एबेलियन श्रेणी: Difference between revisions
m (33 revisions imported from alpha:एबेलियन_श्रेणी) |
No edit summary |
||
Line 114: | Line 114: | ||
{{Authority control}} | {{Authority control}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | [[Category:Articles with short description]] | ||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 26/11/2022]] | [[Category:Created On 26/11/2022]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal templates with redlinked portals]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:नील्स हेनरिक एबेल]] | |||
[[Category:योगात्मक श्रेणियां]] | |||
[[Category:समरूप बीजगणित]] |
Revision as of 10:10, 29 December 2022
गणित में, एबेलियन श्रेणी एक ऐसी श्रेणी है जिसमें मोर्फिज़्म और उसके उद्देश्य को जोड़ा जा सकता है और जिसमें कर्नेल और कोकरनेल उपलब्ध हैं, जिनमे वांछनीय गुण होते हैं। एबेलियन श्रेणी एक प्रेरक प्रोटोटाइप का उदाहरण, यह एबेलियन समूहों की श्रेणी है। अलेक्जेंडर ग्रोथेंडिक सिद्धांत द्वारा और डेविड बुक्सबाउम के स्वतंत्र रूप से काम करने मे कोहोलॉजी सिद्धांतों का एकजुट करने मे प्रयास किया गया। एबेलियन समूह सभी समूहों मे बहुत स्थिर हैं; उदाहरण के रूप मे ये बहुत नियमित और स्नेक लेम्मा को संतुष्ट करते हैं। एबेलियन समूह की स्थिति कुछ विशेष समूहों के निर्माण के समय समाप्त हो जाती है, उदाहरण के लिए, चैन काम्याप्लेक्स के समूह एक अबेलियन समूह को प्रदर्शित करता है, इस प्रकार एक छोटे समूह के लिए उसके फंक्शन का समूह भी एबेलियन समूह को प्रदर्शित करता है। ये स्थिरता गुण उन्हें होमोलॉजिकल बीजगणित मे आगे के लिए अपरिहार्य बनाते हैं; बीजगणितीय ज्यामिति, कोहोलॉजी सिद्धांत में प्रमुख अनुप्रयोग होते हैं। एबेलियन श्रेणियों का नाम नील्स हेनरिक एबेल के नाम पर रखा गया है।
परिभाषाएँ
एबेलियन समूह एक पूर्वानुकूल समूह है और
- इसकी एक शून्य वस्तु है,
- इसमें सभी बाइनरी द्विउत्पाद हैं,
- इसमें सभी कर्नेल और कोकर्नेल होते हैं, और
- सभी मोनोमोर्फिज़्म और एपिमॉर्फिज्म हैं।
यह परिभाषा समतुल्य है[1] इस प्रकार से क्रमानुसार परिभाषित है:
- एबेलियन समूहों मे मोनोइडल श्रेणी पर AB समृद्ध होने पर श्रेणी पूर्ववर्ती होती है। इसका मतलब यह है कि सभी होम-समूह एबेलियन समूह हैं और मोर्फिज़्म संरचना बिलिनियर है।
- यदि वस्तुओं के प्रत्येक परिमित समूह में एक बाइप्रोडक्ट होता है, तो एक पूर्ववर्ती समूह योगात्मक होता है। इसका मतलब है कि हम परिमित प्रत्यक्ष योग और प्रत्यक्ष उत्पाद बना सकते हैं। [2] डीईएफ़ 1.2.6, यह आवश्यक है कि एक योगात्मक श्रेणी में एक शून्य वस्तु (खाली बाइप्रोडक्ट) हो।
- एक योजक श्रेणी प्रीबेलियन श्रेणी है, यदि प्रत्येक मोर्फिज़्म में कर्नेल और कोकर्नेल दोनों होते हैं।
- अंत में, एक प्रीबेलियन श्रेणी एबेलियन है यदि प्रत्येक मोनोमोर्फिज़्म और एपिमॉर्फिज्म सामान्य है। इसका मतलब यह है कि मोनोमोर्फिज़्म किसी मोर्फिज़्म का एक कर्नेल है, और एपिमॉर्फिज्म किसी मोर्फिज़्म का एक कोकर्नल है।
ध्यान दें कि होम-समूह पर समृद्ध संरचना पहली परिभाषा के पहले तीन स्वयं सिद्धों का परिणाम है। यह सिद्धांत इसकी विहित प्रकृति में एबेलियन समूहों की श्रेणी की मूलभूत प्रासंगिकता पर प्रकाश डालता है।
इस समूह में सटीक अनुक्रम की अवधारणा स्वाभाविक रूप से उत्पन्न होती है, और यह पता चलता है कि उपयोगी फ़ैक्टर, यानी विभिन्न अर्थों में सटीक अनुक्रमो को संरक्षित करने वाले फ़ैक्टर, एबेलियन श्रेणियों के बीच प्रासंगिक कारक हैं, जिसके बीच इस उपयोगी अवधारणा को उपयोगी श्रेणी के सिद्धांत में स्वयंसिद्ध किया गया है, नियमित श्रेणी मे एक विशेष स्तिथि बनता है।
उदाहरण
- जैसा कि ऊपर उल्लेख किया गया है, सभी एबेलियन समूहों की श्रेणी एक एबेलियन श्रेणी है। सभी परिमित एबेलियन समूहों की श्रेणी भी एक एबेलियन श्रेणी है, जैसा कि सभी परिमित एबेलियन समूहों की श्रेणी है।
- यदि R एक वलय है, तो R के ऊपर सभी बाएँ (या दाएँ) मॉड्यूल श्रेणी पर एबेलियन श्रेणी उपस्थित होगी । वास्तव में, यह दिखाया जा सकता है, कि कोई भी छोटी एबेलियन श्रेणी इस तरह के मॉड्यूल की एक पूर्ण उपश्रेणी के बराबर है।
- यदि R एक लेफ्ट-नॉथेरियन वलय है, तो R के ऊपर से उत्पन्न लेफ्ट मॉड्यूल की एबेलियन श्रेणी होगी । विशेष रूप से, एक नोथेरियन कम्यूटेटिव वलय पर बारीक रूप से उत्पन्न मॉड्यूल की श्रेणी एबेलियन है; इस तरह, एबेलियन श्रेणियां क्रम विनिमेय बीजगणित में दिखाई देती हैं।
- पिछले दो उदाहरणों के विशेष मामलों के रूप में: एक निश्चित फ़ील्ड के ऊपर वेक्टर रिक्त स्थान की श्रेणी एबेलियन है, जैसा कि परिमित-आयामी वेक्टर रिक्त स्थान की श्रेणी है।
- यदि X एक टोपोलॉजिकल स्पेस है, तो X पर सभी (वास्तविक या जटिल) वेक्टर समूहों की श्रेणी सामान्यतः एबेलियन श्रेणी नहीं होती है, क्योंकि दोनों मोनोमोर्फिज़्म हो सकते हैं, जो कर्नेल नहीं होगे।
- यदि X एक सामयिक स्थान है, तो X पर एबेलियन समूहों की एबेलियन श्रेणिया है। सामान्यतः, ग्रोथेंडिक तल पर एबेलियन समूहों की श्रेणी एक एबेलियन श्रेणी है। इस तरह, एबेलियन श्रेणियां बीजगणितीय टोपोलॉजी और बीजगणितीय ज्यामिति में दिखाई देती हैं।
- यदि C एक छोटी श्रेणी है और A एक एबेलियन श्रेणी है, तो C से A तक सभी फ़ैक्टरों की श्रेणी एक एबेलियन श्रेणी बनाती है। यदि सी छोटा और पूर्ववर्ती है, तो सी से ए तक सभी योजक फ़ैक्टरों की श्रेणी भी एक एबेलियन श्रेणी बनाएगी । उत्तरार्द्ध मे आर-मॉड्यूल एक उदाहरण है सामान्यीकरण है, क्योंकि एक वलय वस्तु के साथ एक पूर्ववर्ती श्रेणी के रूप में समझा जा सकता है।
ग्रोथेंडिक के स्वयंसिद्ध
अपने तोहोकू लेख में, ग्रोथेंडिक ने चार अतिरिक्त स्वयंसिद्धों को सूचीबद्ध किया है, जो एक एबेलियन श्रेणी ए को संतुष्ट कर सकता है। ये स्वयंसिद्ध आज भी आम उपयोग में हैं। वे निम्नलिखित हैं:
- AB3) A की वस्तुओं के प्रत्येक अनुक्रमित समूहों (Ai) के लिए, सह-उत्पाद *Ai A में उपलब्ध है (अर्थात A सह-पूर्ण है)।
- AB4) A, AB3 को संतुष्ट करता है, और मोनोमोर्फिज़्म के एक समूहों का प्रतिफल एक मोनोमोर्फिज़्म है।
- AB5) A, AB3 को संतुष्ट करता है, और उनके दोहरे समूहों अनुक्रमों के लिए फ़िल्टर किए गए कोलिमिट्स को सही करता हैं।
- AB3 *) A की वस्तुओं के प्रत्येक अनुक्रमित समूहों (Ai) के लिए, उत्पाद PAi A में सम्मलित है (अर्थात A पूर्ण है)।
- AB4*) A, AB3* को संतुष्ट करता है, और एपिमोर्फिज्म के समूहों का उत्पाद एक एपिमोर्फिज्म है।
- AB5*) A, AB3* को संतुष्ट करता है ), और अनुक्रमों के लिए फ़िल्टर की गई सीमाएं सटीक हैं।
अभिगृहीत AB1) और AB2) भी दिए गए थे। जो एक योज्य श्रेणी को एबेलियन बनाते हैं। विशेष रूप से:
- AB1) प्रत्येक मोर्फिज़्म में एक कर्नेल और एक कोकर्नेल होता है।
- AB2) AB2) प्रत्येक मोर्फिज़्म f के लिए, coim f से im f तक विहित मोर्फिज़्म एक तुल्याकारिता होती है ।
ग्रोथेंडिक ने अभिगृहीत AB6) और AB6*) भी दिए।
- AB6) A, AB3 को संतुष्ट करता है), और फ़िल्टर की गई श्रेणियों का एक समूह दिया है और मानचित्रण , अपने पास , जहां लिम फ़िल्टर किए गए कोलिमिट को दर्शाता है।
- AB6*) A, AB3* को संतुष्ट करता है, और कोफ़िल्टर्ड श्रेणियों का एक समूहों दिया जाता है और मानचित्रण , अपने पास , जहां लिम सह-फ़िल्टर्ड सीमा को दर्शाता है।
प्राथमिक गुण
एबेलियन श्रेणी में वस्तुओं की किसी भी जोड़िया ए, बी को देखते हुए, ए से बी तक एक विशेष शून्य मोर्फिज़्म है। इसे होम-सेट (ए, बी) के शून्य तत्व के रूप में परिभाषित किया जा सकता है, क्योंकि यह एक एबेलियन समूह है। वैकल्पिक रूप से, इसे अद्वितीय रचना A → 0 → B के रूप में परिभाषित किया जा सकता है, जहाँ 0 एबेलियन श्रेणी की शून्य वस्तु है।
एबेलियन श्रेणी में, प्रत्येक मोर्फिज़्म f को एक अधिरूपता की संरचना के रूप में लिखा जा सकता है, जिसके बाद एक मोनोमोर्फिज्म होता है। इस एपिमोर्फिज्म को f का कोइमेज कहा जाता है, जबकि मोनोमोर्फिज्म को f का इमेज कहा जाता है।
एबेलियन श्रेणियों में उप-वस्तु और भागफल की वस्तुएं अच्छी तरह से व्यवहार की जाती हैं। उदाहरण के लिए, किसी दिए गए ऑब्जेक्ट ए के उप-ऑब्जेक्ट्स का पॉसेट एक बाध्य लैटिस है।
प्रत्येक एबेलियन श्रेणी ए सूक्ष्म रूप से उत्पन्न एबेलियन समूहों की मोनोइडल श्रेणी पर एक मॉड्यूल है; अर्थात्, हम एक अंतिम रूप से उत्पन्न एबेलियन समूह G और A की किसी भी वस्तु A का टेंसर उत्पाद बना सकते हैं। एबेलियन श्रेणी भी एक मॉड्यूल है; होम (G, A) को A की वस्तु के रूप में व्याख्या कि जा सकता है। यदि 'A' पूर्ण श्रेणी है, तो हम G को पूरी तरह से उत्पन्न करने की आवश्यकता को हटा सकते हैं; सामान्यतः, हम 'A' में परिमित समृद्ध सीमाएं बना सकते हैं।
संबंधित अवधारणाएं
समरूप बीजगणित के लिए एबेलियन श्रेणियां सबसे सामान्य समूह हैं। उस क्षेत्र में उपयोग किए गए सभी निर्माण प्रासंगिक हैं, जैसे कि सटीक अनुक्रम और विशेष रूप से लघु सटीक अनुक्रम और व्युत्पन्न फ़ंक्टर सभी एबेलियन श्रेणियों में लागू होने वाले महत्वपूर्ण प्रमेय में पांच लेम्मा (और एक विशेष रूप में लघु पांच लेम्मा), साथ ही एक विशेष रूप में नौ लेम्मा सम्मलित हैं।
अर्ध-सरल एबेलियन श्रेणियां
एक एबेलियन श्रेणी वस्तुओं का संग्रह होने पर अर्ध-सरल साधारण वस्तुएँ (अर्थात् किसी भी की केवल उप-वस्तुएँ शून्य वस्तु हैं, जैसे कि एक वस्तु प्रत्यक्ष योग के रूप में विघटित कि जा सकती है, <ब्लॉककोट> को प्रत्यक्ष योग के रूप में विघटित किया जा सकता है, एबेलियन के प्रतिरूप को दर्शाता है
यह तकनीकी स्थिति मजबूत है और प्रकृति में पाई जाने वाली एबेलियन श्रेणियों के कई प्राकृतिक उदाहरणों को सम्मलित नहीं करती है। उदाहरण के लिए, वलय R के ऊपर अधिकांश मॉड्यूल श्रेणियां अर्ध-सरल नहीं हैं; वास्तव में, यह स्थिति यदि केवल R अर्धसरल वलय है।
उदाहरण
प्रकृति में पाई जाने वाली कुछ एबेलियन श्रेणियां अर्ध-सरल हैं, जैसे
- परिमित-आयामी वेक्टर रिक्त स्थान की श्रेणी एक निश्चित क्षेत्र के ऊपर
- माश्के के प्रमेय के अनुसार एक परिमित समूह के निरूपण की श्रेणी एक मैदान पर जिसकी विशेषता विभाजित नहीं होती है एक अर्ध-साधारण एबेलियन श्रेणी है।
- नोथेरियन योजना पर सुसंगत समूहों की श्रेणी अर्ध-सरल है यदि केवल अलघुकरणीय बिन्दुओं का परिमित असंयुक्त संघ है। यह विभिन्न क्षेत्रों में सदिश स्थानों की श्रेणियों के परिमित उत्पाद के बराबर है। आगे की दिशा में इसे सभी को दिखाने के बराबर है समूह लुप्त हो जाते हैं, जिसका अर्थ है कि कोहोलॉजिकल आयाम 0 है। यह केवल तब होता है जब गगनचुंबी इमारत समूहों मे सम्मलित जाती है एक बिंदु पर ज़रिस्की स्पर्शरेखा स्थान शून्य के बराबर है, जो आइसोमोर्फिक है ऐसी योजना के लिए स्थानीय बीजगणित का उपयोग करता है ।[3]
गैर-उदाहरण
एबेलियन श्रेणियों के कुछ प्राकृतिक प्रति-उदाहरण सम्मिलित हैं जो अर्ध-सरल नहीं हैं, जैसे कि प्रतिनिधित्व सिद्धांत की कुछ श्रेणियां। उदाहरण के लिए, लाई समूह के अभ्यावेदन की श्रेणी प्रतिनिधित्व <ब्लॉककोट> हैजिसमें आयाम का केवल एक उप-निरूपण है . वास्तव में, यह किसी भी शक्तिहीन समूह के लिए सत्य है[4]पेज 112.
एबेलियन श्रेणियों की उपश्रेणियाँ
एबेलियन श्रेणियों कई प्रकार से (पूर्ण, योगात्मक) उपश्रेणियाँ हैं जो प्रकृति में होती हैं, साथ ही साथ कुछ परस्पर विरोधी शब्दावली भी हैं।
मान लीजिए A एक एबेलियन श्रेणी है, C एक पूर्ण, योज्य उपश्रेणी है, और I समावेशन फ़ैक्टर है।
- सी एक सटीक उपश्रेणी है यदि यह स्वयं एक सटीक श्रेणी है और समावेशन आई इसका एक सही फ़ैक्टर है। यह केवल तब होता है जब सी एपिमोर्फिज्म के पुलबैक (श्रेणी सिद्धांत) और मोनोमोर्फिज्म के पुशआउट के तहत बंद हो। C में सटीक क्रम जैसे की A में सही क्रम हैं जिसके लिए सभी वस्तुएँ C में स्थित हैं।
- सी एक एबेलियन उपश्रेणी है, यदि यह स्वयं एक एबेलियन श्रेणी है और समावेशन I एक सटीक फ़ैक्टर है। यह तब होता है जब और केवल अगर कर्नेल और कोकर्नेल लेने के तहत सी बंद हो जाता है। ध्यान दें कि एबेलियन श्रेणी की पूर्ण उपश्रेणियों के उदाहरण हैं, जो स्वयं एबेलियन हैं लेकिन जहां समावेशन फ़ंक्टर सटीक नहीं है, इसलिए वे एबेलियन उपश्रेणियाँ नहीं हैं (नीचे देखें)।
- सी एक मोटी उपश्रेणी है अगर इसे सीधे सारांश लेने के तहत बंद किया जाता है और छोटे सटीक अनुक्रमों पर 2-आउट-ऑफ-3 संपत्ति को संतुष्ट करता है; वह है, अगर ए में एक छोटा सटीक अनुक्रम है जैसे कि दो सी में लाई समूह बोलते हैं, तो तीसरा भी कार्य करता है। दूसरे शब्दों में, C एपिमॉर्फिज्म के कर्नेल, मोनोमोर्फिज्म के कोकर्नेल और एक्सटेंशन के तहत बंद होता है। ध्यान दें कि पी. गेब्रियल ने मोटी उपश्रेणी शब्द का प्रयोग यह वर्णन करने के लिए किया है कि हम यहां सेरे उपश्रेणी कहते हैं।
- सी एक टोपोलॉजीज़िंग उपश्रेणी है यदि यह उपश्रेणी के तहत बंद है।
- सी एक स्थानीयकरण उपश्रेणी है यदि, सभी छोटे सटीक अनुक्रमों के लिए ए में हमारे पास सी में 'M' है यदि केवल दोनों C में हैं। दूसरे शब्दों में, C एक्सटेंशन और सबक्वायरेंट्स के तहत बंद है। ये उपश्रेणियाँ A से दूसरी एबेलियन श्रेणी के सटीक फ़ैक्टरों का एक फलन हैं।
- सी एक स्थानीयकरण उपश्रेणी है यदि यह एक सेरे उपश्रेणी है जैसे कि भागफल फ़ैक्टर एक सहायक फ़ैक्टरों को स्वीकार करता है।
- एक विस्तृत उपश्रेणी की दो प्रतिस्पर्धी धारणाएँ हैं। एक संस्करण यह है कि C में A की प्रत्येक वस्तु सम्मलित है (समरूपता तक); एक पूर्ण उपश्रेणी के लिए यह स्पष्ट रूप से रुचिकर नहीं है। (इसे एक उपश्रेणी भी कहा जाता है) अन्य संस्करण यह है कि C एक्सटेंशन के तहत बंद है।
यहाँ एक एबेलियन श्रेणी की पूर्ण, योगात्मक उपश्रेणी का एक स्पष्ट उदाहरण दिया गया है जो स्वयं एबेलियन है, लेकिन समावेशन फ़ैक्टर सटीक नहीं है। माना की k एक क्षेत्र है, , ऊपरी-त्रिकोणीय का बीजगणित और परिमित-आयामी की श्रेणी -मॉड्यूल की श्रेणी है। फिर प्रत्येक एक एबेलियन श्रेणी है, और हमारे पास एक समावेशन कारक है सरल प्रक्षेपी, सरल अंतःक्षेपी और अविघटनीय प्रक्षेपी-सम्बद्ध की पहचान करना मॉड्यूल की एक पूर्ण, योगात्मक उपश्रेणी है, लेकिन सटीक नहीं है।
इतिहास
एबेलियन श्रेणियों को बुक्सबाउम (1955) और ग्रोथेंडिक (1957) द्वारा विभिन्न कोहोलॉजी सिद्धांतों को एकत्रित करने के लिए प्रदर्शित किया गया था। उस समय, समूहों के लिए एक कोहोलॉजी सिद्धांत और समूहों के लिए एक कोहोलॉजी सिद्धांत था। दोनों को अलग-अलग परिभाषित किया गया था, लेकिन उनके समान गुण थे। वास्तव में, इन समानताओं का अध्ययन करने के लिए अधिकांश श्रेणी सिद्धांत भाषा के रूप में विकसित किए गए थे। ग्रोथेंडिक ने दो सिद्धांतों को एकीकृत किया: वे दोनों एबेलियन श्रेणियों पर व्युत्पन्न कारक के रूप में उत्पन्न होते हैं; एक टोपोलॉजिकल स्पेस पर एबेलियन समूहों के समूहों की एबेलियन श्रेणिया, और दिए गए समूह G के लिए G-मॉड्यूल की एबेलियन श्रेणी है ।
यह भी देखें
संदर्भ
- ↑ Peter Freyd, Abelian Categories
- ↑ Handbook of categorical algebra, vol. 2, F. Borceux
- ↑ "बीजगणितीय ज्यामिति - एक बिंदु और प्रथम एक्सट समूह में स्पर्शरेखा स्थान". Mathematics Stack Exchange. Retrieved 2020-08-23.
- ↑ Humphreys, James E. (2004). रैखिक बीजगणितीय समूह. Springer. ISBN 0-387-90108-6. OCLC 77625833.
- Buchsbaum, David A. (1955), "Exact categories and duality", Transactions of the American Mathematical Society, 80 (1): 1–34, doi:10.1090/S0002-9947-1955-0074407-6, ISSN 0002-9947, JSTOR 1993003, MR 0074407
- Freyd, Peter (1964), Abelian Categories, New York: Harper and Row
- Grothendieck, Alexander (1957), "Sur quelques points d'algèbre homologique", Tohoku Mathematical Journal, Second Series, 9: 119–221, doi:10.2748/tmj/1178244839, ISSN 0040-8735, MR 0102537
- Mitchell, Barry (1965), Theory of Categories, Boston, MA: Academic Press
- Popescu, Nicolae (1973), Abelian categories with applications to rings and modules, Boston, MA: Academic Press