नेटवर्क संश्लेषण फिल्टर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 14: Line 14:
==महत्वपूर्ण फिल्टर वर्ग==
==महत्वपूर्ण फिल्टर वर्ग==
{{Linear analog electronic filter|filter1=show|filter2=hide|filter3=hide}}
{{Linear analog electronic filter|filter1=show|filter2=hide|filter3=hide}}
फिल्टर का वर्ग बहुपदों की श्रेणी को दर्शाता है जिसमें फिल्टर गणितीय रूप से व्युत्पन्न होता है। फ़िल्टर का क्रम फ़िल्टर के सीढ़ी क्रियान्वयन में उपस्थित फ़िल्टर तत्वों की संख्या है। अक्सर इस फिल्टर की कोटि जितनी अधिक होती है, पासबैंड और स्टॉपबैंड के बीच कट-ऑफ संक्रमण उतना ही तेज होगा। फ़िल्टर का नाम अक्सर गणितज्ञ या गणित के नाम पर रखा जाता है, जिस पर वे फ़िल्टर के खोजकर्ता या आविष्कारक के रूप में आधारित होते हैं।
फिल्टर का वर्ग बहुपदों की श्रेणी को दर्शाता है। जिसमें फिल्टर गणितीय रूप से व्युत्पन्न होता है। फ़िल्टर का क्रम फ़िल्टर के सीढ़ी क्रियान्वयन में उपस्थित फ़िल्टर तत्वों की संख्या है। फिल्टर की कोटि जितनी अधिक होती है, पारक पट्टी और रोध पट्टी के बीच कट-ऑफ संक्रमण उतना ही तेज होगा। फ़िल्टर का नाम अक्सर गणितज्ञ या गणित के नाम पर रखा जाता है। ये फ़िल्टर के आविष्कारक के रूप में आधारित होते हैं।


=== बटरवर्थ फ़िल्टर ===
=== बटरवर्थ फ़िल्टर ===
{{Main|Butterworth filter}}
{{Main|बटरवर्थ फ़िल्टर}}
बटरवर्थ फिल्टरों को अधिकतम सपाट बताया गया है, जिसका अर्थ है कि आवृत्ति प्रक्षेत्र में प्रतिक्रिया समतुल्य क्रम के किसी भी वर्ग के धुने योग्य वक्र के रूप में होता है।<ref name=Matt85>Matthaei et al., pp85-108</ref>
 
बटरवर्थ वर्ग फिल्टर का प्रथम वर्णन 1930 के एक पेपर में ब्रिटिश इंजीनियर [[ स्टीफन बटरवर्थ | स्टीफन बटरवर्थ]] द्वारा किया गया था, जिसके नाम पर इसका नाम रखा गया है। फिल्टर प्रतिक्रिया को बटरवर्थ बहुपदों द्वारा वर्णित किया गया है, बटरवर्थ के कारण भी।<ref>Butterworth, S, "On the Theory of Filter Amplifiers", ''Wireless Engineer'', '''vol. 7''', 1930, pp. 536-541.</ref>


बटरवर्थ फिल्टर को अधिकतम सपाट के रूप में वर्णित किया गया है, जिसका अर्थ है कि आवृत्ति प्रक्षेत्र में प्रतिक्रिया समतुल्य क्रम के किसी भी वर्ग का सबसे आसान संभव वक्र होता है।<ref name=Matt85>Matthaei et al., pp85-108</ref>


बटरवर्थ वर्ग फिल्टर का प्रथम वर्णन 1930 के एक पेपर में ब्रिटिश इंजीनियर [[ स्टीफन बटरवर्थ | स्टीफन बटरवर्थ]]  द्वारा किया गया था, इनके नाम पर इसका नाम रखा गया। बटरवर्थ के कारण फिल्टर प्रतिक्रिया को बटरवर्थ बहुपदों द्वारा वर्णित भी किया गया है।<ref>Butterworth, S, "On the Theory of Filter Amplifiers", ''Wireless Engineer'', '''vol. 7''', 1930, pp. 536-541.</ref>
=== चेबीशेव फ़िल्टर ===
=== चेबीशेव फ़िल्टर ===
{{Main|Chebyshev filter}}
{{Main|Chebyshev filter}}
एक चेबिसेव फ़िल्टर में बटरवर्थ की तुलना में तेज़ी से कट-ऑफ संक्रमण होता है परंतु पासबैंड की आवृत्ति प्रतिक्रिया में तरंग होने की कीमत पर, पासबैंड में अधिकतम अनुमत क्षीणन और कट-ऑफ प्रतिक्रिया की स्थिरता के बीच एक समझौता होना चाहिए। इसे कभी-कभी टाइप चेबीशेव भी कहा जाता है, टाइप 2 एक फिल्टर है, और पासबैंड में कोई लहर नहीं है, लेकिन स्टॉपबैंड में लहरें है, इस फ़िल्टर का नाम पफनुटी चेबीशेव ([[ Pafnuty Chebyshev |Pafnuty Chebyshev]]) के नाम पर रखा गया है। जिनके चेबीशेव (Chebyshev ) बहुपदों का उपयोग ट्रांसफर फलन की व्युत्पत्ति में किया जाता है।।<ref name=Matt85/>
एक चेबिसेव फ़िल्टर में बटरवर्थ की तुलना में तेज़ी से कट-ऑफ संक्रमण होता है परंतु पारक पट्टी की आवृत्ति प्रतिक्रिया में तरंग होने की कीमत पर, पारक पट्टी में अधिकतम अनुमत क्षीणन और कट-ऑफ प्रतिक्रिया की स्थिरता के बीच एक समझौता होना चाहिए। इसे कभी-कभी टाइप चेबीशेव भी कहा जाता है, टाइप 2 एक फिल्टर है, और पारक पट्टी में कोई लहर नहीं है, लेकिन रोध पट्टी  में लहरें है, इस फ़िल्टर का नाम पफनुटी चेबीशेव ([[ Pafnuty Chebyshev |Pafnuty Chebyshev]]) के नाम पर रखा गया है। जिनके चेबीशेव (Chebyshev ) बहुपदों का उपयोग ट्रांसफर फलन की व्युत्पत्ति में किया जाता है।।<ref name=Matt85/>


=== काउर फ़िल्टर ===
=== काउर फ़िल्टर ===
{{Main|Elliptical filter}}
{{Main|Elliptical filter}}
पासबैंड और स्टॉपबैंड में काउर फिल्टर की अधिकतम तरंगें बराबर होती हैं। नेटवर्क संश्लेषण फिल्टर के किसी भी अन्य वर्ग की तुलना में काउर फिल्टर में पासबैंड से स्टॉपबैंड में तेजी से संक्रमण होता है। काउर फिल्टर शब्द का प्रयोग दीर्घवृत्तीय फिल्टर के साथ एक दूसरे के स्थान पर किया जा सकता है, लेकिन दीर्घवृत्तीय फिल्टर के सामान्य मामले में पासबैंड और स्टॉपबैंड में असमान तरंगें हो सकती हैं। पासबैंड में शून्य तरंग की सीमा में एक दीर्घवृत्तीय फ़िल्टर चेबीशेव टाइप 2 फ़िल्टर के समान है। स्टॉपबैंड में शून्य तरंग की सीमा में एक दीर्घवृत्तीय फ़िल्टर चेबीशेव टाइप 1 फ़िल्टर के समान है। दोनों पासबैंड में शून्य तरंग की सीमा में एक दीर्घवृत्तीय फ़िल्टर बटरवर्थ फ़िल्टर के समान है। फ़िल्टर का नाम [[ विल्हेम काउरे ]] के नाम पर रखा गया है और स्थानांतरण फलन [[ अण्डाकार तर्कसंगत कार्य | दीर्घवृत्तीय तर्कसंगत कार्यो]] पर आधारित है।<ref>Mathaei, p95</ref> काउर प्रकार के फिल्टर[[ सामान्यीकृत निरंतर अंश | सामान्यीकृत निरंतर अंशों]]  का उपयोग करते हैं।<ref>{{cite journal|author=Fry, T. C.|title=The use of continued fractions in the design of electrical networks|journal=Bull. Amer. Math. Soc.|year=1929|volume=35|issue=4|pages=463–498|mr=1561770|doi=10.1090/s0002-9904-1929-04747-5|doi-access=free}}</ref><ref>{{cite journal|author=Milton. G. W.|title=Multicomponent composites of networks and new types of continued fraction. I|journal=Comm. Math. Physics|year=1987|volume=111|issue=2|pages=281–327|mr=0899853|doi=10.1007/bf01217763|bibcode = 1987CMaPh.111..281M |s2cid=120984103 |url=http://projecteuclid.org/euclid.cmp/1104159541 }}</ref><ref>{{cite journal|author=Milton. G. W.|title=Multicomponent composites of networks and new types of continued fraction. II|journal=Comm. Math. Physics|year=1987|volume=111|issue=3|pages=329–372|mr=0900499|doi=10.1007/bf01238903|bibcode = 1987CMaPh.111..329M |s2cid=189830750 |url=http://projecteuclid.org/euclid.cmp/1104159635 }}</ref>
पारक पट्टी और रोध पट्टी  में काउर फिल्टर की अधिकतम तरंगें बराबर होती हैं। नेटवर्क संश्लेषण फिल्टर के किसी भी अन्य वर्ग की तुलना में काउर फिल्टर में पारक पट्टी से रोध पट्टी  में तेजी से संक्रमण होता है। काउर फिल्टर शब्द का प्रयोग दीर्घवृत्तीय फिल्टर के साथ एक दूसरे के स्थान पर किया जा सकता है, लेकिन दीर्घवृत्तीय फिल्टर के सामान्य मामले में पारक पट्टी और रोध पट्टी  में असमान तरंगें हो सकती हैं। पारक पट्टी में शून्य तरंग की सीमा में एक दीर्घवृत्तीय फ़िल्टर चेबीशेव टाइप 2 फ़िल्टर के समान है। रोध पट्टी  में शून्य तरंग की सीमा में एक दीर्घवृत्तीय फ़िल्टर चेबीशेव टाइप 1 फ़िल्टर के समान है। दोनों पारक पट्टी में शून्य तरंग की सीमा में एक दीर्घवृत्तीय फ़िल्टर बटरवर्थ फ़िल्टर के समान है। फ़िल्टर का नाम [[ विल्हेम काउरे ]] के नाम पर रखा गया है और स्थानांतरण फलन [[ अण्डाकार तर्कसंगत कार्य | दीर्घवृत्तीय तर्कसंगत कार्यो]] पर आधारित है।<ref>Mathaei, p95</ref> काउर प्रकार के फिल्टर[[ सामान्यीकृत निरंतर अंश | सामान्यीकृत निरंतर अंशों]]  का उपयोग करते हैं।<ref>{{cite journal|author=Fry, T. C.|title=The use of continued fractions in the design of electrical networks|journal=Bull. Amer. Math. Soc.|year=1929|volume=35|issue=4|pages=463–498|mr=1561770|doi=10.1090/s0002-9904-1929-04747-5|doi-access=free}}</ref><ref>{{cite journal|author=Milton. G. W.|title=Multicomponent composites of networks and new types of continued fraction. I|journal=Comm. Math. Physics|year=1987|volume=111|issue=2|pages=281–327|mr=0899853|doi=10.1007/bf01217763|bibcode = 1987CMaPh.111..281M |s2cid=120984103 |url=http://projecteuclid.org/euclid.cmp/1104159541 }}</ref><ref>{{cite journal|author=Milton. G. W.|title=Multicomponent composites of networks and new types of continued fraction. II|journal=Comm. Math. Physics|year=1987|volume=111|issue=3|pages=329–372|mr=0900499|doi=10.1007/bf01238903|bibcode = 1987CMaPh.111..329M |s2cid=189830750 |url=http://projecteuclid.org/euclid.cmp/1104159635 }}</ref>




===बेसेल फिल्टर ===
===बेसेल फिल्टर ===
{{Main|Bessel filter}}
{{Main|Bessel filter}}
बेसल फिल्टर के पासबैंड पर अधिकतम फ्लैट समय-विलंब ([[ समूह विलंब ]]) होता है। यह फिल्टर को एक रैखिक चरण प्रतिक्रिया देता है और इसके परिणामस्वरूप न्यूनतम विरूपण के साथ तरंगें गुजरती हैं। बटरवर्थ फिल्टर के विपरीत आवृत्ति के साथ चरण प्रतिक्रिया के कारण बेसल फ़िल्टर में समय डोमेन में न्यूनतम विरूपण होता है, जिसमें आवृत्ति के साथ क्षीणन प्रतिक्रिया के कारण आवृत्ति डोमेन में न्यूनतम विरूपण होता है। बेसेल फ़िल्टर का नाम [[ फ्रेडरिक बेसेल ]] के नाम पर रखा गया है और स्थानांतरण फलन [[ बेसेल बहुपद ]]पर आधारित है।<ref>Matthaei, pp108-113</ref>
बेसल फिल्टर के पारक पट्टी पर अधिकतम फ्लैट समय-विलंब ([[ समूह विलंब ]]) होता है। यह फिल्टर को एक रैखिक चरण प्रतिक्रिया देता है और इसके परिणामस्वरूप न्यूनतम विरूपण के साथ तरंगें गुजरती हैं। बटरवर्थ फिल्टर के विपरीत आवृत्ति के साथ चरण प्रतिक्रिया के कारण बेसल फ़िल्टर में समय डोमेन में न्यूनतम विरूपण होता है, जिसमें आवृत्ति के साथ क्षीणन प्रतिक्रिया के कारण आवृत्ति डोमेन में न्यूनतम विरूपण होता है। बेसेल फ़िल्टर का नाम [[ फ्रेडरिक बेसेल ]] के नाम पर रखा गया है और स्थानांतरण फलन [[ बेसेल बहुपद ]]पर आधारित है।<ref>Matthaei, pp108-113</ref>





Revision as of 15:49, 3 November 2022

नेटवर्क संश्लेषण फ़िल्टर नेटवर्क संश्लेषण विधि द्वारा डिज़ाइन किए गए सिग्नल प्रोसेसिंग फ़िल्टर हैं। इस विधि ने बटरवर्थ फिल्टर, चेबीशेव फिल्टर और दीर्घवृत्तीय फिल्टर के कई महत्वपूर्ण वर्ग तैयार किए हैं। इसे प्रमुख रूप से निष्क्रिय रैखिक एनालॉग फिल्टर के डिजाइन को लागू करने का प्रयोजन है, लेकिन इसके परिणाम कार्यान्वयन के लिए सक्रिय फ़िल्टर और डिजिटल फिल्टर के लिए भी लागू किए जा सकते हैं। विधि का सार फ़िल्टर घटक के मान प्राप्त करना है, अपेक्षित स्थानांतरण फलन का प्रतिनिधित्व करने वाले दिए गए तर्कसंगत फलन से हैं।

विधि का विवरण

नेटवर्क विश्लेषण की इस पद्धति को व्युत्क्रम समस्या के रूप में देखा जा सकता है। नेटवर्क विश्लेषण एक नेटवर्क के साथ शुरू होता है और विभिन्न विद्युत परिपथ के प्रमेय को लागू करके नेटवर्क की प्रतिक्रिया का पूर्वानुमान लगाता है। दूसरी ओर नेटवर्क संश्लेषण, अपेक्षित अनुक्रिया के साथ आरंभ होता है, तथा इस विधियों द्वारा एक नेटवर्क का उत्पादन होता है जो प्रत्युत्तर को अनुमानित करता है।[1]

नेटवर्क संश्लेषण का प्रमुख उद्देश्य इस प्रकार के फ़िल्टरों को उत्पन्न करना है, जिन्हें पहले तरंग फ़िल्टरों के रूप में वर्णित किया है। लेकिन अब केवल फिल्टर कहा जाता है, जिसका उद्देश्य अन्य आवृत्तियों की तरंगों को अस्वीकृत करते समय कुछ आवर्तियो की तरंगों को पारित करना है। नेटवर्क संश्लेषण जटिल आवृत्ति के प्रकार्य के रूप में फिल्टर, एच (एस) के अंतरण फलन हेतु विनिर्देश के साथ आरंभ होता है। जटिल आवृत्ति के एक फलन के रूप में, एस है। यह फ़िल्टर के निवेश प्रतिबाधा (परिचालन बिन्दु ) प्रतिबाधा के लिए अभिव्यक्ति उत्पन्न करने के लिए प्रयुक्त होता है, जो तब सतत भिन्न या आंशिक अंश के विस्तार की प्रक्रिया से फिल्टर घटकों के अपेक्षित मानों का परिणाम होता है। फिल्टर के डिजिटल कार्यान्वयन में एच (एस) को सीधे ही क्रियान्वित किया जा सकता है।[2]

इस विधि के लाभ का सबसे अच्छा तरीका इसे फिल्टर डिजाइन पद्धति से तुलना करके समझा जाता है जिसका प्रयोग इससे पहले, छवि प्रतिबाधा छवि विधि, समान अनुभागों के अनन्त श्रृंखला (सीढ़ी टोपोलॉजी) में एक एकल निस्यंदक अनुभाग के लक्षणों को मानता है। इस विधि के द्वारा प्रस्तुत किये गये फिल्टर सैद्धांतिक समापन प्रतिबाधा, प्रतिबिंब प्रतिबाधा, वास्तविक समाप्ति प्रतिबाधा के कारण अशुद्धि से ग्रस्त हैं। नेटवर्क संश्लेषण फ़िल्टर के साथ, टर्मिनेशन को प्रारंभ से डिज़ाइन में शामिल किया जाता है। डिजाइनर द्वारा छवि विधि के लिए निश्चित मात्रा में अनुभव की आवश्यकता होती है। डिजाइनर को पहले यह तय करना होगा कि कितने सेक्शन और किस प्रकार का उपयोग किया जाना चाहिए, और फिर गणना के बाद, फ़िल्टर का स्थानांतरण फलन प्राप्त किया जा सकता है। यह आवश्यक नहीं कि इसमें कई पुनरावृत्तियाँ हो सकती हैं। दूसरी ओर, नेटवर्क संश्लेषण विधि अपेक्षित फलन के साथ आरंभ होती है। और संबंधित फ़िल्टर बनाने के लिए आवश्यक अनुभागों को आउटपुट के रूप में उत्पन्न करता है।

सामान्य तौर पर, नेटवर्क संश्लेषण फ़िल्टर के अनुभाग समान टोपोलॉजी के होते हैं लेकिन प्रत्येक खंड में विभिन्न घटक मूल्यों का उपयोग किया जाता है। ये आमतौर पर सबसे सरल सीढ़ी के प्रकार है। इसके विपरीत, फ़िल्टर संरचना की प्रत्येक तस्वीर अनुभाग में समान मान की होती हैं, अनंत श्रृंखला दृष्टिकोण के परिणामस्वरूप यह विभिन्न आकर्षक विशेषताओं को प्राप्त करने के लिए अपने खंड से खंड में टोपोलॉजी भिन्न कर सकती है। दोनों पद्धतियां कम-पास प्रोटोटाइप फिल्टर का प्रयोग करती हैं। जिसके बाद अंतिम अपेक्षित निस्यंदक पर पहुंचने के लिए आवृत्ति रूपांतरण और प्रतिबाधा प्रमाप का प्रयोग किया जाता है।[2]


महत्वपूर्ण फिल्टर वर्ग

फिल्टर का वर्ग बहुपदों की श्रेणी को दर्शाता है। जिसमें फिल्टर गणितीय रूप से व्युत्पन्न होता है। फ़िल्टर का क्रम फ़िल्टर के सीढ़ी क्रियान्वयन में उपस्थित फ़िल्टर तत्वों की संख्या है। फिल्टर की कोटि जितनी अधिक होती है, पारक पट्टी और रोध पट्टी के बीच कट-ऑफ संक्रमण उतना ही तेज होगा। फ़िल्टर का नाम अक्सर गणितज्ञ या गणित के नाम पर रखा जाता है। ये फ़िल्टर के आविष्कारक के रूप में आधारित होते हैं।

बटरवर्थ फ़िल्टर

बटरवर्थ फिल्टर को अधिकतम सपाट के रूप में वर्णित किया गया है, जिसका अर्थ है कि आवृत्ति प्रक्षेत्र में प्रतिक्रिया समतुल्य क्रम के किसी भी वर्ग का सबसे आसान संभव वक्र होता है।[3]

बटरवर्थ वर्ग फिल्टर का प्रथम वर्णन 1930 के एक पेपर में ब्रिटिश इंजीनियर स्टीफन बटरवर्थ द्वारा किया गया था, इनके नाम पर इसका नाम रखा गया। बटरवर्थ के कारण फिल्टर प्रतिक्रिया को बटरवर्थ बहुपदों द्वारा वर्णित भी किया गया है।[4]

चेबीशेव फ़िल्टर

एक चेबिसेव फ़िल्टर में बटरवर्थ की तुलना में तेज़ी से कट-ऑफ संक्रमण होता है परंतु पारक पट्टी की आवृत्ति प्रतिक्रिया में तरंग होने की कीमत पर, पारक पट्टी में अधिकतम अनुमत क्षीणन और कट-ऑफ प्रतिक्रिया की स्थिरता के बीच एक समझौता होना चाहिए। इसे कभी-कभी टाइप चेबीशेव भी कहा जाता है, टाइप 2 एक फिल्टर है, और पारक पट्टी में कोई लहर नहीं है, लेकिन रोध पट्टी में लहरें है, इस फ़िल्टर का नाम पफनुटी चेबीशेव (Pafnuty Chebyshev) के नाम पर रखा गया है। जिनके चेबीशेव (Chebyshev ) बहुपदों का उपयोग ट्रांसफर फलन की व्युत्पत्ति में किया जाता है।।[3]

काउर फ़िल्टर

पारक पट्टी और रोध पट्टी में काउर फिल्टर की अधिकतम तरंगें बराबर होती हैं। नेटवर्क संश्लेषण फिल्टर के किसी भी अन्य वर्ग की तुलना में काउर फिल्टर में पारक पट्टी से रोध पट्टी में तेजी से संक्रमण होता है। काउर फिल्टर शब्द का प्रयोग दीर्घवृत्तीय फिल्टर के साथ एक दूसरे के स्थान पर किया जा सकता है, लेकिन दीर्घवृत्तीय फिल्टर के सामान्य मामले में पारक पट्टी और रोध पट्टी में असमान तरंगें हो सकती हैं। पारक पट्टी में शून्य तरंग की सीमा में एक दीर्घवृत्तीय फ़िल्टर चेबीशेव टाइप 2 फ़िल्टर के समान है। रोध पट्टी में शून्य तरंग की सीमा में एक दीर्घवृत्तीय फ़िल्टर चेबीशेव टाइप 1 फ़िल्टर के समान है। दोनों पारक पट्टी में शून्य तरंग की सीमा में एक दीर्घवृत्तीय फ़िल्टर बटरवर्थ फ़िल्टर के समान है। फ़िल्टर का नाम विल्हेम काउरे के नाम पर रखा गया है और स्थानांतरण फलन दीर्घवृत्तीय तर्कसंगत कार्यो पर आधारित है।[5] काउर प्रकार के फिल्टर सामान्यीकृत निरंतर अंशों का उपयोग करते हैं।[6][7][8]


बेसेल फिल्टर

बेसल फिल्टर के पारक पट्टी पर अधिकतम फ्लैट समय-विलंब (समूह विलंब ) होता है। यह फिल्टर को एक रैखिक चरण प्रतिक्रिया देता है और इसके परिणामस्वरूप न्यूनतम विरूपण के साथ तरंगें गुजरती हैं। बटरवर्थ फिल्टर के विपरीत आवृत्ति के साथ चरण प्रतिक्रिया के कारण बेसल फ़िल्टर में समय डोमेन में न्यूनतम विरूपण होता है, जिसमें आवृत्ति के साथ क्षीणन प्रतिक्रिया के कारण आवृत्ति डोमेन में न्यूनतम विरूपण होता है। बेसेल फ़िल्टर का नाम फ्रेडरिक बेसेल के नाम पर रखा गया है और स्थानांतरण फलन बेसेल बहुपद पर आधारित है।[9]


परिचालन बिन्दु प्रतिबाधा

सीढ़ी काउर टोपोलॉजी के रूप में लागू किया गया लो-पास फिल्टर

परिचालन बिन्दु विद्युत प्रतिबाधा आवृत्ति डोमेन में एक फ़िल्टर के निवेश प्रतिबाधा का गणितीय प्रतिनिधित्व है जिसमें लाप्लास ट्रांसफॉर्म एस-डोमेन या फुरियर रूपांतरण जेड ट्रांसफ़ॉर्म जे डब्लू -डोमेन। जैसे कई नोटेशन का उपयोग किया जाता है। इसे एक-पोर्ट नेटवर्क के रूप में मानते हुए, निरंतर अंश या आंशिक अंश विस्तार का उपयोग करके अभिव्यक्ति का विस्तार किया जाता है। परिणामी विस्तार विद्युत तत्वों के एक नेटवर्क सामान्तया एक सीढ़ी नेटवर्क में बदल जाता है। इस नेटवर्क के अंत से एक आउटपुट लेना, जिसे महसूस किया गया है, इसे अपेक्षित ट्रांसफर फलन के साथ दो बंदरगाह नेटवर्क फ़िल्टर में बदल देगा।[1] वास्तविक विद्युत घटकों का उपयोग करके परिचालन बिन्दु प्रतिबाधा के लिए हर संभव गणितीय कार्य को महसूस नहीं किया जा सकता है। विल्हेम काउर (आर. एम. फोस्टर के बाद से)[10]) ने अधिकांश प्रारंभिक कार्य इस बात पर किया कि कौन से गणितीय कार्यों को महसूस किया जा सकता है और किस इलेक्ट्रॉनिक फिल्टर टोपोलॉजी में फ़िल्टर डिज़ाइन की सर्वव्यापी सीढ़ी टोपोलॉजी का नाम काउर के नाम पर रखा गया है।[11] परिचालन बिन्दु प्रतिबाधा के कई विहित रूप हैं जिनका उपयोग सभी सरलतम को छोड़कर साकार करने योग्य बाधाओं को व्यक्त करने के लिए किया जा सकता है। यह सबसे प्रसिद्ध है।[12]

  • काउर के परिचालन बिन्दु प्रतिबाधा के पहले रूप में शंट कैपेसिटर और श्रृंखला इंडक्टर्स की एक सीढ़ी होती है और यह उच्च पास फिल्टर के लिए सबसे उपयोगी है।
  • काउर के परिचालन बिन्दु प्रतिबाधा के दूसरे रूप में श्रृंखला कैपेसिटर और शंट इंडक्टर्स की एक सीढ़ी होती है और यह उच्च-पास फिल्टर के लिए सबसे उपयोगी है।
  • फोस्टर के फोस्टर की प्रतिक्रिया प्रमेय परिचालन बिन्दु प्रतिबाधा की प्राप्ति में समानांतर जुड़े एलसी रेज़ोनेटर श्रृंखला एलसी परिपथ के होते हैं और बंदपास छननी के लिए सबसे उपयोगी होते हैं।
  • फोस्टर की प्रतिक्रिया प्रमेय परिचालन बिन्दु प्रतिबाधा की प्राप्ति में श्रृंखला से जुड़े एलसी एंटी-रेज़ोनेटर समानांतर एलसी परिपथ के होते हैं और बैंड-स्टॉप फ़िल्टर के लिए सबसे उपयोगी होते हैं।

1931 में ओटो ब्राउन द्वारा ट्रांसफर फलन के रूप में दिए गए तर्कसंगत कार्य के संदर्भ में प्राप्य फिल्टर पर आगे सैद्धांतिक कार्य किया गया था।[13] और रिचर्ड डफिन 1949 में राउल बोत्तो के साथ।[14] काम को 2010 में जॉन एच हबर्ड द्वारा संक्षेप में प्रस्तुत किया गया था।[15] जब एक ट्रांसफर फलन को सकारात्मक-वास्तविक फलन के रूप में निर्दिष्ट किया जाता है। सकारात्मक वास्तविक संख्याओं का सेट अपरिवर्तनीय गणित होता है, ट्रांसफर फलन के तहत अपरिवर्तनीय सेट तो निष्क्रिय घटकों (प्रतिरोधक, प्रेरक और संधारित्र) का उस स्थानांतरण फलन के साथ एक नेटवर्क डिज़ाइन किया जा सकता हैं।

प्रोटोटाइप फिल्टर

फ़िल्टर डिज़ाइन की प्रक्रिया को कम श्रम-गहन बनाने के लिए प्रोटोटाइप फ़िल्टर का उपयोग किया जाता है। प्रोटोटाइप को सामान्तया एकता नाममात्र प्रतिबाधा और एकता कट-ऑफ आवृत्ति के कम-पास फ़िल्टर के रूप में डिज़ाइन किया गया है, यद्यपि अन्य योजनाएं संभव हैं। प्रासंगिक गणितीय कार्यों और बहुपदों से पूर्ण डिजाइन गणना केवल एक बार की जाती है। आवश्यक वास्तविक फ़िल्टर प्रोटोटाइप को स्केल करने और बदलने की प्रक्रिया द्वारा प्राप्त किया जाता है।[16] प्रोटोटाइप तत्वों के मान तालिकाओं में प्रकाशित किए जाते हैं, जिनमें से पहला सिडनी डार्लिंगटन के कारण होता है।[17] आधुनिक कंप्यूटिंग शक्ति और डिजिटल डोमेन में फिल्टर ट्रांसफर फ़ंक्शंस को सीधे लागू करने की प्रथा दोनों ने बड़े पैमाने पर इस प्रथा को अप्रचलित कर दिया है।

प्रत्येक वर्ग में फ़िल्टर के प्रत्येक क्रम के लिए एक अलग प्रोटोटाइप की आवश्यकता होती है। उन वर्गों के लिए जिनमें क्षीणन तरंग होती है, तरंग के प्रत्येक मान के लिए एक भिन्न प्रोटोटाइप की आवश्यकता होती है। एक ही प्रोटोटाइप का उपयोग फिल्टर बनाने के लिए किया जा सकता है जिसमें प्रोटोटाइप से अलग बैंडफॉर्म होता है। उदाहरण के लिए कम उत्तीर्ण , हाई-पास, बैंड-पास और बैंड-स्टॉप फिल्टर सभी एक ही प्रोटोटाइप से तैयार किए जा सकते हैं।[18]


यह भी देखें

  • रैखिक फिल्टर

टिप्पणियाँ

  1. 1.0 1.1 E. Cauer, p4
  2. 2.0 2.1 Matthaei, pp83-84
  3. 3.0 3.1 Matthaei et al., pp85-108
  4. Butterworth, S, "On the Theory of Filter Amplifiers", Wireless Engineer, vol. 7, 1930, pp. 536-541.
  5. Mathaei, p95
  6. Fry, T. C. (1929). "The use of continued fractions in the design of electrical networks". Bull. Amer. Math. Soc. 35 (4): 463–498. doi:10.1090/s0002-9904-1929-04747-5. MR 1561770.
  7. Milton. G. W. (1987). "Multicomponent composites of networks and new types of continued fraction. I". Comm. Math. Physics. 111 (2): 281–327. Bibcode:1987CMaPh.111..281M. doi:10.1007/bf01217763. MR 0899853. S2CID 120984103.
  8. Milton. G. W. (1987). "Multicomponent composites of networks and new types of continued fraction. II". Comm. Math. Physics. 111 (3): 329–372. Bibcode:1987CMaPh.111..329M. doi:10.1007/bf01238903. MR 0900499. S2CID 189830750.
  9. Matthaei, pp108-113
  10. Foster, R M, "A Reactance Theorem", Bell System Technical Journal, vol 3, pp259-267, 1924.
  11. E. Cauer, p1
  12. Darlington, S, "A history of network synthesis and filter theory for circuits composed of resistors, inductors, and capacitors", IEEE Trans. Circuits and Systems, vol 31, p6, 1984.
  13. Otto Brune (1931) "Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency", MIT Journal of Mathematics and Physics, Vol 10, pp 191–236
  14. Richard Duffin & Raoul Bott, "Impedance synthesis without the use of transformers", Journal of Applied Physics 20:816
  15. John H. Hubbard (2010) "The Bott-Duffin Synthesis of Electrical Circuits", pp 33 to 40 in A Celebration of the Mathematical Legacy of Raoul Bott, P. Robert Kotiuga editor, CRM Proceedings and Lecture Notes #50, American Mathematical Society
  16. Matthaei, p83
  17. Darlington, S, "Synthesis of Reactance 4-Poles Which Produce Prescribed Insertion Loss Characteristics", Jour. Math. and Phys., Vol 18, pp257-353, September 1939.
  18. See Matthaei for examples.


संदर्भ

  • Matthaei, Young, Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, McGraw-Hill 1964.
  • E. Cauer, W. Mathis, and R. Pauli, "Life and Work of Wilhelm Cauer (1900–1945)", Proceedings of the Fourteenth International Symposium of Mathematical Theory of Networks and Systems (MTNS2000), Perpignan, June, 2000. Retrieved online 19 September 2008.


==