऑपरेटर की आवधिक कक्षाओं के अनुरूप हैं। <math>h(x)=1/x-\lfloor 1/x \rfloor</math> निरंतर अंशों के लिए व्यक्त किया गया है।


== वास्तविक द्विघात अपरिमेय संख्या और अनिश्चित द्विआधारी द्विघात रूप ==
== वास्तविक द्विघात अपरिमेय संख्या और अनिश्चित द्विआधारी द्विघात रूप ==
Line 26: Line 26:
प्रत्येक द्विघात अपरिमेयता किसी न किसी समुच्चय में होती है <math>S_c</math>, क्योंकि सर्वांगसमता की शर्तों को अंश और हर को एक उचित गुणक द्वारा मापन करके पूरा किया जा सकता है।
प्रत्येक द्विघात अपरिमेयता किसी न किसी समुच्चय में होती है <math>S_c</math>, क्योंकि सर्वांगसमता की शर्तों को अंश और हर को एक उचित गुणक द्वारा मापन करके पूरा किया जा सकता है।


एक आव्यूह(गणित)
एक आव्यूह (गणित)


:<math>\begin{pmatrix} \alpha & \beta\\ \gamma & \delta\end{pmatrix}</math>
:<math>\begin{pmatrix} \alpha & \beta\\ \gamma & \delta\end{pmatrix}</math>
Line 34: Line 34:
यदि <math>y</math> में <math>S_c</math> है, फिर भी <math>z</math>,
यदि <math>y</math> में <math>S_c</math> है, फिर भी <math>z</math>,


के बीच संबंध <math>y</math> तथा <math>z</math> के ऊपर एक तुल्यता संबंध है।(यह इस प्रकार है, उदाहरण के लिए, क्योंकि उपरोक्त परिवर्तन सेट पर निर्धारक 1 के साथ पूर्णांक <math>S_c</math> आव्यूह के समूह(गणित) की एक समूह क्रिया(गणित) देता है ।) इस प्रकार, <math>S_c</math> समतुल्य वर्गों में विभाजन, प्रत्येक तुल्यता वर्ग में कुछ आव्यूह की क्रिया के माध्यम से प्रत्येक युग्म समतुल्य के साथ द्विघात अपरिमेयताओं का संग्रह होता है। सेरेट के प्रमेय का अर्थ है कि समतुल्य द्विघात अपरिमेयताओं के नियमित निरंतर अंश विस्तार अंततः समान होते हैं, अर्थात, आंशिक भागफलों के उनके अनुक्रम में एक ही कड़ी होती है। इस प्रकार, एक तुल्यता वर्ग में सभी संख्याओं में निरंतर अंश विस्तार होता है जो अंततः एक ही कड़ी के साथ आवधिक होते हैं।
के बीच संबंध <math>y</math> तथा <math>z</math> के ऊपर एक तुल्यता संबंध है। (यह इस प्रकार है, उदाहरण के लिए, क्योंकि उपरोक्त परिवर्तन सेट पर निर्धारक 1 के साथ पूर्णांक <math>S_c</math> आव्यूह के समूह (गणित) की एक समूह क्रिया (गणित) देता है ।) इस प्रकार, <math>S_c</math> समतुल्य वर्गों में विभाजन, प्रत्येक तुल्यता वर्ग में कुछ आव्यूह की क्रिया के माध्यम से प्रत्येक युग्म समतुल्य के साथ द्विघात अपरिमेयताओं का संग्रह होता है। सेरेट के प्रमेय का अर्थ है कि समतुल्य द्विघात अपरिमेयताओं के नियमित निरंतर अंश विस्तार अंततः समान होते हैं, अर्थात, आंशिक भागफलों के उनके अनुक्रम में एक ही कड़ी होती है। इस प्रकार, एक तुल्यता वर्ग में सभी संख्याओं में निरंतर अंश विस्तार होता है जो अंततः एक ही कड़ी के साथ आवधिक होते हैं।


इसमें द्विघात अपरिमेयताओं के निश्चित रूप से कई तुल्यता वर्ग हैं <math>S_c</math>. इसके मानक गणितीय प्रमाण में मानचित्र पर विचार करना सम्मिलित है <math>\phi</math> विवेचक के द्विआधारी द्विघात रूपों से <math>c</math> प्रति <math>S_c</math> के द्वारा दिया गया
इसमें द्विघात अपरिमेयताओं के निश्चित रूप से कई तुल्यता वर्ग हैं <math>S_c</math>. इसके मानक गणितीय प्रमाण में मानचित्र पर विचार करना सम्मिलित है <math>\phi</math> विवेचक के द्विआधारी द्विघात रूपों से <math>c</math> प्रति <math>S_c</math> के द्वारा दिया गया
Line 41: Line 41:
एक गणना से पता चलता है <math>\phi</math> एक आक्षेप है जो प्रत्येक सेट पर आव्यूह क्रिया का सम्मान करता है। द्विघात अपरिमेयता के तुल्यता वर्ग तब द्विआधारी द्विघात रूपों के तुल्यता वर्गों के साथ आपत्ति में हैं, और लैग्रेंज ने दिखाया कि दिए गए विवेचक के द्विआधारी द्विघात रूपों के बहुत सारे तुल्यता वर्ग हैं।
एक गणना से पता चलता है <math>\phi</math> एक आक्षेप है जो प्रत्येक सेट पर आव्यूह क्रिया का सम्मान करता है। द्विघात अपरिमेयता के तुल्यता वर्ग तब द्विआधारी द्विघात रूपों के तुल्यता वर्गों के साथ आपत्ति में हैं, और लैग्रेंज ने दिखाया कि दिए गए विवेचक के द्विआधारी द्विघात रूपों के बहुत सारे तुल्यता वर्ग हैं।


आपत्ति के माध्यम से <math>\phi</math>, में एक संख्या का विस्तार <math>S_c</math> एक निरंतर अंश में द्विघात रूप को कम करने के अनुरूप है। निरंतर अंश की अंततः आवधिक प्रकृति तब घटी हुई द्विघात रूप की कक्षा की अंततः आवधिक प्रकृति में परिलक्षित होती है, कम द्विघात रूपों के अनुरूप कम द्विघात अपरिमेयता(विशुद्ध रूप से आवधिक निरंतर अंश वाले) के साथ।
आपत्ति के माध्यम से <math>\phi</math>, में एक संख्या का विस्तार <math>S_c</math> एक निरंतर अंश में द्विघात रूप को कम करने के अनुरूप है। निरंतर अंश की अंततः आवधिक प्रकृति तब घटी हुई द्विघात रूप की कक्षा की अंततः आवधिक प्रकृति में परिलक्षित होती है, कम द्विघात रूपों के अनुरूप कम द्विघात अपरिमेयता (विशुद्ध रूप से आवधिक निरंतर अंश वाले) के साथ।


== गैर-वर्ग का वर्गमूल अपरिमेय है ==
== गैर-वर्ग का वर्गमूल अपरिमेय है ==
Line 57: Line 57:
मान लें कि डी एक गैर-वर्ग प्राकृतिक संख्या है, तो एक संख्या n है जैसे कि:
मान लें कि डी एक गैर-वर्ग प्राकृतिक संख्या है, तो एक संख्या n है जैसे कि:


:n<sup>2</sup> <D <(n + 1)<sup>,
:n<sup>2</sup> <D < (n + 1)<sup>,


तो विशेष रूप से
तो विशेष रूप से
Line 68: Line 68:


:({{radic|''D''}} - n) q{{radic|''D''}} = qD - nq{{radic|''D''}}
:({{radic|''D''}} - n) q{{radic|''D''}} = qD - nq{{radic|''D''}}
यह एक पूर्णांक भी है। लेकिन 0<<({{radic|''D''}}− n) < 1 तो({{radic|''D''}}− n)q < q,
यह एक पूर्णांक भी है। लेकिन 0<< ({{radic|''D''}}− n) < 1 तो ({{radic|''D''}}− n)q < q,


अतः ({{radic|''D''}}− n)q, q से छोटा पूर्णांक है। यह एक विरोधाभास है क्योंकि q को इस संपत्ति के साथ सबसे छोटी संख्या के रूप में परिभाषित किया गया था इसलिये {{radic|''D''}} तर्कसंगत नहीं हो सकता।
अतः ({{radic|''D''}}− n)q, q से छोटा पूर्णांक है। यह एक विरोधाभास है क्योंकि q को इस संपत्ति के साथ सबसे छोटी संख्या के रूप में परिभाषित किया गया था इसलिये {{radic|''D''}} तर्कसंगत नहीं हो सकता।


== यह भी देखें ==
== यह भी देखें ==
* बीजगणितीय संख्या क्षेत्र
* बीजगणितीय संख्या क्षेत्र
* एपोटोम(गणित)
* एपोटोम (गणित)
* आवधिक निरंतर अंश
* आवधिक निरंतर अंश
* प्रतिबंधित आंशिक भागफल
* प्रतिबंधित आंशिक भागफल
Line 83: Line 83:




==इस पेज में लापता आंतरिक लिंक की सूची==


==बाहरी संबंध==
==बाहरी संबंध==

Revision as of 19:45, 19 December 2022

गणित में, एक द्विघात अपरिमेय संख्या (जिसे एक द्विघात अपरिमेय, एक द्विघात अपरिमेयता या द्विघात करणी के रूप में भी जाना जाता है) अपरिमेय संख्या है जो परिमेय गुणांकों के साथ कुछ द्विघात समीकरण का समाधान है जो परिमेय संख्याओं पर अप्रासंगिक है। [1] चूंकि एक द्विघात समीकरण के गुणांकों में अंशों को दोनों पक्षों में उनके सबसे कम सामान्य भाजक से गुणा करके निश्चित किया जा सकता है, एक द्विघात अपरिमेय पूर्णांक गुणांक वाले कुछ द्विघात समीकरण का एक अपरिमेय मूल है। द्विघात अपरिमेय संख्या, सम्मिश्र संख्याओं का एक उपसमुच्चय, डिग्री 2 की बीजगणितीय संख्याएँ हैं, और इसलिए इन्हें व्यक्त किया जा सकता है

पूर्णांकों के लिए a, b, c, d; साथ b, c तथा d गैर-शून्य, और वर्ग-मुक्त पूर्णांक c की सकारात्मकता का निर्धारण कर हमें वास्तविक द्विघात अपरिमेय संख्याएँ मिलती हैं, जबकि एक ऋणात्मक c जटिल द्विघात अपरिमेय संख्याएँ देता है जो वास्तविक संख्याएँ नहीं हैं। यह द्विघात अपरिमेय से चौगुनी पूर्णांकों के लिए एक अंतःक्षेपी फलन को परिभाषित करता है, इसलिए उनकी संख्यात्मकता सबसे अधिक गणना योग्य है; चूँकि दूसरी ओर एक अभाज्य संख्या का प्रत्येक वर्गमूल एक विशिष्ट द्विघात अपरिमेय है, और कई अभाज्य संख्याएँ हैं, वे न्यूनतम गणनीय हैं; इसलिए द्विघात अपरिमेय एक गणनीय समुच्चय हैं।

परिमेय संख्याओं के क्षेत्र (गणित) के क्षेत्र विस्तार के निर्माण के लिए क्षेत्र सिद्धांत (गणित) में द्विघात अपरिमेय का उपयोग किया जाता है Q. वर्ग मुक्त पूर्णांक दिया गया है c, की वृद्धि Q द्विघात अपरिमेय का उपयोग करके c द्विघात क्षेत्र उत्पन्न करता है Q(c). उदाहरण के लिए, तत्वों का गुणात्मक व्युत्क्रम Q(c) उपरोक्त बीजगणितीय संख्याओं के समान रूप हैं:

द्विघात अपरिमेय में उपयोगी गुण होते हैं, विशेष रूप से निरंतर अंशों के संबंध में, जहां हमारे पास यह परिणाम होता है कि सभी वास्तविक द्विघात अपरिमेय, और केवल वास्तविक द्विघात अपरिमेय, आवधिक निरंतर अंश रूप होते हैं। उदाहरण के लिए

आवधिक निरंतर अंशों को तर्कसंगत संख्याओं के साथ एक-से-एक पत्राचार में रखा जा सकता है। पत्राचार स्पष्ट रूप से मिंकोस्की के प्रश्न चिह्न समारोह द्वारा प्रदान किया गया है, और उस लेख में एक स्पष्ट निर्माण दिया गया है। यह पूरी तरह से परिमेय संख्याओं और द्विआधारी अंकों के तार के बीच पत्राचार के अनुरूप है, जिसमें अंततः दोहराई जाने वाली कड़ी होती है, जो प्रश्न चिह्न फलन द्वारा भी प्रदान की जाती है। इस तरह के दोहराए जाने वाले अनुक्रम डायाडिक परिवर्तन (द्विआधारी अंकों के लिए) और गॉस-कुज़मिन-विर्सिंग ऑपरेटर की आवधिक कक्षाओं के अनुरूप हैं। निरंतर अंशों के लिए व्यक्त किया गया है।

वास्तविक द्विघात अपरिमेय संख्या और अनिश्चित द्विआधारी द्विघात रूप

हम द्विघात अपरिमेयता को इस प्रकार फिर से लिख सकते हैं:

यह इस प्रकार है कि प्रत्येक द्विघात अपरिमेय संख्या को रूप में लिखा जा सकता है

यह अभिव्यक्ति अद्वितीय नहीं है।

एक गैर-वर्ग, धनात्मक पूर्णांक को मॉड्यूलर अंकगणित या मापांक , और एक सेट को परिभाषित करें जैसा

प्रत्येक द्विघात अपरिमेयता किसी न किसी समुच्चय में होती है , क्योंकि सर्वांगसमता की शर्तों को अंश और हर को एक उचित गुणक द्वारा मापन करके पूरा किया जा सकता है।

एक आव्यूह (गणित)

पूर्णांक प्रविष्टियों के साथ और एक संख्या को बदलने के लिए उपयोग किया जा सकता है में . रूपांतरित संख्या है

यदि में है, फिर भी ,

के बीच संबंध तथा के ऊपर एक तुल्यता संबंध है। (यह इस प्रकार है, उदाहरण के लिए, क्योंकि उपरोक्त परिवर्तन सेट पर निर्धारक 1 के साथ पूर्णांक आव्यूह के समूह (गणित) की एक समूह क्रिया (गणित) देता है ।) इस प्रकार, समतुल्य वर्गों में विभाजन, प्रत्येक तुल्यता वर्ग में कुछ आव्यूह की क्रिया के माध्यम से प्रत्येक युग्म समतुल्य के साथ द्विघात अपरिमेयताओं का संग्रह होता है। सेरेट के प्रमेय का अर्थ है कि समतुल्य द्विघात अपरिमेयताओं के नियमित निरंतर अंश विस्तार अंततः समान होते हैं, अर्थात, आंशिक भागफलों के उनके अनुक्रम में एक ही कड़ी होती है। इस प्रकार, एक तुल्यता वर्ग में सभी संख्याओं में निरंतर अंश विस्तार होता है जो अंततः एक ही कड़ी के साथ आवधिक होते हैं।

इसमें द्विघात अपरिमेयताओं के निश्चित रूप से कई तुल्यता वर्ग हैं . इसके मानक गणितीय प्रमाण में मानचित्र पर विचार करना सम्मिलित है विवेचक के द्विआधारी द्विघात रूपों से प्रति के द्वारा दिया गया

एक गणना से पता चलता है एक आक्षेप है जो प्रत्येक सेट पर आव्यूह क्रिया का सम्मान करता है। द्विघात अपरिमेयता के तुल्यता वर्ग तब द्विआधारी द्विघात रूपों के तुल्यता वर्गों के साथ आपत्ति में हैं, और लैग्रेंज ने दिखाया कि दिए गए विवेचक के द्विआधारी द्विघात रूपों के बहुत सारे तुल्यता वर्ग हैं।

आपत्ति के माध्यम से , में एक संख्या का विस्तार एक निरंतर अंश में द्विघात रूप को कम करने के अनुरूप है। निरंतर अंश की अंततः आवधिक प्रकृति तब घटी हुई द्विघात रूप की कक्षा की अंततः आवधिक प्रकृति में परिलक्षित होती है, कम द्विघात रूपों के अनुरूप कम द्विघात अपरिमेयता (विशुद्ध रूप से आवधिक निरंतर अंश वाले) के साथ।

गैर-वर्ग का वर्गमूल अपरिमेय है

द्विघात अपरिमेय की परिभाषा के लिए उन्हें दो शर्तों को पूरा करने की आवश्यकता होती है: उन्हें एक द्विघात समीकरण को संतुष्ट करना चाहिए और उन्हें अपरिमेय होना चाहिए। द्विघात समीकरण ax2 + bx + c = 0 का हल हैं

इस प्रकार द्विघात अपरिमेय ठीक इस रूप में वे वास्तविक संख्याएँ हैं जो परिमेय नहीं हैं। चूँकि b और 2a दोनों पूर्णांक हैं, यह पूछना कि उपरोक्त मात्रा कब अपरिमेय है, यह पूछने के समान है कि पूर्णांक का वर्गमूल कब अपरिमेय है। इसका उत्तर यह है कि किसी भी प्राकृत संख्या का वर्गमूल जो कि वर्ग संख्या नहीं है, अपरिमेय होती है।

2 का वर्गमूल पहली ऐसी संख्या थी जिसे अपरिमेय सिद्ध किया गया था। सायरीन के थियोडोरस ने 17 तक की गैर-वर्ग प्राकृतिक संख्याओं के वर्गमूलों की अपरिमेयता को सिद्ध किया, लेकिन वहीं रुक गया, अनुमानतः इसलिए क्योंकि उसने जिस बीजगणित का उपयोग किया वह 17 से अधिक संख्याओं के वर्गमूल पर लागू नहीं किया जा सका। यूक्लिड की एलिमेंट्स बुक 10 समर्पित है अपरिमेय परिमाण का वर्गीकरण करने के लिए गैर-वर्ग प्राकृतिक संख्याओं की अपरिमेयता का मूल प्रमाण यूक्लिड के लेम्मा पर निर्भर करता है।

गैर-वर्ग प्राकृतिक संख्याओं के वर्गमूलों की अपरिमेयता के कई प्रमाण स्पष्ट रूप से अंकगणित के मौलिक प्रमेय को मानते हैं, जिसे सबसे पहले कार्ल फ्रेडरिक गॉस ने अपने डिक्विजिशन अरिथमेटिका में सिद्ध किया था। यह दावा करता है कि प्रत्येक पूर्णांक का अभाज्य में एक अद्वितीय गुणनखंड होता है। किसी भी परिमेय गैर-पूर्णांक के लिए निम्नतम शब्दों में भाजक में एक अभाज्य होना चाहिए जो अंश में विभाजित नहीं होता है। जब अंश का वर्ग किया जाता है तो वह अभाज्य अद्वितीय गुणनखंडन के कारण उसमें विभाजित नहीं होगा। इसलिए, एक तर्कसंगत गैर-पूर्णांक का वर्ग सदैव एक गैर-पूर्णांक होता है; प्रतिधनात्मक द्वारा, एक पूर्णांक का वर्गमूल सदैव या तो एक अन्य पूर्णांक होता है, या अपरिमेय होता है।

यूक्लिड ने मौलिक प्रमेय के प्रतिबंधित संस्करण और प्रमेय को प्रमाणित करने के लिए कुछ सावधानीपूर्वक तर्क का उपयोग किया। उसका प्रमाण यूक्लिड की एलिमेंट्स बुक X प्रस्ताव 9 में है।[2] हालाँकि, परिणाम को सिद्ध करने के लिए अंकगणित के मौलिक प्रमेय की वास्तव में आवश्यकता नहीं है। रिचर्ड डेडेकिंड द्वारा स्व-निहित प्रमाण हैं,[3] दूसरों के बीच में 1975 में थियोडोर एस्टरमैन द्वारा पाए गए 2 के वर्गमूल की अपरिमेयता के प्रमाण से निम्नलिखित प्रमाण को कॉलिन रिचर्ड ह्यूजेस द्वारा रूपांतरित किया गया था।[4][5] मान लें कि डी एक गैर-वर्ग प्राकृतिक संख्या है, तो एक संख्या n है जैसे कि:

n2 <D < (n + 1),

तो विशेष रूप से

0 < D - n <1

मान लें कि D का वर्गमूल एक परिमेय संख्या p/q है, मान लें कि यहाँ q सबसे छोटा है जिसके लिए यह सत्य है, इसलिए सबसे छोटी संख्या जिसके लिए qD एक पूर्णांक भी है।

फिर

(D - n) qD = qD - nqD

यह एक पूर्णांक भी है। लेकिन 0<< (D− n) < 1 तो (D− n)q < q,

अतः (D− n)q, q से छोटा पूर्णांक है। यह एक विरोधाभास है क्योंकि q को इस संपत्ति के साथ सबसे छोटी संख्या के रूप में परिभाषित किया गया था इसलिये D तर्कसंगत नहीं हो सकता।

यह भी देखें

  • बीजगणितीय संख्या क्षेत्र
  • एपोटोम (गणित)
  • आवधिक निरंतर अंश
  • प्रतिबंधित आंशिक भागफल
  • द्विघात पूर्णांक

संदर्भ

  1. Jörn Steuding, Diophantine Analysis, (2005), Chapman & Hall, p.72.
  2. Euclid. "यूक्लिड की एलिमेंट्स बुक एक्स प्रस्ताव 9". D.E.Joyce, Clark University. Retrieved 2008-10-29.
  3. Bogomolny, Alexander. "2 का वर्गमूल अपरिमेय है". Interactive Mathematics Miscellany and Puzzles. Retrieved May 5, 2016.
  4. Hughes, Colin Richard (1999). "तर्कहीन जड़ें". Mathematical Gazette. 83 (498): 502–503. doi:10.2307/3620972. JSTOR 3620972. S2CID 149602021.
  5. Estermann, Theodor (1975). "√2 की अपरिमेयता". Mathematical Gazette. 59 (408): 110. doi:10.2307/3616647. JSTOR 3616647. S2CID 126072097.


बाहरी संबंध