प्रत्यास्थ ऊर्जा: Difference between revisions

From Vigyanwiki
(Created page with "{{Multiple issues| {{refimprove|date=June 2015}} {{lead too long|date=June 2015}} {{formula missing descriptions|date=February 2018}} }} {{short description|Form of energy}}...")
 
m (Indicwiki moved page लोचदार ऊर्जा to प्रत्यास्थ ऊर्जा without leaving a redirect)
(No difference)

Revision as of 22:29, 2 January 2023

लोचदार ऊर्जा एक सामग्री या भौतिक प्रणाली के विन्यास में संग्रहीत यांत्रिक संभावित ऊर्जा है क्योंकि यह उस पर किए गए कार्य (भौतिकी) द्वारा लोचदार विरूपण के अधीन है। लोचदार ऊर्जा तब होती है जब वस्तुएं किसी भी तरह से अस्थायी रूप से संकुचित, फैली हुई या आम तौर पर विरूपण (यांत्रिकी) होती हैं। लोच सिद्धांत मुख्य रूप से ठोस निकायों और सामग्रियों के यांत्रिकी के लिए औपचारिकताओं को विकसित करता है।[1](ध्यान दें, हालांकि, एक खींचे हुए रबर बैंड द्वारा किया गया कार्य लोचदार ऊर्जा का उदाहरण नहीं है। यह एक आदर्श श्रृंखला की आदर्श श्रृंखला#एंट्रोपिक लोच का एक उदाहरण है।) यांत्रिक संतुलन की स्थितियों की गणना में लोचदार संभावित ऊर्जा समीकरण का उपयोग किया जाता है। . ऊर्जा संभावित है क्योंकि यह ऊर्जा के अन्य रूपों में परिवर्तित हो जाएगी, जैसे गतिज ऊर्जा और ध्वनि ऊर्जा, जब वस्तु को इसकी लोच (भौतिकी) द्वारा अपने मूल आकार (सुधार) में लौटने की अनुमति दी जाती है।

लोच का सार प्रतिवर्तीता है। एक लोचदार सामग्री पर लागू बल ऊर्जा को उस सामग्री में स्थानांतरित करते हैं, जो उस ऊर्जा को अपने परिवेश में उत्पन्न करने पर, अपने मूल आकार को पुनः प्राप्त कर सकती है। हालांकि, सभी सामग्रियों में विकृति की सीमा तक सीमा होती है, जिसे वे अपनी आंतरिक संरचना को तोड़े बिना या अपरिवर्तनीय रूप से परिवर्तित किए बिना सहन कर सकते हैं। इसलिए, ठोस सामग्री के लक्षण वर्णन में विशिष्टता शामिल है, आमतौर पर तनाव के संदर्भ में, इसकी लोचदार सीमा। लोचदार सीमा से परे, एक सामग्री लोचदार ऊर्जा के रूप में उस पर किए गए यांत्रिक कार्य से सभी ऊर्जा को संग्रहित नहीं कर रही है।

किसी पदार्थ की या उसके भीतर लोचदार ऊर्जा विन्यास की स्थिर ऊर्जा है। यह मुख्य रूप से नाभिकों के बीच अंतर-दूरियों को बदलकर संग्रहीत ऊर्जा से मेल खाती है। तापीय ऊर्जा सामग्री के भीतर गतिज ऊर्जा का यादृच्छिक वितरण है, जिसके परिणामस्वरूप संतुलन विन्यास के बारे में सामग्री के सांख्यिकीय उतार-चढ़ाव होते हैं। हालाँकि, कुछ इंटरैक्शन है। उदाहरण के लिए, कुछ ठोस वस्तुओं के लिए, मुड़ना, झुकना और अन्य विकृतियाँ तापीय ऊर्जा उत्पन्न कर सकती हैं, जिससे सामग्री का तापमान बढ़ जाता है। ठोस पदार्थों में ऊष्मीय ऊर्जा अक्सर आंतरिक लोचदार तरंगों द्वारा ले जाई जाती है, जिन्हें फोनन कहा जाता है। इलास्टिक तरंगें जो एक पृथक वस्तु के पैमाने पर बड़ी होती हैं, आमतौर पर मैक्रोस्कोपिक कंपन उत्पन्न करती हैं, जिसमें यादृच्छिकता की पर्याप्त कमी होती है कि उनके दोलन वस्तु के भीतर (लोचदार) संभावित ऊर्जा और संपूर्ण वस्तु की गति की गतिज ऊर्जा के बीच दोहरावदार आदान-प्रदान होते हैं।

यद्यपि लोच आमतौर पर ठोस निकायों या सामग्रियों के यांत्रिकी से जुड़ा हुआ है, यहां तक ​​कि शास्त्रीय ऊष्मप्रवैगिकी पर प्रारंभिक साहित्य भी तरल पदार्थ की लोच को परिभाषित करता है और उपरोक्त परिचय में प्रदान की गई व्यापक परिभाषा के अनुकूल तरीके से उपयोग करता है।[2]: 107 et seq.  ठोस में कभी-कभी जटिल व्यवहार के साथ जटिल क्रिस्टलीय पदार्थ शामिल होते हैं। इसके विपरीत, संपीड़ित तरल पदार्थ और विशेष रूप से गैसों का व्यवहार, नगण्य जटिलता के साथ लोचदार ऊर्जा का सार प्रदर्शित करता है। सरल थर्मोडायनामिक सूत्र: जहां dU पुनर्प्राप्त करने योग्य आंतरिक ऊर्जा U में एक अतिसूक्ष्म परिवर्तन है, P एक समान दबाव (प्रति इकाई क्षेत्र में एक बल) है जो ब्याज के भौतिक नमूने पर लागू होता है, और dV आयतन में अतिसूक्ष्म परिवर्तन है जो आंतरिक ऊर्जा में परिवर्तन से मेल खाता है। ऋण चिह्न प्रकट होता है क्योंकि सकारात्मक लागू दबाव द्वारा संपीड़न के तहत डीवी नकारात्मक होता है जो आंतरिक ऊर्जा को भी बढ़ाता है। उलटने पर, एक सिस्टम द्वारा किया जाने वाला कार्य इसकी आंतरिक ऊर्जा में परिवर्तन का ऋणात्मक होता है, जो बढ़ती हुई मात्रा के धनात्मक dV के अनुरूप होता है। दूसरे शब्दों में, सिस्टम अपने परिवेश पर काम करते समय संग्रहीत आंतरिक ऊर्जा खो देता है। दबाव तनाव है और वॉल्यूमेट्रिक परिवर्तन सामग्री के भीतर बिंदुओं के सापेक्ष अंतर को बदलने से मेल खाता है। पूर्वगामी सूत्र के तनाव-तनाव-आंतरिक ऊर्जा संबंध को जटिल क्रिस्टलीय संरचना वाले ठोस पदार्थों की लोचदार ऊर्जा के योगों में दोहराया जाता है।

यांत्रिक प्रणालियों में लोचदार संभावित ऊर्जा

मैकेनिकल सिस्टम के घटक लोचदार संभावित ऊर्जा को स्टोर करते हैं यदि सिस्टम पर बल लागू होने पर वे विकृत हो जाते हैं। जब कोई बाहरी बल वस्तु को विस्थापित या विकृत करता है, तो कार्य (भौतिकी) द्वारा किसी वस्तु में ऊर्जा स्थानांतरित की जाती है। स्थानांतरित ऊर्जा की मात्रा बल और वस्तु के विस्थापन का वेक्टर डॉट उत्पाद है। जैसे ही सिस्टम पर बल लागू होते हैं, वे आंतरिक रूप से इसके घटक भागों में वितरित हो जाते हैं। जबकि स्थानांतरित की गई कुछ ऊर्जा अधिग्रहीत वेग की गतिज ऊर्जा के रूप में संग्रहीत हो सकती है, घटक वस्तुओं के विरूपण के परिणामस्वरूप संग्रहीत लोचदार ऊर्जा होती है।

एक प्रोटोटाइपिकल लोचदार घटक एक कुंडलित वसंत है। वसंत के रैखिक लोचदार प्रदर्शन को आनुपातिकता के स्थिरांक द्वारा पैरामीट्रिज किया जाता है, जिसे वसंत स्थिरांक कहा जाता है। इस स्थिरांक को आमतौर पर k (हुक का नियम भी देखें) के रूप में दर्शाया जाता है और यह ज्यामिति, क्रॉस-सेक्शनल क्षेत्र, अविकृत लंबाई और उस सामग्री की प्रकृति पर निर्भर करता है जिससे कॉइल का फैशन होता है। विरूपण की एक निश्चित सीमा के भीतर, k स्थिर रहता है और उस विस्थापन पर वसंत द्वारा उत्पन्न पुनर्स्थापना बल के परिमाण के विस्थापन के नकारात्मक अनुपात के रूप में परिभाषित किया जाता है।

विकृत लंबाई, L, L से बड़ी या छोटी हो सकती हैo, अविकृत लंबाई, इसलिए k धनात्मक रखने के लिए, Fr प्रत्यानयन बल के सदिश घटक के रूप में दिया जाना चाहिए जिसका चिह्न L>L के लिए ऋणात्मक हैo और एल < एल के लिए सकारात्मकo. यदि विस्थापन को संक्षिप्त किया जाता है
तब हुक के नियम को सामान्य रूप में लिखा जा सकता है
लागू बल के माप के रूप में प्रत्यानयन बल की गणना करने के लिए हुक के नियम का उपयोग करके वसंत में अवशोषित और धारण की गई ऊर्जा प्राप्त की जा सकती है। इसके लिए अधिकांश परिस्थितियों में पर्याप्त रूप से सही धारणा की आवश्यकता होती है, कि एक निश्चित समय पर, लागू बल का परिमाण, Fa परिणामी प्रत्यानयन बल के परिमाण के बराबर होता है, लेकिन इसकी दिशा और इस प्रकार चिह्न भिन्न होता है। दूसरे शब्दों में, मान लें कि विस्थापन के प्रत्येक बिंदु पर Fa = के एक्स, जहां एफa x दिशा के अनुदिश आरोपित बल का घटक है
प्रत्येक अतिसूक्ष्म विस्थापन dx के लिए, लगाया गया बल केवल k x है और इनका गुणनफल स्प्रिंग dU में ऊर्जा का अतिसूक्ष्म स्थानांतरण है। वसंत में शून्य विस्थापन से लेकर अंतिम लंबाई L तक रखी गई कुल लोचदार ऊर्जा इस प्रकार अभिन्न है
यंग के मॉड्यूलस की सामग्री के लिए, वाई (लोच के मॉड्यूलस λ के समान), क्रॉस सेक्शनल एरिया, ए0, प्रारंभिक लंबाई, एल0, जो लंबाई से फैला हुआ है, :
जहां यूe लोचदार संभावित ऊर्जा है।

प्रति इकाई आयतन लोचदार संभावित ऊर्जा द्वारा दिया गया है:

कहां सामग्री में खिंचाव है।

सामान्य स्थिति में, तनाव टेंसर घटकों ε के एक समारोह के रूप में लोचदार ऊर्जा मुक्त ऊर्जा प्रति इकाई मात्रा f द्वारा दी जाती हैij

जहां λ और μ लैम लोचदार गुणांक हैं और हम आइंस्टीन संकेतन का उपयोग करते हैं। तनाव टेंसर घटकों और तनाव टेंसर घटकों के बीच थर्मोडायनामिक कनेक्शन को ध्यान में रखते हुए,[1]
जहां सबस्क्रिप्ट टी दर्शाता है कि तापमान स्थिर रखा जाता है, तो हम पाते हैं कि यदि हुक का कानून वैध है, तो हम लोचदार ऊर्जा घनत्व लिख सकते हैं


कॉन्टिनम सिस्टम्स

बल्क में पदार्थ को कई अलग-अलग तरीकों से विकृत किया जा सकता है: स्ट्रेचिंग, शीयरिंग, बेंडिंग, ट्विस्टिंग आदि। प्रत्येक प्रकार की विकृति एक विकृत सामग्री की लोचदार ऊर्जा में योगदान करती है। ऑर्थोगोनल निर्देशांक में, तनाव के कारण प्रति इकाई आयतन लोचदार ऊर्जा इस प्रकार योगदान का योग है:

कहां एक चौथा टेन्सर#टेंसर रैंक है, जिसे इलास्टिक, या कभी-कभी कठोरता, टेन्सर कहा जाता है[3] जो यांत्रिक प्रणालियों के लोचदार मोडुली का सामान्यीकरण है, और तनाव टेन्सर है (आइंस्टीन सारांश संकेतन का उपयोग बार-बार होने वाले सूचकांकों पर योग को दर्शाने के लिए किया गया है)। के मान सामग्री की क्रिस्टल संरचना पर निर्भर करता है: सामान्य स्थिति में, सममित प्रकृति के कारण और , लोचदार टेंसर में 21 स्वतंत्र लोचदार गुणांक होते हैं।[4] सामग्री की समरूपता द्वारा इस संख्या को और कम किया जा सकता है: 9 एक ऑर्थोरोम्बिक क्रिस्टल सिस्टम क्रिस्टल के लिए, 5 हेक्सागोनल क्रिस्टल परिवार संरचना के लिए, और 3 घन क्रिस्टल प्रणाली समरूपता के लिए।[5] अंत में, एक समदैशिक सामग्री के लिए, केवल दो स्वतंत्र पैरामीटर हैं , कहां और लमे स्थिरांक हैं, और क्रोनकर डेल्टा है।

तनाव टेन्सर को किसी भी तरह से विकृति को प्रतिबिंबित करने के लिए परिभाषित किया जा सकता है, जिसके परिणामस्वरूप कुल रोटेशन के तहत अपरिवर्तनीयता होती है, लेकिन सबसे आम परिभाषा जिसके संबंध में लोचदार टेन्सर आमतौर पर व्यक्त किए जाते हैं, तनाव को सभी गैर-रेखीय शर्तों के साथ विस्थापन के ढाल के सममित भाग के रूप में परिभाषित करता है। दबा हुआ:

कहां में एक बिंदु पर विस्थापन है -वीं दिशा और में आंशिक व्युत्पन्न है -वीं दिशा। ध्यान दें कि:
जहां कोई योग का इरादा नहीं है। हालांकि पूर्ण आइंस्टीन संकेतन सूचकांकों के बढ़े हुए और घटे हुए जोड़े पर योग करता है, इलास्टिक और स्ट्रेन टेन्सर घटकों के मान आमतौर पर सभी सूचकांकों को कम करके व्यक्त किए जाते हैं। इस प्रकार सावधान रहें (यहाँ के रूप में) कि कुछ संदर्भों में एक दोहराया सूचकांक उस सूचकांक के योग से अधिक नहीं होता है ( इस मामले में), लेकिन एक टेंसर का केवल एक घटक।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Landau, L.D.; Lifshitz, E. M. (1986). लोच का सिद्धांत (3rd ed.). Oxford, England: Butterworth Heinemann. ISBN 0-7506-2633-X.
  2. Maxwell, J.C. (1888). Peter Pesic (ed.). ताप का सिद्धांत (9th ed.). Mineola, N.Y.: Dover Publications Inc. ISBN 0-486-41735-2.
  3. Dove, Martin T. (2003). संरचना और गतिकी: सामग्री का एक परमाणु दृश्य. Oxford: Oxford University Press. ISBN 0-19-850677-5. OCLC 50022684.
  4. Nye, J. F. (1985). क्रिस्टल के भौतिक गुण: टेंसर और मेट्रिसेस द्वारा उनका प्रतिनिधित्व (1st published in pbk. with corrections, 1985 ed.). Oxford [Oxfordshire]: Clarendon Press. ISBN 0-19-851165-5. OCLC 11114089.
  5. Mouhat, Félix; Coudert, François-Xavier (2014-12-05). "विभिन्न क्रिस्टल प्रणालियों में आवश्यक और पर्याप्त लोचदार स्थिरता की स्थिति". Physical Review B (in English). 90 (22): 224104. arXiv:1410.0065. Bibcode:2014PhRvB..90v4104M. doi:10.1103/PhysRevB.90.224104. ISSN 1098-0121. S2CID 54058316.


स्रोत

श्रेणी: शास्त्रीय यांत्रिकी श्रेणी: ऊर्जा के रूप

सरल: लोचदार ऊर्जा एसवी: इलास्टिक एनर्जी

  1. Eshelby, J.D (November 1975). "लोचदार ऊर्जा-गति टेन्सर". Journal of Elasticity. 5 (3–4): 321–335. doi:10.1007/BF00126994. S2CID 121320629.