सक्रिय और निष्क्रिय परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
Line 72: Line 72:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 27/12/2022]]
[[Category:Created On 27/12/2022]]
[[Category:Vigyan Ready]]

Revision as of 19:16, 18 January 2023

सक्रिय परिवर्तन (बाएं) में, एक बिंदु समन्वय प्रणाली की उत्पत्ति के बारे में एक कोण θ द्वारा दक्षिणावर्त घुमाकर स्थिति P से P' तक जाता है। निष्क्रिय परिवर्तन (दाएं) में, बिंदु पी नहीं चलता है, जबकि समन्वय प्रणाली अपने मूल के बारे में एक कोण θ द्वारा वामावर्त घुमाती है। सक्रिय मामले में P' के निर्देशांक (जो मूल समन्वय प्रणाली के सापेक्ष हैं) घुमाए गए समन्वय प्रणाली के सापेक्ष P के निर्देशांक के समान हैं।

विश्लेषणात्मक ज्यामिति में, 3-आयामी यूक्लिडियन स्पेस में स्थानिक परिवर्तनों को सक्रिय या ऐलिबी परिवर्तनों और निष्क्रिय या उपनाम परिवर्तनों में प्रतिष्ठित किया जाता है। सक्रिय परिवर्तन[1] एक परिवर्तन है जो वास्तव में एक बिंदु, या दृढ़ पिंड की भौतिक स्थिति (एलबी, अन्यत्र) को बदलता है, जिसे समन्वय प्रणाली की अनुपस्थिति में परिभाषित किया जा सकता है; जबकि निष्क्रिय परिवर्तन [2] केवल उस समन्वय प्रणाली में परिवर्तन है जिसमें वस्तु का वर्णन किया गया है (उपनाम, अन्य नाम) (समन्वय मानचित्र का परिवर्तन, या आधार का परिवर्तन)। रूपांतरण से, गणितज्ञ सामान्यतः सक्रिय परिवर्तनों को संदर्भित करते हैं, जबकि भौतिकविदों और अभियंता का मतलब या तो हो सकता है। दोनों प्रकार के परिवर्तन को अनुवाद और रैखिक परिवर्तन के संयोजन द्वारा दर्शाया जा सकता है।

अलग तरीके से कहें तो, निष्क्रिय परिवर्तन दो अलग-अलग समन्वय प्रणालियों में एक ही वस्तु के विवरण को संदर्भित करता है।[3] दूसरी ओर, सक्रिय परिवर्तन एक ही समन्वय प्रणाली के संबंध में एक या एक से अधिक वस्तुओं का परिवर्तन है। उदाहरण के लिए, सक्रिय परिवर्तन दृढ़ पिंड के क्रमिक पदों का वर्णन करने के लिए उपयोगी होते हैं। दूसरी ओर, निष्क्रिय परिवर्तन मानव गति विश्लेषण में फीमर के सापेक्ष टिबिया की गति का निरीक्षण करने के लिए उपयोगी हो सकता है, अर्थात, (स्थानीय) समन्वय प्रणाली के सापेक्ष इसकी गति जो फीमर के साथ चलती है, बजाय एक ( वैश्विक) समन्वय प्रणाली जो फर्श पर तय की गई है।[3]

उदाहरण

रोटेशन को एक निष्क्रिय (उपनाम) या सक्रिय (ऐलिबी) परिवर्तन के रूप में माना जाता है
अनुवाद और रोटेशन निष्क्रिय (उपनाम) या सक्रिय (ऐलिबी) परिवर्तनों के रूप में

उदाहरण के रूप में, सदिश को समतल में सदिश होने दें। वामावर्त दिशा में एक कोण θ के माध्यम से वेक्टर का घूर्णन रोटेशन मैट्रिक्स द्वारा दिया गया है:

जिसे या तो सक्रिय परिवर्तन या निष्क्रिय परिवर्तन के रूप में देखा जा सकता है (जहां उपरोक्त मैट्रिक्स को उलटा किया जाएगा), जैसा कि नीचे वर्णित है।

यूक्लिडियन स्पेस R3 में स्थानिक परिवर्तन

सामान्य तौर पर स्थानिक परिवर्तन में एक अनुवाद और एक रैखिक परिवर्तन हो सकता है। निम्नलिखित में, अनुवाद को छोड़ दिया जाएगा, और रैखिक रूपांतरण को 3×3 मैट्रिक्स द्वारा दर्शाया जाएगा।

सक्रिय परिवर्तन

सक्रिय परिवर्तन के रूप में, प्रारंभिक वेक्टर (सदिश) को बदल देता है नए वेक्टर में में रूपांतरित करता है।

यदि दृश्य नए आधार के रूप में, तो के निर्देशांक नए आधार में नए सदिश मूल आधार में के समान हैं। ध्यान दें कि सक्रिय परिवर्तन अलग सदिश स्थान में रैखिक परिवर्तन के रूप में भी समझ में आता है। नए सदिश को अप्रमाणित आधार पर (जैसा कि ऊपर बताया गया है) तभी लिखना उचित है जब परिवर्तन अंतरिक्ष से स्वयं में हो।

निष्क्रिय परिवर्तन

दूसरी ओर, जब कोई को निष्क्रिय परिवर्तन के रूप में देखता है, तो प्रारंभिक वेक्टर अपरिवर्तित रहता है, जबकि समन्वय प्रणाली और इसके आधार वैक्टर विपरीत दिशा में रूपांतरित होते हैं, अर्थात, व्युत्क्रम परिवर्तन [4] यह आधार वैक्टर के साथ नया समन्वय प्रणाली XYZ देता है:

नए निर्देशांक का नए समन्वय प्रणाली XYZ के संबंध में निम्न द्वारा दिया गया है:
इस समीकरण से कोई यह देखता है कि नए निर्देशांक किसके द्वारा दिए गए हैं
निष्क्रिय परिवर्तन के रूप में पुराने निर्देशांक को नए में बदल देता है।

दो प्रकार के परिवर्तनों के बीच समानता पर ध्यान दें: सक्रिय परिवर्तन में नए बिंदु के निर्देशांक और निष्क्रिय परिवर्तन में बिंदु के नए निर्देशांक समान हैं, अर्थात्

निराकार सदिश स्पेस में

अमूर्त सदिश स्पेस पर विचार करके सक्रिय और निष्क्रिय परिवर्तनों के बीच अंतर को गणितीय रूप से देखा जा सकता है।

परिमित-आयामी सदिश स्थान को एक क्षेत्र ( या के रूप में माना जाता है, और एक आधार पर फिक्स करें। यह आधार घटक के माध्यम से समरूपता प्रदान करता है। मानचित्र

सक्रिय परिवर्तन तब पर एंडोमोर्फिज्म है, जो कि से स्वयं के लिए रेखीय मानचित्र है। इस तरह के रूपांतरण अंत लेने पर, सदिश के रूप में बदल जाता है। के घटक के आधार पर परिभाषित किए गए हैं समीकरण फिर, के घटक के रूप में रूपांतरित होते हैं।

इसके बजाय निष्क्रिय परिवर्तन एंडोमोर्फिज्म है . यह घटकों पर लागू होता है: . नया आधार पूछकर निर्धारित किया जाता है , जिससे अभिव्यक्ति प्राप्त किया जा सकता है।

हालांकि स्पेस एंड और आइसोमोर्फिक हैं, लेकिन वे कैनोनिकली आइसोमॉर्फिक नहीं हैं। फिर भी, आधार का एक विकल्प समरूपता के निर्माण की अनुमति देता है।

बाएँ और दाएँ-क्रियाओं के रूप में

प्रायः कोई उस मामले तक सीमित रहता है जहां नक्शे उलटे होते हैं ताकि सक्रिय परिवर्तन परिवर्तनों के सामान्य रैखिक समूह हों जबकि निष्क्रिय परिवर्तन समूह हैं।

परिवर्तनों को तब के लिए आधारों के स्थान पर अभिनय के रूप में समझा जा सकता है। सक्रिय परिवर्तन आधार भेजता है। इस बीच, निष्क्रिय परिवर्तन आधार भेजता है।

निष्क्रिय परिवर्तन में व्युत्क्रम यह सुनिश्चित करता है कि घटक और के तहत समान रूप से रूपांतरित होते हैं। यह तब सक्रिय और निष्क्रिय परिवर्तनों के बीच एक तेज अंतर देता है: सक्रिय परिवर्तन आधार पर बाईं ओर से कार्य करते हैं, जबकि निष्क्रिय परिवर्तन दाईं ओर से कार्य करते हैं।

आधारों को समरूपता के विकल्प के रूप में देखने से यह अवलोकन अधिक स्वाभाविक हो जाता है। आधारों का स्थान समान रूप से इस तरह के आइसोमोर्फिज़्म का स्थान है, जिसे के रूप में दर्शाया गया है। के साथ पहचाने जाने वाले सक्रिय परिवर्तन, रचना द्वारा बाईं ओर से पर कार्य करते हैं, जबकि निष्क्रिय परिवर्तन, के साथ पहचाने जाते हैं, पर दाईं ओर से कार्य करते हैं पूर्व रचना।

यह आधारों के स्थान को बाएँ -टोर्सर और दाएँ -टॉर्सर में बदल देता है।

भौतिक परिप्रेक्ष्य से, सक्रिय परिवर्तनों को भौतिक स्थान के परिवर्तनों के रूप में चित्रित किया जा सकता है, जबकि निष्क्रिय परिवर्तनों को भौतिक स्थान के विवरण में अतिरेक के रूप में चित्रित किया जाता है। यह गणितीय गेज सिद्धांत में महत्वपूर्ण भूमिका निभाता है, जहां गेज परिवर्तनों को गणितीय रूप से संक्रमण मानचित्रों द्वारा वर्णित किया जाता है जो तंतुओं पर दाईं ओर से कार्य करते हैं।

यह भी देखें

  • आधार परिवर्तन
  • सदिशों का सहप्रसरण और प्रतिप्रसरण
  • अक्षों का घूमना
  • अक्षों का अनुवाद

संदर्भ

  1. Weisstein, Eric W. "Alibi Transformation." From MathWorld--A Wolfram Web Resource.
  2. Weisstein, Eric W. "Alias Transformation." From MathWorld--A Wolfram Web Resource.
  3. 3.0 3.1 Joseph K. Davidson, Kenneth Henderson Hunt (2004). "§4.4.1 The active interpretation and the active transformation". रोबोट और पेंच सिद्धांत: रोबोटिक्स के लिए कीनेमेटीक्स और स्टैटिक्स के अनुप्रयोग. Oxford University Press. p. 74 ff. ISBN 0-19-856245-4.
  4. Amidror, Isaac (2007). "Appendix D: Remark D.12". मोइरे घटना का सिद्धांत: एपेरियोडिक परतें. Springer. p. 346. ISBN 978-1-4020-5457-0.

बाहरी कड़ियाँ