न्यूरोटॉक्सिटी: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
न्यूरोटॉक्सिसिटी शब्द का तात्पर्य न्यूरोटॉक्सिन की भागीदारी से है; हालाँकि, न्यूरोटॉक्सिक शब्द का उपयोग उन अवस्थाओ का वर्णन करने के लिए अधिक शिथिल रूप से किया जा सकता है जो शारीरिक [[मस्तिष्क क्षति]] के कारण जाने जाते हैं, लेकिन जहाँ किसी विशिष्ट न्यूरोटॉक्सिन की पहचान नहीं की गई है।{{fact|date=March 2021}} | न्यूरोटॉक्सिसिटी शब्द का तात्पर्य न्यूरोटॉक्सिन की भागीदारी से है; हालाँकि, न्यूरोटॉक्सिक शब्द का उपयोग उन अवस्थाओ का वर्णन करने के लिए अधिक शिथिल रूप से किया जा सकता है जो शारीरिक [[मस्तिष्क क्षति]] के कारण जाने जाते हैं, लेकिन जहाँ किसी विशिष्ट न्यूरोटॉक्सिन की पहचान नहीं की गई है।{{fact|date=March 2021}} | ||
केवल [[तंत्रिका संबंधी कमी]] की उपस्थिति को | केवल [[तंत्रिका संबंधी कमी]] की उपस्थिति को सामान्यतः न्यूरोटॉक्सिसिटी का पर्याप्त प्रमाण नहीं माना जाता है, क्योंकि कई पदार्थ [[neurocognitive|न्यूरोकॉग्निटिव]] प्रदर्शन को ख़राब कर सकते हैं, जिसके परिणामस्वरूप न्यूरॉन्स की मृत्यु नहीं होती है। यह पदार्थ की प्रत्यक्ष क्रिया के कारण हो सकता है, जिसमें दुर्बलता और न्यूरोकॉग्निटिव डेफिसिट अस्थायी होते हैं, और जब पदार्थ शरीर से दवा का उन्मूलन होता है तो इसका समाधान होता है। कुछ मामलों में स्तर या जोखिम-समय महत्वपूर्ण हो सकता है, कुछ पदार्थ केवल कुछ खुराक या समय अवधि में न्यूरोटॉक्सिक बन जाते हैं। [[अमाइलॉइड बीटा|एमाइलॉयड बीटा]] (Aβ), [[ग्लूटामेट]], [[डोपामाइन]] और [[ऑक्सीजन रेडिकल्स]] लंबे समय तक नशीली दवाओं के उपयोग के परिणामस्वरूप न्यूरोटॉक्सिसिटी की ओर ले जाने वाले कुछ सबसे आम स्वाभाविक रूप से होने वाले मस्तिष्क विषाक्त पदार्थ हैं। उच्च सांद्रता में मौजूद होने पर, वे न्यूरोटॉक्सिसिटी और मृत्यु ([[apoptosis|एपोप्टोसिस]]) का कारण बन सकते हैं। कोशिका मृत्यु के परिणामस्वरूप होने वाले कुछ लक्षणों में मोटर नियंत्रण की हानि, संज्ञानात्मक गिरावट और स्वायत्त तंत्रिका तंत्र की शिथिलता सम्मिलित है। इसके अतिरिक्त, न्यूरोटॉक्सिसिटी को अल्जाइमर रोग (एडी) जैसे [[न्यूरोडीजेनेरेटिव रोग|न्यूरोडीजेनेरेटिव रोगों]] का एक प्रमुख कारण पाया गया है।{{fact|date=March 2021}} | ||
Line 13: | Line 13: | ||
=== एमाइलॉयड बीटा === | === एमाइलॉयड बीटा === | ||
एमाइलॉयड बीटा (Aβ) उच्च सांद्रता में मौजूद होने पर मस्तिष्क में न्यूरोटॉक्सिसिटी और कोशिका मृत्यु का कारण पाया गया। Aβ एक उत्परिवर्तन से उत्पन्न होता है, जो तब होता है जब प्रोटीन श्रृंखला गलत स्थानों पर कट जाती है, जिसके परिणामस्वरूप विभिन्न लंबाई की श्रृंखला अनुपयोगी होती है। इस प्रकार वे मस्तिष्क में तब तक छोड़े जाते हैं जब तक वे टूट नहीं जाते हैं, लेकिन यदि पर्याप्त मात्रा में जमा हो जाते हैं, तो वे [[सेनील सजीले टुकड़े]] बनाते हैं जो [[न्यूरॉन्स]] के लिए विषाक्त होते हैं। कोशिका मृत्यु का कारण बनने के लिए Aβ केंद्रीय तंत्रिका तंत्र में कई मार्गों का उपयोग करता है। एक उदाहरण [[निकोटिनिक एसिटाइलकोलाइन रिसेप्टर]] (nAchRs) के माध्यम से है, जो एक रिसेप्टर है जो | एमाइलॉयड बीटा (Aβ) उच्च सांद्रता में मौजूद होने पर मस्तिष्क में न्यूरोटॉक्सिसिटी और कोशिका मृत्यु का कारण पाया गया। Aβ एक उत्परिवर्तन से उत्पन्न होता है, जो तब होता है जब प्रोटीन श्रृंखला गलत स्थानों पर कट जाती है, जिसके परिणामस्वरूप विभिन्न लंबाई की श्रृंखला अनुपयोगी होती है। इस प्रकार वे मस्तिष्क में तब तक छोड़े जाते हैं जब तक वे टूट नहीं जाते हैं, लेकिन यदि पर्याप्त मात्रा में जमा हो जाते हैं, तो वे [[सेनील सजीले टुकड़े]] बनाते हैं जो [[न्यूरॉन्स]] के लिए विषाक्त होते हैं। कोशिका मृत्यु का कारण बनने के लिए Aβ केंद्रीय तंत्रिका तंत्र में कई मार्गों का उपयोग करता है। एक उदाहरण [[निकोटिनिक एसिटाइलकोलाइन रिसेप्टर]] (nAchRs) के माध्यम से है, जो एक रिसेप्टर है जो सामान्यतः कोशिकाओं की सतहों के साथ पाया जाता है जो [[निकोटीन]] उत्तेजना का जवाब देते हैं, उन्हें चालू या बंद करते हैं। कोशिका मृत्यु का कारण बनने के लिए Aβ को [[MAP kinase|एमएपी किनेज]], एक अन्य सिग्नलिंग रिसेप्टर के साथ मस्तिष्क में निकोटीन के स्तर में हेरफेर करते पाया गया। मस्तिष्क में एक अन्य रसायन जिसे Aβ नियंत्रित करता है वह है [[JNK]]; यह रसायन [[बाह्य संकेत-विनियमित किनेसेस]] (ERK) मार्ग को रोकता है, जो सामान्य रूप से मस्तिष्क में स्मृति नियंत्रण के रूप में कार्य करता है। नतीजतन, यह स्मृति अनुकूल मार्ग बंद हो जाता है, और मस्तिष्क आवश्यक स्मृति समारोह खो देता है। स्मृति हानि AD सहित न्यूरोडीजेनेरेटिव रोग का एक लक्षण है। Aβ के कारण कोशिका मृत्यु का दूसरा तरीका [[AKT]] के फॉस्फोराइलेशन के माध्यम से होता है; ऐसा इसलिए होता है क्योंकि फॉस्फेट समूह प्रोटीन पर कई साइटों से जुड़ा होता है। यह फॉस्फोराइलेशन AKT को [[Bcl-2]]-संबंधित मृत्यु प्रवर्तक के साथ बातचीत करने की अनुमति देता है, एक प्रोटीन जो कोशिका मृत्यु का कारण बनता है। इस प्रकार Aβ में वृद्धि से AKT/BAD कॉम्प्लेक्स की वृद्धि होती है, बदले में एंटी-एपोप्टोटिक प्रोटीन Bcl-2 की क्रिया को रोक देता है, जो सामान्य रूप से कोशिका मृत्यु को रोकने के लिए कार्य करता है, जिससे त्वरित न्यूरॉन ब्रेकडाउन और AD की प्रगति होती है।{{fact|date=March 2021}} | ||
===ग्लूटामेट === | ===ग्लूटामेट === | ||
ग्लूटामेट मस्तिष्क में पाया जाने वाला एक रसायन है जो उच्च सांद्रता में पाए जाने पर न्यूरॉन्स के लिए एक जहरीला खतरा पैदा करता है। यह सघनता संतुलन अत्यंत नाजुक है और | ग्लूटामेट मस्तिष्क में पाया जाने वाला एक रसायन है जो उच्च सांद्रता में पाए जाने पर न्यूरॉन्स के लिए एक जहरीला खतरा पैदा करता है। यह सघनता संतुलन अत्यंत नाजुक है और सामान्यतः मिलिमोलर मात्रा में बाह्य रूप से पाया जाता है। परेशान होने पर, [[ग्लूटामेट ट्रांसपोर्टर|ग्लूटामेट ट्रांसपोर्टर्स]] में एक उत्परिवर्तन के परिणामस्वरूप ग्लूटामेट का संचय होता है, जो सिनैप्स से ग्लूटामेट को साफ करने के लिए पंप की तरह काम करता है। इससे मस्तिष्क की तुलना में रक्त में ग्लूटामेट की सांद्रता कई गुना अधिक हो जाती है; बदले में, शरीर को रक्त प्रवाह से और मस्तिष्क के न्यूरॉन्स में ग्लूटामेट को पंप करके दो सांद्रता के बीच संतुलन बनाए रखने के लिए कार्य करना चाहिए। उत्परिवर्तन की स्थिति में, ग्लूटामेट ट्रांसपोर्टर ग्लूटामेट को कोशिकाओं में वापस पंप करने में असमर्थ होते हैं; इस प्रकार [[ग्लूटामेट रिसेप्टर्स]] पर एक उच्च सांद्रता जमा हो जाती है। यह आयन चैनल खोलता है, कैल्शियम को सेल में प्रवेश करने की अनुमति देता है जिससे एक्साइटोटॉक्सिसिटी होती है। [[एन-मिथाइल-डी-एसपारटिक एसिड]] रिसेप्टर्स (एनएमडीए) को चालू करके ग्लूटामेट के परिणामस्वरूप कोशिका मृत्यु होती है; ये रिसेप्टर्स कोशिकाओं में कैल्शियम आयनों ( Ca<sup>2+</sup>) की वृद्धि का कारण बनते हैं। परिणामस्वरूप, Ca<sup>2+</sup> की बढ़ी हुई एकाग्रता सीधे [[माइटोकॉन्ड्रिया]] पर तनाव बढ़ाता है, जिसके परिणामस्वरूप [[नाइट्रिक ऑक्साइड सिंथेज़]] की सक्रियता के माध्यम से अत्यधिक [[ऑक्सीडेटिव फास्फारिलीकरण]] और [[प्रतिक्रियाशील ऑक्सीजन प्रजातियों]] (आरओएस) का उत्पादन होता है, जो अंततः कोशिका मृत्यु का कारण बनता है। ग्लूटामेट के लिए न्यूरॉन भेद्यता को बढ़ाकर Aβ को न्यूरोटॉक्सिसिटी के लिए इस मार्ग का समर्थन करते हुए भी पाया गया।{{fact|date=March 2021}} | ||
Line 32: | Line 32: | ||
रोग का निदान लंबाई और जोखिम की डिग्री और स्नायविक चोट की गंभीरता पर निर्भर करता है। कुछ मामलों में, न्यूरोटॉक्सिन या न्यूरोटॉक्सिकेंट्स का संपर्क घातक हो सकता है। दूसरों में, रोगी जीवित रह सकते हैं लेकिन पूरी तरह ठीक नहीं हो सकते। अन्य स्थितियों में, कई व्यक्ति इलाज के बाद पूरी तरह से ठीक हो जाते हैं।<ref>{{cite book |author=National Research Council |title=पर्यावरण न्यूरोटॉक्सिकोलॉजी|date=1992 |isbn=978-0-309-04531-5 |url=https://www.nap.edu/catalog/1801/environmental-neurotoxicology }}{{pn|date=March 2021}}</ref> | रोग का निदान लंबाई और जोखिम की डिग्री और स्नायविक चोट की गंभीरता पर निर्भर करता है। कुछ मामलों में, न्यूरोटॉक्सिन या न्यूरोटॉक्सिकेंट्स का संपर्क घातक हो सकता है। दूसरों में, रोगी जीवित रह सकते हैं लेकिन पूरी तरह ठीक नहीं हो सकते। अन्य स्थितियों में, कई व्यक्ति इलाज के बाद पूरी तरह से ठीक हो जाते हैं।<ref>{{cite book |author=National Research Council |title=पर्यावरण न्यूरोटॉक्सिकोलॉजी|date=1992 |isbn=978-0-309-04531-5 |url=https://www.nap.edu/catalog/1801/environmental-neurotoxicology }}{{pn|date=March 2021}}</ref> | ||
शब्द न्यूरोटॉक्सिसिटी (/ | शब्द न्यूरोटॉक्सिसिटी (/ ˌ{{IPAc-en|ˌ|n|ʊər|oʊ-|t|ɒ|k|ˈ|s|ɪ|s|ᵻ|t|i}}/) neuro- + tox- + -icity के [[शास्त्रीय यौगिक|पारंपरिक यौगिक]] का उपयोग करता है, जिससे "तंत्रिका ऊतक विषाक्तता" उत्पन्न होती है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 13:52, 22 December 2022
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (August 2014) (Learn how and when to remove this template message) |
न्यूरोटॉक्सिसिटी विषाक्तता का एक रूप है जिसमें एक जैविक, रासायनिक या भौतिक एजेंट केंद्रीय तंत्रिका तंत्र और/या परिधीय तंत्रिका तंत्र की संरचना या कार्य पर प्रतिकूल प्रभाव डालता है।[1] यह तब होता है जब किसी पदार्थ के संपर्क में - विशेष रूप से, एक न्यूरोटॉक्सिन या न्यूरोटॉक्सिकेंट - तंत्रिका तंत्र की सामान्य गतिविधि को इस तरह से बदल देता है जिससे तंत्रिका ऊतक को स्थायी या प्रतिवर्ती क्षति हो सकती है।[1] यह अंततः न्यूरॉन्स को बाधित या यहां तक कि मार सकता है, वह कोशिकाएं जो मस्तिष्क और तंत्रिका तंत्र के अन्य भागों में तंत्रिकासंचरण करती हैं। न्यूरोटॉक्सिसिटी अंग प्रत्यारोपण, विकिरण उपचार, कुछ दवा चिकित्सा, मनोरंजक दवाओं के उपयोग, और भारी धातुओं के संपर्क में आने, जहरीले सांपों की कुछ प्रजातियों के काटने, कीटनाशकों, [2][3] कुछ औद्योगिक सफाई विलायक,[4] ईंधन[5] और कुछ प्राकृतिक रूप से पाए जाने वाले पदार्थ के परिणामस्वरूप हो सकती है। एक्सपोजर के तुरंत बाद लक्षण दिखाई दे सकते हैं या लक्षण दिखने में कुछ समय भी लग सकता है लक्षण के रूप में उनमें अंग की कमजोरी या सुन्नता, स्मृति की हानि, दृष्टि और/या बुद्धि, अनियंत्रित जुनूनी और/या बाध्यकारी व्यवहार, भ्रम, सिरदर्द, संज्ञानात्मक और व्यवहार संबंधी समस्याएं और यौन रोग सम्मिलित हो सकते हैं। घरों में लंबे समय तक फफूंदी के संपर्क में आने से न्यूरोटॉक्सिसिटी हो सकती है जो महीनों से लेकर वर्षों तक दिखाई नहीं दे सकती है।[6] ऊपर सूचीबद्ध सभी लक्षण मोल्ड मायकोटॉक्सिन संचय के अनुरूप हैं।[7]
न्यूरोटॉक्सिसिटी शब्द का तात्पर्य न्यूरोटॉक्सिन की भागीदारी से है; हालाँकि, न्यूरोटॉक्सिक शब्द का उपयोग उन अवस्थाओ का वर्णन करने के लिए अधिक शिथिल रूप से किया जा सकता है जो शारीरिक मस्तिष्क क्षति के कारण जाने जाते हैं, लेकिन जहाँ किसी विशिष्ट न्यूरोटॉक्सिन की पहचान नहीं की गई है।[citation needed]
केवल तंत्रिका संबंधी कमी की उपस्थिति को सामान्यतः न्यूरोटॉक्सिसिटी का पर्याप्त प्रमाण नहीं माना जाता है, क्योंकि कई पदार्थ न्यूरोकॉग्निटिव प्रदर्शन को ख़राब कर सकते हैं, जिसके परिणामस्वरूप न्यूरॉन्स की मृत्यु नहीं होती है। यह पदार्थ की प्रत्यक्ष क्रिया के कारण हो सकता है, जिसमें दुर्बलता और न्यूरोकॉग्निटिव डेफिसिट अस्थायी होते हैं, और जब पदार्थ शरीर से दवा का उन्मूलन होता है तो इसका समाधान होता है। कुछ मामलों में स्तर या जोखिम-समय महत्वपूर्ण हो सकता है, कुछ पदार्थ केवल कुछ खुराक या समय अवधि में न्यूरोटॉक्सिक बन जाते हैं। एमाइलॉयड बीटा (Aβ), ग्लूटामेट, डोपामाइन और ऑक्सीजन रेडिकल्स लंबे समय तक नशीली दवाओं के उपयोग के परिणामस्वरूप न्यूरोटॉक्सिसिटी की ओर ले जाने वाले कुछ सबसे आम स्वाभाविक रूप से होने वाले मस्तिष्क विषाक्त पदार्थ हैं। उच्च सांद्रता में मौजूद होने पर, वे न्यूरोटॉक्सिसिटी और मृत्यु (एपोप्टोसिस) का कारण बन सकते हैं। कोशिका मृत्यु के परिणामस्वरूप होने वाले कुछ लक्षणों में मोटर नियंत्रण की हानि, संज्ञानात्मक गिरावट और स्वायत्त तंत्रिका तंत्र की शिथिलता सम्मिलित है। इसके अतिरिक्त, न्यूरोटॉक्सिसिटी को अल्जाइमर रोग (एडी) जैसे न्यूरोडीजेनेरेटिव रोगों का एक प्रमुख कारण पाया गया है।[citation needed]
न्यूरोटॉक्सिक एजेंट
एमाइलॉयड बीटा
एमाइलॉयड बीटा (Aβ) उच्च सांद्रता में मौजूद होने पर मस्तिष्क में न्यूरोटॉक्सिसिटी और कोशिका मृत्यु का कारण पाया गया। Aβ एक उत्परिवर्तन से उत्पन्न होता है, जो तब होता है जब प्रोटीन श्रृंखला गलत स्थानों पर कट जाती है, जिसके परिणामस्वरूप विभिन्न लंबाई की श्रृंखला अनुपयोगी होती है। इस प्रकार वे मस्तिष्क में तब तक छोड़े जाते हैं जब तक वे टूट नहीं जाते हैं, लेकिन यदि पर्याप्त मात्रा में जमा हो जाते हैं, तो वे सेनील सजीले टुकड़े बनाते हैं जो न्यूरॉन्स के लिए विषाक्त होते हैं। कोशिका मृत्यु का कारण बनने के लिए Aβ केंद्रीय तंत्रिका तंत्र में कई मार्गों का उपयोग करता है। एक उदाहरण निकोटिनिक एसिटाइलकोलाइन रिसेप्टर (nAchRs) के माध्यम से है, जो एक रिसेप्टर है जो सामान्यतः कोशिकाओं की सतहों के साथ पाया जाता है जो निकोटीन उत्तेजना का जवाब देते हैं, उन्हें चालू या बंद करते हैं। कोशिका मृत्यु का कारण बनने के लिए Aβ को एमएपी किनेज, एक अन्य सिग्नलिंग रिसेप्टर के साथ मस्तिष्क में निकोटीन के स्तर में हेरफेर करते पाया गया। मस्तिष्क में एक अन्य रसायन जिसे Aβ नियंत्रित करता है वह है JNK; यह रसायन बाह्य संकेत-विनियमित किनेसेस (ERK) मार्ग को रोकता है, जो सामान्य रूप से मस्तिष्क में स्मृति नियंत्रण के रूप में कार्य करता है। नतीजतन, यह स्मृति अनुकूल मार्ग बंद हो जाता है, और मस्तिष्क आवश्यक स्मृति समारोह खो देता है। स्मृति हानि AD सहित न्यूरोडीजेनेरेटिव रोग का एक लक्षण है। Aβ के कारण कोशिका मृत्यु का दूसरा तरीका AKT के फॉस्फोराइलेशन के माध्यम से होता है; ऐसा इसलिए होता है क्योंकि फॉस्फेट समूह प्रोटीन पर कई साइटों से जुड़ा होता है। यह फॉस्फोराइलेशन AKT को Bcl-2-संबंधित मृत्यु प्रवर्तक के साथ बातचीत करने की अनुमति देता है, एक प्रोटीन जो कोशिका मृत्यु का कारण बनता है। इस प्रकार Aβ में वृद्धि से AKT/BAD कॉम्प्लेक्स की वृद्धि होती है, बदले में एंटी-एपोप्टोटिक प्रोटीन Bcl-2 की क्रिया को रोक देता है, जो सामान्य रूप से कोशिका मृत्यु को रोकने के लिए कार्य करता है, जिससे त्वरित न्यूरॉन ब्रेकडाउन और AD की प्रगति होती है।[citation needed]
ग्लूटामेट
ग्लूटामेट मस्तिष्क में पाया जाने वाला एक रसायन है जो उच्च सांद्रता में पाए जाने पर न्यूरॉन्स के लिए एक जहरीला खतरा पैदा करता है। यह सघनता संतुलन अत्यंत नाजुक है और सामान्यतः मिलिमोलर मात्रा में बाह्य रूप से पाया जाता है। परेशान होने पर, ग्लूटामेट ट्रांसपोर्टर्स में एक उत्परिवर्तन के परिणामस्वरूप ग्लूटामेट का संचय होता है, जो सिनैप्स से ग्लूटामेट को साफ करने के लिए पंप की तरह काम करता है। इससे मस्तिष्क की तुलना में रक्त में ग्लूटामेट की सांद्रता कई गुना अधिक हो जाती है; बदले में, शरीर को रक्त प्रवाह से और मस्तिष्क के न्यूरॉन्स में ग्लूटामेट को पंप करके दो सांद्रता के बीच संतुलन बनाए रखने के लिए कार्य करना चाहिए। उत्परिवर्तन की स्थिति में, ग्लूटामेट ट्रांसपोर्टर ग्लूटामेट को कोशिकाओं में वापस पंप करने में असमर्थ होते हैं; इस प्रकार ग्लूटामेट रिसेप्टर्स पर एक उच्च सांद्रता जमा हो जाती है। यह आयन चैनल खोलता है, कैल्शियम को सेल में प्रवेश करने की अनुमति देता है जिससे एक्साइटोटॉक्सिसिटी होती है। एन-मिथाइल-डी-एसपारटिक एसिड रिसेप्टर्स (एनएमडीए) को चालू करके ग्लूटामेट के परिणामस्वरूप कोशिका मृत्यु होती है; ये रिसेप्टर्स कोशिकाओं में कैल्शियम आयनों ( Ca2+) की वृद्धि का कारण बनते हैं। परिणामस्वरूप, Ca2+ की बढ़ी हुई एकाग्रता सीधे माइटोकॉन्ड्रिया पर तनाव बढ़ाता है, जिसके परिणामस्वरूप नाइट्रिक ऑक्साइड सिंथेज़ की सक्रियता के माध्यम से अत्यधिक ऑक्सीडेटिव फास्फारिलीकरण और प्रतिक्रियाशील ऑक्सीजन प्रजातियों (आरओएस) का उत्पादन होता है, जो अंततः कोशिका मृत्यु का कारण बनता है। ग्लूटामेट के लिए न्यूरॉन भेद्यता को बढ़ाकर Aβ को न्यूरोटॉक्सिसिटी के लिए इस मार्ग का समर्थन करते हुए भी पाया गया।[citation needed]
ऑक्सीजन मूलक
मस्तिष्क में ऑक्सीजन रेडिकल्स का निर्माण नाइट्रिक ऑक्साइड सिंथेज़ (एनओएस) मार्ग के माध्यम से होता है। यह प्रतिक्रिया एक मस्तिष्क कोशिका के अंदर Ca2+ एकाग्रता में वृद्धि की प्रतिक्रिया के रूप में होती है। Ca2+ और एनओएस के बीच इस बातचीत के परिणामस्वरूप सहायक कारक टेट्राहाइड्रोबायोप्टेरिन (BH4) का निर्माण होता है, जो तब प्लाज्मा झिल्ली से साइटोप्लाज्म में चला जाता है। अंतिम चरण के रूप में, एनओएस डीफॉस्फोराइलेटेड यील्डिंग नाइट्रिक ऑक्साइड (एनओ) है, जो मस्तिष्क में जमा हो जाता है, जिससे इसका ऑक्सीडेटिव तनाव बढ़ जाता है। सुपरऑक्साइड, हाइड्रोजन पेरोक्साइड और हाइड्रॉकसिल सहित कई आरओएस हैं, जो सभी न्यूरोटॉक्सिसिटी की ओर ले जाते हैं। स्वाभाविक रूप से, शरीर सरल ऑक्सीजन और पानी के छोटे, सौम्य अणुओं में आरओएस को तोड़ने के लिए कुछ एंजाइमों को नियोजित करके प्रतिक्रियाशील प्रजातियों के घातक प्रभावों को कम करने के लिए रक्षात्मक तंत्र का उपयोग करता है। हालाँकि, आरओएस का यह टूटना पूरी तरह से कुशल नहीं है; कुछ प्रतिक्रियाशील अवशेष मस्तिष्क में जमा होने के लिए छोड़ दिए जाते हैं, जो न्यूरोटॉक्सिसिटी और कोशिका मृत्यु में योगदान करते हैं। इसकी कम ऑक्सीडेटिव क्षमता के कारण मस्तिष्क अन्य अंगों की तुलना में ऑक्सीडेटिव तनाव के प्रति अधिक संवेदनशील होता है। क्योंकि न्यूरॉन्स को पोस्टमायोटिक कोशिकाओं के रूप में जाना जाता है, जिसका अर्थ है कि वे वर्षों से संचित क्षति के साथ रहते हैं, आरओएस का संचय घातक है। इस प्रकार, आरओएस उम्र के न्यूरॉन्स के बढ़े हुए स्तर, जो त्वरित न्यूरोडीजेनेरेटिव प्रक्रियाओं और अंततः एडी की उन्नति की ओर ले जाते हैं।
डोपामिनर्जिक न्यूरोटॉक्सिसिटी
कुछ दवाएं, सबसे प्रसिद्ध कीटनाशक और मेटाबोलाइट MPP+ (1-मिथाइल-4-फेनिलपाइरीडिन-1-ium) सब्सटेंशिया नाइग्रा में डोपामिनर्जिक न्यूरॉन्स को नष्ट करके पार्किंसंस रोग को प्रेरित कर सकती हैं।[8]MPP+ प्रतिक्रियाशील ऑक्सीजन प्रजातियों को उत्पन्न करने के लिए माइटोकांड्रिया में इलेक्ट्रॉन परिवहन श्रृंखला के साथ संपर्क करता है जो सामान्यीकृत ऑक्सीडेटिव क्षति और अंततः कोशिका मृत्यु का कारण बनता है।[9][10] एमपीपी+ एमपीटीपी (1-मिथाइल-4-फिनाइल-1,2,3,6-टेट्राहाइड्रोपाइरिडीन) के मेटाबोलाइट के रूप में मोनोअमाइन ऑक्सीडेज बी द्वारा निर्मित होता है, और इसकी विषाक्तता उन कोशिकाओं पर सक्रिय ट्रांसपोर्टर के कारण डोपामिनर्जिक न्यूरॉन्स के लिए विशेष रूप से महत्वपूर्ण है। कोशिकाएं जो इसे साइटोप्लाज्म में लाती हैं।[10] एमपीपी+ की न्यूरोटॉक्सिसिटी की पहली बार जांच तब की गई जब एमपीटीपी को एक रसायन विज्ञान स्नातक छात्र द्वारा संश्लेषित पेथिडीन में एक संदूषक के रूप में उत्पादित किया गया, जिसने दूषित दवा इंजेक्ट की और हफ्तों के भीतर पार्किंसंस को विकसित कर दिया।[9][8] पार्किंसंस रोग के अध्ययन में विषाक्तता के तंत्र की खोज एक महत्वपूर्ण प्रगति थी, और यौगिक अब अनुसंधान पशुओं में बीमारी को प्रेरित करने के लिए उपयोग किया जाता है।[8][11]
पूर्वानुमान
रोग का निदान लंबाई और जोखिम की डिग्री और स्नायविक चोट की गंभीरता पर निर्भर करता है। कुछ मामलों में, न्यूरोटॉक्सिन या न्यूरोटॉक्सिकेंट्स का संपर्क घातक हो सकता है। दूसरों में, रोगी जीवित रह सकते हैं लेकिन पूरी तरह ठीक नहीं हो सकते। अन्य स्थितियों में, कई व्यक्ति इलाज के बाद पूरी तरह से ठीक हो जाते हैं।[12]
शब्द न्यूरोटॉक्सिसिटी (/ ˌ/ˌnʊəroʊtɒkˈsɪsɪti//) neuro- + tox- + -icity के पारंपरिक यौगिक का उपयोग करता है, जिससे "तंत्रिका ऊतक विषाक्तता" उत्पन्न होती है।
यह भी देखें
- बैट्राकोटॉक्सिन
- साइटोटोक्सिसिटी
- एकाधिक रासायनिक संवेदनशीलता
- नेफ्रोटोक्सिटी
- ओटोटॉक्सिसिटी
- पेनिट्रेम ए
- [[एक्cytotoxicity]]
- विषाक्तता
संदर्भ
- ↑ 1.0 1.1 Cunha-Oliveira, Teresa; Rego, Ana Cristina; Oliveira, Catarina R. (June 2008). "सेलुलर और आणविक तंत्र ओपिओइड और साइकोस्टिमुलेंट दवाओं के न्यूरोटॉक्सिसिटी में शामिल हैं". Brain Research Reviews. 58 (1): 192–208. doi:10.1016/j.brainresrev.2008.03.002. hdl:10316/4676. PMID 18440072. S2CID 17447665.
- ↑ Keifer, Matthew C.; Firestone, Jordan (31 July 2007). "कीटनाशकों की न्यूरोटॉक्सिसिटी". Journal of Agromedicine. 12 (1): 17–25. doi:10.1300/J096v12n01_03. PMID 18032333. S2CID 23069667.
- ↑ Costa, Lucio, G.; Giordano, G; Guizzetti, M; Vitalone, A (2008). "कीटनाशकों की न्यूरोटॉक्सिसिटी: एक संक्षिप्त समीक्षा". Frontiers in Bioscience. 13 (13): 1240–9. doi:10.2741/2758. PMID 17981626. S2CID 36137987.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Sainio, Markku Alarik (2015). "Neurotoxicity of solvents". व्यावसायिक न्यूरोलॉजी. Handbook of Clinical Neurology. Vol. 131. pp. 93–110. doi:10.1016/B978-0-444-62627-1.00007-X. ISBN 978-0-444-62627-1. PMID 26563785.
- ↑ Ritchie, Glenn D.; Still, Kenneth R.; Alexander, William K.; Nordholm, Alan F.; Wilson, Cody L.; Rossi III, John; Mattie, David R. (1 July 2001). "चयनित हाइड्रोकार्बन ईंधन के न्यूरोटॉक्सिसिटी जोखिम की समीक्षा". Journal of Toxicology and Environmental Health Part B: Critical Reviews. 4 (3): 223–312. doi:10.1080/109374001301419728. PMID 11503417.
- ↑ Curtis, Luke; Lieberman, Allan; Stark, Martha; Rea, William; Vetter, Marsha (September 2004). "इंडोर मोल्ड्स के प्रतिकूल स्वास्थ्य प्रभाव". Journal of Nutritional & Environmental Medicine. 14 (3): 261–274. doi:10.1080/13590840400010318.
- ↑ Kilburn, Kaye H. (2004). इमारतों में बीमार होने में मोल्ड्स और मायकोटॉक्सिन की भूमिका: न्यूरोबिहेवियरल और पल्मोनरी इंपेयरमेंट. Advances in Applied Microbiology. Vol. 55. pp. 339–359. doi:10.1016/S0065-2164(04)55013-X. ISBN 978-0-12-002657-9. PMID 15350801.
- ↑ 8.0 8.1 8.2 edited by Stewart A. Factor, William J. Weiner (2008). पार्किंसंस रोग: निदान और नैदानिक प्रबंधन (2 ed.). New York: Demos. ISBN 978-1-934559-87-1. OCLC 191726483.
{{cite book}}
:|last=
has generic name (help); zero width space character in|title=
at position 34 (help) - ↑ 9.0 9.1 Langston, J. W. (1995). जमे हुए नशेड़ी का मामला. Jon Palfreman (1 ed.). New York: Pantheon Books. ISBN 0-679-42465-2. OCLC 31608154.
- ↑ 10.0 10.1 Jackson-Lewis, Vernice; Przedborski, Serge (Jan 2007). "पार्किंसंस रोग के एमपीटीपी माउस मॉडल के लिए प्रोटोकॉल". Nature Protocols (in English). 2 (1): 141–151. doi:10.1038/nprot.2006.342. ISSN 1750-2799. PMID 17401348. S2CID 39743261.
- ↑ Fahn, Stanley (1996-12-26). "पुस्तक समीक्षा". New England Journal of Medicine. 335 (26): 2002–2003. doi:10.1056/NEJM199612263352618. ISSN 0028-4793.
- ↑ National Research Council (1992). पर्यावरण न्यूरोटॉक्सिकोलॉजी. ISBN 978-0-309-04531-5.[page needed]
अग्रिम पठन
- Akaike, Akinori; Takada-Takatori, Yuki; Kume, Toshiaki; Izumi, Yasuhiko (January 2010). "Mechanisms of Neuroprotective Effects of Nicotine and Acetylcholinesterase Inhibitors: Role of α4 and α7 Receptors in Neuroprotection". Journal of Molecular Neuroscience. 40 (1–2): 211–216. doi:10.1007/s12031-009-9236-1. PMID 19714494. S2CID 7279060.
- Buckingham, Steven D.; Jones, Andrew K.; Brown, Laurence A.; Sattelle, David B. (March 2009). "Nicotinic Acetylcholine Receptor Signalling: Roles in Alzheimer's Disease and Amyloid Neuroprotection". Pharmacological Reviews. 61 (1): 39–61. doi:10.1124/pr.108.000562. PMC 2830120. PMID 19293145.
- Huber, Anke; Stuchbury, Grant; Burkle, Alexander; Burnell, Jim; Munch, Gerald (1 February 2006). "Neuroprotective Therapies for Alzheimers Disease". Current Pharmaceutical Design. 12 (6): 705–717. doi:10.2174/138161206775474251. PMID 16472161.
- Takada-Takatori, Yuki; Kume, Toshiaki; Izumi, Yasuhiko; Ohgi, Yuta; Niidome, Tetsuhiro; Fujii, Takeshi; Sugimoto, Hachiro; Akaike, Akinori (2009). "Roles of Nicotinic Receptors in Acetylcholinesterase Inhibitor-Induced Neuroprotection and Nicotinic Receptor Up-Regulation". Biological & Pharmaceutical Bulletin. 32 (3): 318–324. doi:10.1248/bpb.32.318. PMID 19252271.
- Takada-Takatori, Yuki; Kume, Toshiaki; Sugimoto, Mitsuhiro; Katsuki, Hiroshi; Sugimoto, Hachiro; Akaike, Akinori (September 2006). "Acetylcholinesterase inhibitors used in treatment of Alzheimer's disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade". Neuropharmacology. 51 (3): 474–486. doi:10.1016/j.neuropharm.2006.04.007. PMID 16762377. S2CID 31409248.
- Shimohama, Shun (2009). "Nicotinic Receptor-Mediated Neuroprotection in Neurodegenerative Disease Models". Biological & Pharmaceutical Bulletin. 32 (3): 332–336. doi:10.1248/bpb.32.332. PMID 19252273.
- Ryan, Melody; Kennedy, Kara A. (2009). "Neurotoxic Effects of Pharmaceutical Agents II: Psychiatric Agents". Clinical Neurotoxicology. pp. 348–357. doi:10.1016/B978-032305260-3.50037-X. ISBN 978-0-323-05260-3.
- Lerner, David P.; Tadevosyan, Aleksey; Burns, Joseph D. (1 November 2020). "Toxin-Induced Subacute Encephalopathy". Neurologic Clinics. 38 (4): 799–824. doi:10.1016/j.ncl.2020.07.006. PMID 33040862. S2CID 222301922.