आइलैंडिंग: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{short description|When distributed generation continues after electrical grid is down}} | {{short description|When distributed generation continues after electrical grid is down}} | ||
द्वीप वह स्थिति है जिसमें वितरित उत्पादन (डीजी) एक स्थान को बिजली देना जारी रखता है, भले ही बाहरी [[विद्युत ग्रिड|विद्युत]] जाली शक्ति अब उपस्थित न हो। उपयोगिता कार्यकर्ता के लिए द्वीप खतरनाक हो सकता है, जिन्हें यह महसूस नहीं हो सकता है कि एक परिपथ अभी भी संचालित है, और यह उपकरणों के स्वत: पुन: संपर्क को रोक सकता है। इसके अतिरिक्त, सख्त आवृत्ति नियंत्रण के बिना, द्वीपीय परिपथ में भार और उत्पादन के बीच संतुलन का उल्लंघन किया जा सकता है, जिससे सामान्य आवृत्तियों और वोल्टता हो सकते हैं। उन कारणों से, वितरित जनित्र को द्वीप का पता लगाना चाहिए और तुरंत परिपथ से पृथक करना चाहिए; इसे विरोधी-द्वीप कहा जाता है। | |||
कुछ | कुछ युक्ति, जिन्हें सामान्यतः पर [[microgrid]] के रूप में जाना जाता है, सुविचारित द्वीप की अनुमति देते हैं। [[बिजली जाना|बिजली कटौती]] के मामले में, माइक्रोविद्युत् तंत्र नियंत्रक एक समर्पित बटन पर विद्युत् तंत्र से स्थानीय परिपथ को पृथक करता है और पूरे स्थानीय भार को बिजली देने के लिए वितरित जनित्र (एस) को बाध्य करता है।<ref>{{Cite journal|last1=Saleh|first1=M.|last2=Esa|first2=Y.|last3=Mhandi|first3=Y.|last4=Brandauer|first4=W.|last5=Mohamed|first5=A.|date=October 2016|title=Design and implementation of CCNY DC microgrid testbed|journal=2016 IEEE Industry Applications Society Annual Meeting|pages=1–7|doi=10.1109/IAS.2016.7731870|isbn=978-1-4799-8397-1|s2cid=16464909|url=https://academicworks.cuny.edu/cc_pubs/634}}</ref><ref name="IEEE-1547.4-2011">{{cite web|title=IEEE 1547.4 - 2011|url=http://grouper.ieee.org/groups/scc21/1547.4/1547.4_index.html|website=IEEE Standards Association Working Group Site & Liaison Index|publisher=IEEE|access-date=3 March 2017}}</ref> सुविचारित द्वीप का एक सामान्य उदाहरण वितरण सहायक है जिसमें [[फोटोवोल्टिक सरणी|सौर पैनल]] लगे होते हैं। कटौती की स्थिति में, सौर पैनल तब तक बिजली देना जारी रखेंगे जब तक [[विकिरण]] पर्याप्त है। इस स्थिति में, कटौती द्वारा अलग किया गया परिपथ एक द्वीप बन जाता है। इस कारण से, [[सौर इन्वर्टर|सौर अंर्तवर्तक]] जो विद्युत् तंत्र को बिजली की आपूर्ति करने के लिए षड्यंत्र किए गए हैं, सामान्यतःपर किसी प्रकार के स्वचालित एंटी-द्वीप सर्किट्री की आवश्यकता होती है। | ||
[[परमाणु ऊर्जा संयंत्र]]ों में, द्वीपसमूह परमाणु रिएक्टर के संचालन का एक असाधारण तरीका है। इस मोड में, बिजली संयंत्र को | [[परमाणु ऊर्जा संयंत्र]]ों में, द्वीपसमूह परमाणु रिएक्टर के संचालन का एक असाधारण तरीका है। इस मोड में, बिजली संयंत्र को विद्युत् तंत्र से काट दिया जाता है, और शीतलन प्रणाली के लिए बिजली रिएक्टर से ही आती है। कुछ प्रकार के रिएक्टरों के लिए, द्वीपीकरण सामान्य प्रक्रिया का हिस्सा है जब बिजली उत्पादन को जल्दी से ठीक करने के लिए बिजली संयंत्र विद्युत् तंत्र से पृथक हो जाता है।<ref>{{cite web | author=Autorité de sûreté nucléaire | title=Îlotage provoqué des deux réacteurs à la centrale nucléaire de Saint-Alban | website=ASN | url=https://www.asn.fr/Controler/Actualites-du-controle/Avis-d-incident-des-installations-nucleaires/Ilotage-provoque-des-deux-reacteurs-Reacteurs-n-1-et-2 | language=fr | access-date=2019-02-25}}</ref> जब द्वीप विफल हो जाती है, तो आपातकालीन प्रणालियाँ (जैसे डीजल जनरेटर) अपना स्थान ले लेती हैं। उदाहरण के लिए, फ्रांसीसी परमाणु ऊर्जा संयंत्र हर चार साल में द्वीपीय परीक्षण करते हैं।<ref>{{cite web | title=Centrale nucléaire de Fessenheim : Mise à l'arrêt de l'unité de production n°2 | website=EDF France | date=2018-07-14 | url=https://www.edf.fr/groupe-edf/nos-energies/carte-de-nos-implantations-industrielles-en-france/centrale-nucleaire-de-fessenheim/actualites/mise-a-l-arret-de-l-unite-de-production-ndeg2 | language=fr | access-date=2019-02-25}}</ref> | ||
== | == द्वीप बेसिक्स == | ||
विद्युत इनवर्टर ऐसे उपकरण हैं जो प्रत्यक्ष धारा (DC) को [[प्रत्यावर्ती धारा]] (AC) में परिवर्तित करते हैं। | विद्युत इनवर्टर ऐसे उपकरण हैं जो प्रत्यक्ष धारा (DC) को [[प्रत्यावर्ती धारा]] (AC) में परिवर्तित करते हैं। विद्युत् तंत्र-इंटरैक्टिव इनवर्टर की अतिरिक्त आवश्यकता होती है कि वे ऐसी एसी बिजली का उत्पादन करें जो विद्युत् तंत्र पर प्रस्तुत मौजूदा शक्ति से मेल खाती हो। विशेष रूप से, एक विद्युत् तंत्र-इंटरैक्टिव इन्वर्टर को उस पावर लाइन के वोल्टेज, आवृत्ति और चरण से मेल खाना चाहिए जिससे वह जुड़ता है। इस ट्रैकिंग की सटीकता के लिए कई तकनीकी आवश्यकताएं हैं। | ||
छत पर सौर पैनलों की एक सरणी वाले घर के मामले पर विचार करें। पैनलों से जुड़े इन्वर्टर (एस) पैनलों द्वारा प्रदान किए गए अलग-अलग डीसी करंट को एसी पावर में परिवर्तित करते हैं जो | छत पर सौर पैनलों की एक सरणी वाले घर के मामले पर विचार करें। पैनलों से जुड़े इन्वर्टर (एस) पैनलों द्वारा प्रदान किए गए अलग-अलग डीसी करंट को एसी पावर में परिवर्तित करते हैं जो विद्युत् तंत्र आपूर्ति से मेल खाता है। यदि विद्युत् तंत्र काट दिया जाता है, तो विद्युत् तंत्र लाइन पर वोल्टेज के शून्य तक गिरने की उम्मीद की जा सकती है, जो सेवा में रुकावट का एक स्पष्ट संकेत है। हालाँकि, उस मामले पर विचार करें जब घर का भार विद्युत् तंत्र रुकावट के तुरंत बाद पैनल के आउटपुट से बिल्कुल मेल खाता हो। इस मामले में पैनल बिजली की आपूर्ति जारी रख सकते हैं, जिसका उपयोग घर के भार द्वारा किया जाता है। इस मामले में कोई स्पष्ट संकेत नहीं है कि रुकावट हुई है। | ||
आम तौर पर, भले ही लोड और उत्पादन बिल्कुल मेल खाते हों, तथाकथित संतुलित स्थिति, | आम तौर पर, भले ही लोड और उत्पादन बिल्कुल मेल खाते हों, तथाकथित संतुलित स्थिति, विद्युत् तंत्र की विफलता के परिणामस्वरूप कई अतिरिक्त क्षणिक संकेत उत्पन्न होंगे। उदाहरण के लिए, लाइन वोल्टेज में लगभग हमेशा एक संक्षिप्त कमी होगी, जो संभावित गलती की स्थिति को संकेत देगी। हालाँकि, ऐसी घटनाएँ सामान्य ऑपरेशन के कारण भी हो सकती हैं, जैसे कि एक बड़ी [[विद्युत इन्वर्टर]] का शुरू होना। | ||
बड़ी संख्या में झूठी सकारात्मकता के बिना द्वीपों का पता लगाने वाले तरीके काफी शोध का विषय हैं। प्रत्येक विधि में कुछ सीमाएँ होती हैं जिन्हें एक शर्त से पहले पार करने की आवश्यकता होती है जिसे | बड़ी संख्या में झूठी सकारात्मकता के बिना द्वीपों का पता लगाने वाले तरीके काफी शोध का विषय हैं। प्रत्येक विधि में कुछ सीमाएँ होती हैं जिन्हें एक शर्त से पहले पार करने की आवश्यकता होती है जिसे विद्युत् तंत्र रुकावट का संकेत माना जाता है, जो एक गैर-पहचान क्षेत्र (NDZ) की ओर जाता है, स्थितियों की सीमा जहाँ एक वास्तविक विद्युत् तंत्र विफलता को फ़िल्टर किया जाएगा।<ref>Bower & Ropp, pg. 10</ref> इस कारण से, फील्ड परिनियोजन से पहले, विद्युत् तंत्र-इंटरैक्टिव इनवर्टर का परीक्षण सामान्यतःपर उनके आउटपुट टर्मिनलों पर विशिष्ट विद्युत् तंत्र स्थितियों को पुन: प्रस्तुत करके और द्वीप स्थितियों का पता लगाने में द्वीप विधियों की प्रभावशीलता का मूल्यांकन करके किया जाता है। <ref name="IEEE-1547.4-2011">{{cite web|title=IEEE 1547.4 - 2011|url=http://grouper.ieee.org/groups/scc21/1547.4/1547.4_index.html|website=IEEE Standards Association Working Group Site & Liaison Index|publisher=IEEE|access-date=3 March 2017}}</ref><ref>{{Cite journal|last1=Caldognetto|first1=T.|last2=Dalla Santa|first2=L.|last3=Magnone|first3=P.|last4=Mattavelli|first4=P.|title=Power Electronics Based Active Load for Unintentional Islanding Testbenches|journal=IEEE Transactions on Industry Applications|volume=53|issue=4|pages=3831–3839|doi=10.1109/TIA.2017.2694384|year=2017|s2cid=40097383}}</ref> | ||
Line 21: | Line 21: | ||
# सुरक्षा संबंधी चिंताएँ: यदि कोई द्वीप बनता है, तो मरम्मत करने वाले कर्मचारियों को अप्रत्याशित लाइव तारों का सामना करना पड़ सकता है | # सुरक्षा संबंधी चिंताएँ: यदि कोई द्वीप बनता है, तो मरम्मत करने वाले कर्मचारियों को अप्रत्याशित लाइव तारों का सामना करना पड़ सकता है | ||
# एंड-यूज़र उपकरण क्षति: ग्राहक उपकरण सैद्धांतिक रूप से क्षतिग्रस्त हो सकते हैं यदि ऑपरेटिंग पैरामीटर मानदंड से बहुत भिन्न होते हैं। इस मामले में, उपयोगिता क्षति के लिए उत्तरदायी है। | # एंड-यूज़र उपकरण क्षति: ग्राहक उपकरण सैद्धांतिक रूप से क्षतिग्रस्त हो सकते हैं यदि ऑपरेटिंग पैरामीटर मानदंड से बहुत भिन्न होते हैं। इस मामले में, उपयोगिता क्षति के लिए उत्तरदायी है। | ||
# विफलता को समाप्त करना: एक सक्रिय द्वीप पर | # विफलता को समाप्त करना: एक सक्रिय द्वीप पर परिपथको पुनः बंद करने से उपयोगिता के उपकरण के साथ समस्या हो सकती है, या समस्या को नोटिस करने में विफल होने का कारण हो सकता है। | ||
# इन्वर्टर भ्रम: एक सक्रिय द्वीप पर वापस जाने से इनवर्टर के बीच भ्रम हो सकता है। | # इन्वर्टर भ्रम: एक सक्रिय द्वीप पर वापस जाने से इनवर्टर के बीच भ्रम हो सकता है। | ||
बिजली उद्योग में कई लोगों द्वारा पहले मुद्दे को व्यापक रूप से खारिज कर दिया गया है। सामान्य घटनाओं के दौरान लाइन कर्मचारी पहले से ही अप्रत्याशित रूप से लाइव तारों के संपर्क में आते हैं (यानी एक घर ब्लैक आउट हो गया है क्योंकि इसमें कोई शक्ति नहीं है, या क्योंकि रहने वाले ने मुख्य ब्रेकर को अंदर खींच लिया है?)। हॉट-लाइन नियमों या डेड-लाइन नियमों के तहत सामान्य संचालन प्रक्रियाओं के लिए निश्चित रूप से शक्ति के परीक्षण के लिए लाइन कर्मचारियों की आवश्यकता होती है, और यह गणना की गई है कि सक्रिय द्वीप एक नगण्य जोखिम जोड़ेंगे।<ref>CANMET, pg. 9-10</ref> हालाँकि, अन्य आपातकालीन कर्मचारियों के पास लाइन की जाँच करने का समय नहीं हो सकता है, और जोखिम-विश्लेषण उपकरणों का उपयोग करके इन मुद्दों का व्यापक रूप से पता लगाया गया है। यूके स्थित एक अध्ययन ने निष्कर्ष निकाला कि नेटवर्क ऑपरेटरों और ग्राहकों दोनों के लिए सबसे खराब स्थिति वाले पीवी पैठ परिदृश्यों के तहत पीवी सिस्टम के द्वीप से जुड़े बिजली के झटके का जोखिम | बिजली उद्योग में कई लोगों द्वारा पहले मुद्दे को व्यापक रूप से खारिज कर दिया गया है। सामान्य घटनाओं के दौरान लाइन कर्मचारी पहले से ही अप्रत्याशित रूप से लाइव तारों के संपर्क में आते हैं (यानी एक घर ब्लैक आउट हो गया है क्योंकि इसमें कोई शक्ति नहीं है, या क्योंकि रहने वाले ने मुख्य ब्रेकर को अंदर खींच लिया है?)। हॉट-लाइन नियमों या डेड-लाइन नियमों के तहत सामान्य संचालन प्रक्रियाओं के लिए निश्चित रूप से शक्ति के परीक्षण के लिए लाइन कर्मचारियों की आवश्यकता होती है, और यह गणना की गई है कि सक्रिय द्वीप एक नगण्य जोखिम जोड़ेंगे।<ref>CANMET, pg. 9-10</ref> हालाँकि, अन्य आपातकालीन कर्मचारियों के पास लाइन की जाँच करने का समय नहीं हो सकता है, और जोखिम-विश्लेषण उपकरणों का उपयोग करके इन मुद्दों का व्यापक रूप से पता लगाया गया है। यूके स्थित एक अध्ययन ने निष्कर्ष निकाला कि नेटवर्क ऑपरेटरों और ग्राहकों दोनों के लिए सबसे खराब स्थिति वाले पीवी पैठ परिदृश्यों के तहत पीवी सिस्टम के द्वीप से जुड़े बिजली के झटके का जोखिम सामान्यतःपर <10 है<sup>−9</sup> प्रति वर्ष।<ref>{{cite book | title = Risk analysis of islanding of photovoltaic power systems within low voltage distribution networks | year = 2002 | citeseerx = 10.1.1.114.2752 }}</ref> | ||
दूसरी संभावना भी अत्यंत दूरस्थ मानी जाती है। थ्रेसहोल्ड के अलावा जो जल्दी से संचालित करने के लिए | दूसरी संभावना भी अत्यंत दूरस्थ मानी जाती है। थ्रेसहोल्ड के अलावा जो जल्दी से संचालित करने के लिए षड्यंत्र किए गए हैं, द्वीप डिटेक्शन सिस्टम में पूर्ण थ्रेसहोल्ड भी हैं जो उन स्थितियों तक पहुंचने से बहुत पहले ट्रिप हो जाएंगे जो एंड-यूज़र उपकरण क्षति का कारण बन सकते हैं। यह आम तौर पर अंतिम दो मुद्दे हैं जो उपयोगिताओं के बीच सबसे अधिक चिंता का कारण बनते हैं। रेक्लोजर का उपयोग सामान्यतःपर विद्युत् तंत्र को छोटे वर्गों में विभाजित करने के लिए किया जाता है जो स्वचालित रूप से और जल्दी से, गलती की स्थिति (उदाहरण के लिए लाइनों पर एक पेड़ की शाखा) को साफ करते ही शाखा को फिर से सक्रिय कर देगा। कुछ चिंता है कि एक द्वीप के मामले में रिक्लोजर्स फिर से सक्रिय नहीं हो सकते हैं, या यह कि तेजी से साइकिल चलाने से डीजी सिस्टम की गलती को साफ करने के बाद फिर से विद्युत् तंत्र से मिलान करने की क्षमता में हस्तक्षेप हो सकता है। | ||
यदि कोई द्वीपसमूह समस्या मौजूद है, तो ऐसा लगता है कि यह कुछ प्रकार के | यदि कोई द्वीपसमूह समस्या मौजूद है, तो ऐसा लगता है कि यह कुछ प्रकार के जनित्रतक ही सीमित है। 2004 की एक कनाडाई रिपोर्ट ने निष्कर्ष निकाला कि सिंक्रोनस जेनरेटर, [[microhydro]] जैसे प्रतिष्ठान, मुख्य चिंता का विषय थे। इन प्रणालियों में काफी यांत्रिक जड़ता हो सकती है जो एक उपयोगी संकेत प्रदान करेगी। इन्वर्टर-आधारित प्रणालियों के लिए, रिपोर्ट ने बड़े पैमाने पर समस्या को खारिज कर दिया, जिसमें कहा गया है: इन्वर्टर आधारित डीजी सिस्टम के लिए एंटी-द्वीप तकनीक बहुत बेहतर विकसित है, और प्रकाशित जोखिम आकलन से पता चलता है कि वर्तमान तकनीक और मानक वितरण में डीजी के प्रवेश के दौरान पर्याप्त सुरक्षा प्रदान करते हैं। सिस्टम अपेक्षाकृत कम रहता है।<ref>CANMET, pg. 45</ref> रिपोर्ट में यह भी कहा गया है कि महत्व पर विचार | ||
इस मुद्दे का बहुत ध्रुवीकरण होता है, उपयोगिताओं के साथ आम तौर पर घटना की संभावना और इसके प्रभावों पर विचार करते हुए, जबकि डीजी सिस्टम का समर्थन करने वाले | इस मुद्दे का बहुत ध्रुवीकरण होता है, उपयोगिताओं के साथ आम तौर पर घटना की संभावना और इसके प्रभावों पर विचार करते हुए, जबकि डीजी सिस्टम का समर्थन करने वाले सामान्यतःपर जोखिम आधारित दृष्टिकोण और एक द्वीप बनाने की बहुत कम संभावनाओं का उपयोग करते हैं।<ref>CANMET, pg. 1</ref> | ||
इस तरह के एक दृष्टिकोण का एक उदाहरण, जो इस मामले को मजबूत करता है कि द्वीपसमूह काफी हद तक एक गैर-मुद्दा है, एक प्रमुख वास्तविक दुनिया द्वीपसमूह प्रयोग है जो 1999 में नीदरलैंड में किया गया था। हालांकि तत्कालीन-वर्तमान एंटी-द्वीप प्रणाली पर आधारित है , | इस तरह के एक दृष्टिकोण का एक उदाहरण, जो इस मामले को मजबूत करता है कि द्वीपसमूह काफी हद तक एक गैर-मुद्दा है, एक प्रमुख वास्तविक दुनिया द्वीपसमूह प्रयोग है जो 1999 में नीदरलैंड में किया गया था। हालांकि तत्कालीन-वर्तमान एंटी-द्वीप प्रणाली पर आधारित है , सामान्यतःपर सबसे बुनियादी वोल्टेज कूद-पता लगाने के तरीके, परीक्षण ने स्पष्ट रूप से प्रदर्शित किया कि द्वीप 60 सेकंड से अधिक समय तक नहीं रह सकते। इसके अलावा, सैद्धांतिक भविष्यवाणियां सच थीं; मौजूदा संतुलन स्थिति की संभावना 10 के क्रम में थी<sup>-6</sup> एक वर्ष, और उस समय विद्युत् तंत्र के पृथक होने की संभावना और भी कम थी। एक द्वीप के रूप में केवल तभी बन सकता है जब दोनों स्थितियाँ सत्य हों, उन्होंने निष्कर्ष निकाला कि एक द्वीप का सामना करने की संभावना लगभग शून्य है<ref>Verhoeven, pg. 46</ref> | ||
फिर भी, उपयोगिता कंपनियों ने वितरित उत्पादन प्रणालियों के कार्यान्वयन में देरी या इनकार करने के कारण के रूप में द्वीपसमूह का उपयोग करना जारी रखा है। ओंटारियो में, [[हाइड्रो वन]] ने हाल ही में इंटरकनेक्शन दिशानिर्देश पेश किए हैं जो कनेक्शन से इनकार करते हैं यदि शाखा पर कुल वितरित उत्पादन क्षमता अधिकतम वार्षिक पीक पावर का 7% है।<ref>[http://www.hydroone.com/Generators/Documents/Feed-In%20Tariff/microFIT_TIR_for_Distributed_Generation.pdf "Technical Interconnection Requirements for Distributed Generation"] {{Webarchive|url=https://web.archive.org/web/20140207180002/http://www.hydroone.com/Generators/Documents/Feed-In%20Tariff/microFIT_TIR_for_Distributed_Generation.pdf |date=2014-02-07 }}, Hydro One, 2010</ref> वहीं, कैलिफ़ोर्निया केवल समीक्षा के लिए 15% की सीमा निर्धारित करता है, 30% तक कनेक्शन की अनुमति देता है,<ref>[http://www.energy.ca.gov/distgen/interconnection/SUP_REV_GUIDELINE_20050831.PDF "California Electric Rule 21 Supplemental Review Guideline"] {{webarchive|url=https://web.archive.org/web/20101019150619/http://www.energy.ca.gov/distgen/interconnection/SUP_REV_GUIDELINE_20050831.PDF |date=2010-10-19 }}</ref> और सक्रिय रूप से समीक्षा-केवल सीमा को 50% तक ले जाने पर विचार कर रहा है। | फिर भी, उपयोगिता कंपनियों ने वितरित उत्पादन प्रणालियों के कार्यान्वयन में देरी या इनकार करने के कारण के रूप में द्वीपसमूह का उपयोग करना जारी रखा है। ओंटारियो में, [[हाइड्रो वन]] ने हाल ही में इंटरकनेक्शन दिशानिर्देश पेश किए हैं जो कनेक्शन से इनकार करते हैं यदि शाखा पर कुल वितरित उत्पादन क्षमता अधिकतम वार्षिक पीक पावर का 7% है।<ref>[http://www.hydroone.com/Generators/Documents/Feed-In%20Tariff/microFIT_TIR_for_Distributed_Generation.pdf "Technical Interconnection Requirements for Distributed Generation"] {{Webarchive|url=https://web.archive.org/web/20140207180002/http://www.hydroone.com/Generators/Documents/Feed-In%20Tariff/microFIT_TIR_for_Distributed_Generation.pdf |date=2014-02-07 }}, Hydro One, 2010</ref> वहीं, कैलिफ़ोर्निया केवल समीक्षा के लिए 15% की सीमा निर्धारित करता है, 30% तक कनेक्शन की अनुमति देता है,<ref>[http://www.energy.ca.gov/distgen/interconnection/SUP_REV_GUIDELINE_20050831.PDF "California Electric Rule 21 Supplemental Review Guideline"] {{webarchive|url=https://web.archive.org/web/20101019150619/http://www.energy.ca.gov/distgen/interconnection/SUP_REV_GUIDELINE_20050831.PDF |date=2010-10-19 }}</ref> और सक्रिय रूप से समीक्षा-केवल सीमा को 50% तक ले जाने पर विचार कर रहा है। | ||
Line 35: | Line 35: | ||
== बैकअप पावर के लिए | == बैकअप पावर के लिए सुविचारित द्वीप == | ||
{{Unreferenced section|date=December 2021}} | {{Unreferenced section|date=December 2021}} | ||
उपयोगिताओं द्वारा सार्वजनिक सुरक्षा पावर शटऑफ (पीएसपीएस) और अन्य पावर | उपयोगिताओं द्वारा सार्वजनिक सुरक्षा पावर शटऑफ (पीएसपीएस) और अन्य पावर विद्युत् तंत्र शटडाउन के बहुत अधिक उपयोग के कारण, पिछले कई वर्षों में घरों और व्यवसायों के लिए बैकअप और आपातकालीन बिजली की आवश्यकता बहुत बढ़ गई है। उदाहरण के लिए, कैलिफोर्निया यूटिलिटी पीजी एंड ई द्वारा कुछ शटडाउन दिनों तक चले हैं क्योंकि पीजी एंड ई जंगल की आग को शुष्क और हवादार जलवायु स्थितियों के दौरान शुरू होने से रोकने का प्रयास करता है। बैकअप विद्युत् तंत्र पावर की इस जरूरत को पूरा करने के लिए, बैटरी बैकअप और द्वीप इनवर्टर के साथ सौर ऊर्जा प्रणालियों को घर और व्यापार मालिकों द्वारा भारी मांग मिल रही है। सामान्य ऑपरेशन के दौरान जब विद्युत् तंत्र पावर मौजूद होती है, तो इनवर्टर सौर पैनलों द्वारा प्रदान की जाने वाली बिजली को घर या व्यवसाय में लोड करने के लिए विद्युत् तंत्र टाई कर सकते हैं, और इस तरह यूटिलिटी से खपत होने वाली बिजली की मात्रा को कम कर सकते हैं। यदि सौर पैनलों से अतिरिक्त बिजली उपलब्ध है तो इसका उपयोग बैटरी को चार्ज करने और/या बिजली को विद्युत् तंत्र में फीड करने के लिए किया जा सकता है ताकि प्रभावी रूप से यूटिलिटी को बिजली बेची जा सके। यह ऑपरेशन बिजली की लागत को कम कर सकता है जिसे मालिक को उपयोगिता से खरीदना पड़ता है और सौर ऊर्जा प्रणाली की खरीद और स्थापना लागत को ऑफसेट करने में मदद करता है। | ||
विद्युत् तंत्र पावर मौजूद होने पर आधुनिक इनवर्टर स्वचालित रूप से विद्युत् तंत्र टाई कर सकते हैं, और जब विद्युत् तंत्र पावर खो जाती है या स्वीकार्य गुणवत्ता नहीं होती है तो ये इनवर्टर घर या व्यापार विद्युत प्रणाली को विद्युत् तंत्र से अलग करने के लिए ट्रांसफर बटन के साथ काम करते हैं और इन्वर्टर उस तक बिजली की आपूर्ति करता है। एक द्वीप मोड में प्रणाली। जबकि अधिकांश घर या व्यवसाय इन्वर्टर की तुलना में एक बड़ा लोड पेश कर सकते हैं, लोड शेडिंग इन्वर्टर से एसी पावर आउटपुट की आवृत्ति को अलग करके पूरा किया जाता है (केवल द्वीप मोड में) इन्वर्टर पर लोड के जवाब में फैशन ऐसा है कि एसी बिजली आवृत्ति उस लोडिंग का प्रतिनिधित्व करती है। एयर कंडीशनर और इलेक्ट्रिक ओवन जैसे बड़े लोड के लिए पावर फीड में स्थापित लोड मॉड्यूल, द्वीप इन्वर्टर से एसी पावर फ्रीक्वेंसी को मापते हैं और उन लोड को प्राथमिकता क्रम में पृथक करते हैं क्योंकि इन्वर्टर अपनी अधिकतम पावर आउटपुट क्षमता के पास होता है। उदाहरण के लिए, जब इन्वर्टर पावर आउटपुट इन्वर्टर की अधिकतम आउटपुट क्षमता के 50% से कम होता है, तो एसी पावर फ्रीक्वेंसी को मानक आवृत्ति (जैसे 60 हर्ट्ज) पर बनाए रखा जाता है, लेकिन जैसे ही पावर आउटपुट 50% से ऊपर बढ़ता है, आवृत्ति को रैखिक रूप से कम किया जाता है। से 2 हर्ट्ज (जैसे 60 हर्ट्ज से 58 हर्ट्ज तक) जब इन्वर्टर आउटपुट अपने अधिकतम पावर आउटपुट तक पहुँच जाता है। द्वीप मोड में इन्वर्टर एसी पावर फ्रीक्वेंसी कंट्रोल की आसानी और सटीकता के कारण, यह फ्रीक्वेंसी कंट्रोल इन्वर्टर लोडिंग को इलेक्ट्रिकल सिस्टम के हर कोने तक पहुँचाने का एक सस्ता और प्रभावी तरीका है। कम प्राथमिकता वाले लोड के लिए एक लोड मॉड्यूल इस बिजली की आवृत्ति को मापेगा और यदि आवृत्ति 1 हर्ट्ज या अधिक उदाहरण के लिए कम हो जाती है (उदाहरण के लिए 59 हर्ट्ज से कम) तो लोड मॉड्यूल अपने लोड को पृथक कर देता है। कई लोड मॉड्यूल, जिनमें से प्रत्येक अपने लोड की प्राथमिकता के आधार पर एक अलग आवृत्ति पर संचालित होता है, इन्वर्टर पर कुल लोड को अपनी अधिकतम क्षमता से कम रखने के लिए काम कर सकता है। | |||
ये | ये द्वीप इन्वर्टर सौर ऊर्जा प्रणालियाँ सभी भारों को संभावित रूप से संचालित करने की अनुमति देती हैं, बस एक ही समय में नहीं। ये सिस्टम आंतरिक दहन इंजन संचालित जनित्रके लिए एक हरित, विश्वसनीय और लागत प्रभावी बैकअप पावर विकल्प प्रदान करते हैं। द्वीप इन्वर्टर सिस्टम स्वचालित रूप से संचालित होता है जब विद्युत् तंत्र पावर यह सुनिश्चित करने में विफल रहता है कि महत्वपूर्ण विद्युत भार जैसे प्रकाश व्यवस्था, हीटिंग सिस्टम के निर्माण के लिए पंखे और खाद्य भंडारण उपकरण पूरे कटौती में काम करते रहें, भले ही व्यवसाय में कोई मौजूद न हो या घर में रहने वाले सो रहे हों। | ||
== | == द्वीप डिटेक्शन मेथड्स == | ||
एक द्वीपीय स्थिति का पता लगाना काफी शोध का विषय है। सामान्य तौर पर, इन्हें निष्क्रिय तरीकों में वर्गीकृत किया जा सकता है, जो | एक द्वीपीय स्थिति का पता लगाना काफी शोध का विषय है। सामान्य तौर पर, इन्हें निष्क्रिय तरीकों में वर्गीकृत किया जा सकता है, जो विद्युत् तंत्र पर क्षणिक घटनाओं की तलाश करते हैं, और सक्रिय तरीके, जो इन्वर्टर या विद्युत् तंत्र वितरण बिंदु से किसी प्रकार के सिग्नल भेजकर विद्युत् तंत्र की जांच करते हैं। ऐसे तरीके भी हैं जिनका उपयोगिता उन स्थितियों का पता लगाने के लिए उपयोग कर सकती है जो इन्वर्टर-आधारित विधियों को विफल कर सकती हैं, और इनवर्टर को बंद करने के लिए सुविचारित उन स्थितियों को परेशान करती हैं। एक [http://prod.sandia.gov/techlib/access-control.cgi/2002/023591.pdf Sandia Labs रिपोर्ट] में इनमें से कई कार्यपद्धतियां शामिल हैं, जो उपयोग में हैं और भविष्य में विकास दोनों हैं। इन विधियों का सारांश नीचे दिया गया है। | ||
=== निष्क्रिय तरीके === | === निष्क्रिय तरीके === | ||
निष्क्रिय तरीकों में कोई भी प्रणाली शामिल होती है जो | निष्क्रिय तरीकों में कोई भी प्रणाली शामिल होती है जो विद्युत् तंत्र पर क्षणिक परिवर्तनों का पता लगाने का प्रयास करती है, और उस जानकारी को आधार के रूप में उपयोग करती है कि विद्युत् तंत्र विफल हो गया है या नहीं, या किसी अन्य स्थिति के परिणामस्वरूप अस्थायी परिवर्तन हुआ है। | ||
==== अंडर/ओवर वोल्टेज ==== | ==== अंडर/ओवर वोल्टेज ==== | ||
ओम के नियम के अनुसार, विद्युत परिपथ में वोल्टेज विद्युत प्रवाह (इलेक्ट्रॉनों की आपूर्ति) और लागू भार (प्रतिरोध) का एक कार्य है। | ओम के नियम के अनुसार, विद्युत परिपथ में वोल्टेज विद्युत प्रवाह (इलेक्ट्रॉनों की आपूर्ति) और लागू भार (प्रतिरोध) का एक कार्य है। विद्युत् तंत्र रुकावट के मामले में, स्थानीय स्रोत द्वारा आपूर्ति की जा रही धारा लोड से इतनी अच्छी तरह से मेल खाने की संभावना नहीं है कि एक निरंतर वोल्टेज बनाए रखने में सक्षम हो। एक प्रणाली जो समय-समय पर वोल्टेज का नमूना लेती है और अचानक परिवर्तन की तलाश करती है, गलती की स्थिति का पता लगाने के लिए उपयोग की जा सकती है।<ref name=br17>Bower & Ropp, pg. 17</ref> | ||
अंडर/ओवर वोल्टेज डिटेक्शन | अंडर/ओवर वोल्टेज डिटेक्शन सामान्यतःपर विद्युत् तंत्र-इंटरैक्टिव इनवर्टर में लागू करने के लिए तुच्छ है, क्योंकि इन्वर्टर का मूल कार्य वोल्टेज सहित विद्युत् तंत्र की स्थिति से मेल खाना है। इसका मतलब यह है कि सभी विद्युत् तंत्र-इंटरैक्टिव इनवर्टर में परिवर्तनों का पता लगाने के लिए आवश्यक सर्किट्री होती है। अचानक परिवर्तनों का पता लगाने के लिए केवल एक एल्गोरिथम की आवश्यकता होती है। हालाँकि, वोल्टेज में अचानक परिवर्तन विद्युत् तंत्र पर एक सामान्य घटना है क्योंकि भार जुड़ा और हटा दिया जाता है, इसलिए झूठे डिस्कनेक्शन से बचने के लिए एक सीमा का उपयोग किया जाना चाहिए।<ref name=br18>Bower & Ropp, pg. 18</ref> | ||
इस पद्धति के साथ गैर-पता लगाने वाली स्थितियों की श्रेणी बड़ी हो सकती है, और इन प्रणालियों का उपयोग आम तौर पर अन्य पहचान प्रणालियों के साथ किया जाता है।<ref name=br19>Bower & Ropp, pg. 19</ref> | इस पद्धति के साथ गैर-पता लगाने वाली स्थितियों की श्रेणी बड़ी हो सकती है, और इन प्रणालियों का उपयोग आम तौर पर अन्य पहचान प्रणालियों के साथ किया जाता है।<ref name=br19>Bower & Ropp, pg. 19</ref> | ||
==== कम/अधिक आवृत्ति ==== | ==== कम/अधिक आवृत्ति ==== | ||
विद्युत् तंत्र को दी जाने वाली बिजली की आवृत्ति आपूर्ति का एक कार्य है, जिसे इनवर्टर सावधानीपूर्वक मेल खाते हैं। जब विद्युत् तंत्र स्रोत खो जाता है, तो बिजली की आवृत्ति द्वीप में परिपथकी प्राकृतिक गुंजयमान आवृत्ति पर गिर जाएगी। वोल्टेज की तरह इस फ्रीक्वेंसी में बदलाव की तलाश करना, पहले से ही आवश्यक कार्यक्षमता का उपयोग करके लागू करना आसान है, और इस कारण से लगभग सभी इनवर्टर भी इस पद्धति का उपयोग करके गलती की स्थिति की तलाश करते हैं। | |||
वोल्टेज में परिवर्तन के विपरीत, यह आम तौर पर अत्यधिक संभावना नहीं माना जाता है कि एक यादृच्छिक | वोल्टेज में परिवर्तन के विपरीत, यह आम तौर पर अत्यधिक संभावना नहीं माना जाता है कि एक यादृच्छिक परिपथस्वाभाविक रूप से विद्युत् तंत्र पावर के समान प्राकृतिक आवृत्ति होगी। हालाँकि, कई डिवाइस सुविचारित विद्युत् तंत्र फ्रीक्वेंसी को सिंक्रोनाइज़ करते हैं, जैसे टेलीविज़न। मोटर्स, विशेष रूप से, एक संकेत प्रदान करने में सक्षम हो सकते हैं जो एनडीजेड के भीतर कुछ समय के लिए बंद हो जाता है। वोल्टेज और फ़्रीक्वेंसी शिफ्ट का संयोजन अभी भी एक NDZ में परिणामित होता है जिसे सभी के द्वारा पर्याप्त नहीं माना जाता है।<ref name=br20>Bower & Ropp, pg. 20</ref> | ||
Line 70: | Line 70: | ||
कहाँ पे <math>f</math> प्रणाली आवृत्ति है, <math>t</math> समय है, <math>\Delta P</math> शक्ति असंतुलन है (<math>\Delta P = P_m - P_e</math>), <math>G</math> सिस्टम क्षमता है, और <math>H</math> प्रणाली जड़ता है। | कहाँ पे <math>f</math> प्रणाली आवृत्ति है, <math>t</math> समय है, <math>\Delta P</math> शक्ति असंतुलन है (<math>\Delta P = P_m - P_e</math>), <math>G</math> सिस्टम क्षमता है, और <math>H</math> प्रणाली जड़ता है। | ||
आवृत्ति के परिवर्तन की दर, या आरओसीओएफ मूल्य, एक निश्चित मूल्य से अधिक होना चाहिए, एम्बेडेड पीढ़ी नेटवर्क से | आवृत्ति के परिवर्तन की दर, या आरओसीओएफ मूल्य, एक निश्चित मूल्य से अधिक होना चाहिए, एम्बेडेड पीढ़ी नेटवर्क से पृथक हो जाएगी। | ||
==== वोल्टेज फेज जंप डिटेक्शन ==== | ==== वोल्टेज फेज जंप डिटेक्शन ==== | ||
भार में आम तौर पर शक्ति कारक होते हैं जो सही नहीं होते हैं, जिसका अर्थ है कि वे | भार में आम तौर पर शक्ति कारक होते हैं जो सही नहीं होते हैं, जिसका अर्थ है कि वे विद्युत् तंत्र से वोल्टेज को पूरी तरह से स्वीकार नहीं करते हैं, लेकिन इसे थोड़ा बाधित करते हैं। विद्युत् तंत्र-टाई इनवर्टर, परिभाषा के अनुसार, 1 के [[शक्ति तत्व]] होते हैं। इससे विद्युत् तंत्र के विफल होने पर फेज में परिवर्तन हो सकता है, जिसका उपयोग द्वीप का पता लगाने के लिए किया जा सकता है। | ||
इन्वर्टर | इन्वर्टर सामान्यतःपर किसी प्रकार के चरण लॉक लूप (पीएलएल) का उपयोग करके विद्युत् तंत्र सिग्नल के चरण को ट्रैक करते हैं। जब सिग्नल शून्य वोल्ट को पार कर जाता है तो PLL ट्रैक करके विद्युत् तंत्र सिग्नल के साथ सिंक में रहता है। उन घटनाओं के बीच, सिस्टम अनिवार्य रूप से एक साइन-आकार का आउटपुट खींच रहा है, जो उचित वोल्टेज तरंग उत्पन्न करने के लिए वर्तमान आउटपुट को परिपथमें बदलता है। जब विद्युत् तंत्र पृथक हो जाता है, तो पावर फैक्टर अचानक विद्युत् तंत्र (1) से लोड (~1) में बदल जाता है। चूंकि परिपथअभी भी एक वर्तमान प्रदान कर रहा है जो ज्ञात भारों को देखते हुए एक चिकनी वोल्टेज आउटपुट का उत्पादन करेगा, इस स्थिति के परिणामस्वरूप वोल्टेज में अचानक परिवर्तन होगा। जब तक वेवफॉर्म पूरा हो जाता है और शून्य पर वापस आ जाता है, तब तक सिग्नल फेज से बाहर हो जाएगा।<ref name=br20/> | ||
इस दृष्टिकोण का मुख्य लाभ यह है कि चरण में बदलाव तब भी होगा जब भार ओम के नियम के संदर्भ में आपूर्ति से बिल्कुल मेल खाता हो - NDZ द्वीप के शक्ति कारकों पर आधारित है, जो बहुत कम 1 हैं। नकारात्मक पक्ष यह है कि कई सामान्य घटनाएँ, जैसे मोटर स्टार्ट करना, फेज़ जंप का कारण भी बनता है क्योंकि | इस दृष्टिकोण का मुख्य लाभ यह है कि चरण में बदलाव तब भी होगा जब भार ओम के नियम के संदर्भ में आपूर्ति से बिल्कुल मेल खाता हो - NDZ द्वीप के शक्ति कारकों पर आधारित है, जो बहुत कम 1 हैं। नकारात्मक पक्ष यह है कि कई सामान्य घटनाएँ, जैसे मोटर स्टार्ट करना, फेज़ जंप का कारण भी बनता है क्योंकि परिपथमें नए प्रतिबाधाएँ जुड़ जाती हैं। यह सिस्टम को इसकी प्रभावशीलता को कम करने, अपेक्षाकृत बड़ी थ्रेसहोल्ड का उपयोग करने के लिए मजबूर करता है।<ref name=br21>Bower & Ropp, pg. 21</ref> | ||
==== हार्मोनिक्स डिटेक्शन ==== | ==== हार्मोनिक्स डिटेक्शन ==== | ||
मोटर जैसे शोर स्रोतों के साथ भी, | मोटर जैसे शोर स्रोतों के साथ भी, विद्युत् तंत्र से जुड़े परिपथका कुल हार्मोनिक विरूपण (THD) सामान्यतःपर इन घटनाओं को फ़िल्टर करने वाली विद्युत् तंत्र की अनिवार्य रूप से अनंत क्षमता के कारण अमापनीय होता है। दूसरी ओर, इनवर्टर में सामान्यतःपर बहुत बड़ी विकृतियाँ होती हैं, जितना कि 5% THD। यह उनके निर्माण का एक कार्य है; कुछ THD [[स्विच-मोड बिजली की आपूर्ति]] परिपथका एक प्राकृतिक साइड-इफेक्ट है, जिस पर अधिकांश इनवर्टर आधारित होते हैं।<ref name=br22>Bower & Ropp, pg. 22</ref> | ||
इस प्रकार, जब | इस प्रकार, जब विद्युत् तंत्र पृथक हो जाता है, तो स्थानीय परिपथका टीएचडी स्वाभाविक रूप से इनवर्टर के टीएचडी तक बढ़ जाएगा। यह द्वीप का पता लगाने का एक बहुत ही सुरक्षित तरीका प्रदान करता है, क्योंकि सामान्यतःपर THD का कोई अन्य स्रोत नहीं होता है जो इन्वर्टर से मेल खाता हो। इसके अतिरिक्त, इनवर्टर के भीतर परस्पर क्रियाएं, विशेष रूप से [[ट्रांसफार्मर]], में गैर-रैखिक प्रभाव होते हैं जो अद्वितीय दूसरे और तीसरे हार्मोनिक्स का उत्पादन करते हैं जो आसानी से मापने योग्य होते हैं।<ref name=br22/> | ||
इस दृष्टिकोण की कमी यह है कि कुछ भार विरूपण को फ़िल्टर कर सकते हैं, उसी तरह इन्वर्टर प्रयास करता है। यदि यह फ़िल्टरिंग प्रभाव काफी मजबूत है, तो यह पता लगाने के लिए आवश्यक सीमा से नीचे THD को कम कर सकता है। | इस दृष्टिकोण की कमी यह है कि कुछ भार विरूपण को फ़िल्टर कर सकते हैं, उसी तरह इन्वर्टर प्रयास करता है। यदि यह फ़िल्टरिंग प्रभाव काफी मजबूत है, तो यह पता लगाने के लिए आवश्यक सीमा से नीचे THD को कम कर सकता है। पृथक बिंदु के अंदर ट्रांसफॉर्मर के बिना सिस्टम पहचान को और अधिक कठिन बना देगा। हालाँकि, सबसे बड़ी समस्या यह है कि आधुनिक इनवर्टर THD को जितना संभव हो उतना कम करने का प्रयास करते हैं, कुछ मामलों में यह अमापनीय सीमा तक होता है।<ref name=br22/> | ||
=== सक्रिय तरीके === | === सक्रिय तरीके === | ||
सक्रिय विधियाँ आम तौर पर लाइन में छोटे संकेतों को इंजेक्ट करके | सक्रिय विधियाँ आम तौर पर लाइन में छोटे संकेतों को इंजेक्ट करके विद्युत् तंत्र की विफलता का पता लगाने का प्रयास करती हैं, और फिर यह पता लगाती हैं कि सिग्नल बदलता है या नहीं। | ||
====नकारात्मक-अनुक्रम वर्तमान इंजेक्शन==== | ====नकारात्मक-अनुक्रम वर्तमान इंजेक्शन==== | ||
यह विधि एक सक्रिय द्वीपसमूह का पता लगाने की विधि है जिसका उपयोग तीन-चरण इलेक्ट्रॉनिक रूप से युग्मित वितरित पीढ़ी (डीजी) इकाइयों द्वारा किया जा सकता है। विधि वोल्टेज-स्रोत कनवर्टर (वीएससी) नियंत्रक के माध्यम से एक नकारात्मक-अनुक्रम धारा को इंजेक्ट करने पर आधारित है और एक एकीकृत तीन के माध्यम से वीएससी के सामान्य युग्मन (पीसीसी) के बिंदु पर संबंधित नकारात्मक-अनुक्रम वोल्टेज का पता लगाने और मापने पर आधारित है- चरण सिग्नल प्रोसेसर (UTSP)। यूटीएसपी सिस्टम एक उन्नत चरण-लॉक लूप (पीएलएल) है जो शोर के प्रति उच्च स्तर की प्रतिरक्षा प्रदान करता है, और इस प्रकार एक छोटे से नकारात्मक-अनुक्रम प्रवाह को इंजेक्ट करने के आधार पर द्वीपों का पता लगाने में सक्षम बनाता है। नकारात्मक-अनुक्रम धारा को एक नकारात्मक-अनुक्रम नियंत्रक द्वारा इंजेक्ट किया जाता है जिसे पारंपरिक VSC वर्तमान नियंत्रक के पूरक के रूप में अपनाया जाता है। नकारात्मक-अनुक्रम वर्तमान इंजेक्शन विधि UL1741 परीक्षण स्थितियों के तहत 60 एमएस (3.5 चक्र) के भीतर एक द्वीप घटना का पता लगाती है, द्वीप पर पहचान के लिए 2% से 3% नकारात्मक-अनुक्रम वर्तमान इंजेक्शन की आवश्यकता होती है, | यह विधि एक सक्रिय द्वीपसमूह का पता लगाने की विधि है जिसका उपयोग तीन-चरण इलेक्ट्रॉनिक रूप से युग्मित वितरित पीढ़ी (डीजी) इकाइयों द्वारा किया जा सकता है। विधि वोल्टेज-स्रोत कनवर्टर (वीएससी) नियंत्रक के माध्यम से एक नकारात्मक-अनुक्रम धारा को इंजेक्ट करने पर आधारित है और एक एकीकृत तीन के माध्यम से वीएससी के सामान्य युग्मन (पीसीसी) के बिंदु पर संबंधित नकारात्मक-अनुक्रम वोल्टेज का पता लगाने और मापने पर आधारित है- चरण सिग्नल प्रोसेसर (UTSP)। यूटीएसपी सिस्टम एक उन्नत चरण-लॉक लूप (पीएलएल) है जो शोर के प्रति उच्च स्तर की प्रतिरक्षा प्रदान करता है, और इस प्रकार एक छोटे से नकारात्मक-अनुक्रम प्रवाह को इंजेक्ट करने के आधार पर द्वीपों का पता लगाने में सक्षम बनाता है। नकारात्मक-अनुक्रम धारा को एक नकारात्मक-अनुक्रम नियंत्रक द्वारा इंजेक्ट किया जाता है जिसे पारंपरिक VSC वर्तमान नियंत्रक के पूरक के रूप में अपनाया जाता है। नकारात्मक-अनुक्रम वर्तमान इंजेक्शन विधि UL1741 परीक्षण स्थितियों के तहत 60 एमएस (3.5 चक्र) के भीतर एक द्वीप घटना का पता लगाती है, द्वीप पर पहचान के लिए 2% से 3% नकारात्मक-अनुक्रम वर्तमान इंजेक्शन की आवश्यकता होती है, विद्युत् तंत्र शॉर्ट परिपथअनुपात के लिए एक द्वीप घटना का सही पता लगा सकता है 2 या उच्चतर, और UL1741 परीक्षण प्रणाली के लोड मापदंडों की विविधता के प्रति असंवेदनशील है। | ||
<ref>"Negative-Sequence Current Injection for Fast Islanding Detection of a Distributed Resource Unit", Houshang Karimi, Amirnaser Yazdani, and Reza Iravani, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 1, JANUARY 2008.</ref> | <ref>"Negative-Sequence Current Injection for Fast Islanding Detection of a Distributed Resource Unit", Houshang Karimi, Amirnaser Yazdani, and Reza Iravani, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 1, JANUARY 2008.</ref> | ||
==== प्रतिबाधा माप ==== | ==== प्रतिबाधा माप ==== | ||
प्रतिबाधा मापन इन्वर्टर द्वारा खिलाए जा रहे | प्रतिबाधा मापन इन्वर्टर द्वारा खिलाए जा रहे परिपथके समग्र [[विद्युत प्रतिबाधा]] को मापने का प्रयास करता है। यह एसी चक्र के माध्यम से वर्तमान आयाम को थोड़ा बल देकर करता है, एक निश्चित समय में बहुत अधिक वर्तमान पेश करता है। आम तौर पर इसका मापा वोल्टेज पर कोई प्रभाव नहीं पड़ेगा, क्योंकि विद्युत् तंत्र प्रभावी रूप से असीम रूप से कठोर वोल्टेज स्रोत है। एक वियोग की स्थिति में, यहां तक कि छोटे बल के परिणामस्वरूप वोल्टेज में ध्यान देने योग्य परिवर्तन होगा, जिससे द्वीप का पता लगाया जा सकेगा।<ref name=br24>Bower & Ropp, pg. 24</ref> | ||
इस पद्धति का मुख्य लाभ यह है कि इसमें किसी भी एकल इन्वर्टर के लिए गायब होने वाला छोटा एनडीजेड है। हालाँकि, उलटा भी इस पद्धति की मुख्य कमजोरी है; कई इनवर्टर के मामले में, प्रत्येक एक लाइन में थोड़ा अलग सिग्नल के लिए मजबूर होगा, किसी एक इन्वर्टर पर प्रभाव को छिपाएगा। इनवर्टर के बीच संचार द्वारा इस समस्या का समाधान करना संभव है ताकि यह सुनिश्चित किया जा सके कि वे सभी एक ही समय पर लागू हों, लेकिन एक गैर-सजातीय स्थापना (एक ही शाखा पर कई संस्थापन) में यह व्यवहार में मुश्किल या असंभव हो जाता है। इसके अतिरिक्त, विधि केवल तभी काम करती है जब | इस पद्धति का मुख्य लाभ यह है कि इसमें किसी भी एकल इन्वर्टर के लिए गायब होने वाला छोटा एनडीजेड है। हालाँकि, उलटा भी इस पद्धति की मुख्य कमजोरी है; कई इनवर्टर के मामले में, प्रत्येक एक लाइन में थोड़ा अलग सिग्नल के लिए मजबूर होगा, किसी एक इन्वर्टर पर प्रभाव को छिपाएगा। इनवर्टर के बीच संचार द्वारा इस समस्या का समाधान करना संभव है ताकि यह सुनिश्चित किया जा सके कि वे सभी एक ही समय पर लागू हों, लेकिन एक गैर-सजातीय स्थापना (एक ही शाखा पर कई संस्थापन) में यह व्यवहार में मुश्किल या असंभव हो जाता है। इसके अतिरिक्त, विधि केवल तभी काम करती है जब विद्युत् तंत्र प्रभावी रूप से अनंत हो, और व्यवहार में कई वास्तविक-विश्व विद्युत् तंत्र कनेक्शन पर्याप्त रूप से इस मानदंड को पूरा नहीं करते हैं।<ref name=br24/> | ||
==== एक विशिष्ट आवृत्ति पर प्रतिबाधा माप ==== | ==== एक विशिष्ट आवृत्ति पर प्रतिबाधा माप ==== | ||
यद्यपि पद्धति प्रतिबाधा मापन के समान है, यह विधि, जिसे हार्मोनिक आयाम कूद के रूप में भी जाना जाता है, वास्तव में हार्मोनिक्स डिटेक्शन के करीब है। इस मामले में, इन्वर्टर | यद्यपि पद्धति प्रतिबाधा मापन के समान है, यह विधि, जिसे हार्मोनिक आयाम कूद के रूप में भी जाना जाता है, वास्तव में हार्मोनिक्स डिटेक्शन के करीब है। इस मामले में, इन्वर्टर सुविचारित एक निश्चित आवृत्ति पर हार्मोनिक्स का परिचय देता है, और जैसा कि प्रतिबाधा मापन के मामले में होता है, विद्युत् तंत्र से संकेत की अपेक्षा करता है कि जब तक विद्युत् तंत्र विफल न हो जाए। हार्मोनिक्स डिटेक्शन की तरह, सिग्नल को वास्तविक दुनिया के परिपथद्वारा फ़िल्टर किया जा सकता है।<ref name=br26>Bower & Ropp, pg. 26</ref> | ||
==== स्लिप मोड फ्रीक्वेंसी शिफ्ट ==== | ==== स्लिप मोड फ्रीक्वेंसी शिफ्ट ==== | ||
यह द्वीपों का पता लगाने के नवीनतम तरीकों में से एक है, और सिद्धांत रूप में, सर्वश्रेष्ठ में से एक है। यह इन्वर्टर के आउटपुट के चरण को | यह द्वीपों का पता लगाने के नवीनतम तरीकों में से एक है, और सिद्धांत रूप में, सर्वश्रेष्ठ में से एक है। यह इन्वर्टर के आउटपुट के चरण को विद्युत् तंत्र के साथ थोड़ा गलत संरेखित करने के लिए मजबूर करने पर आधारित है, इस अपेक्षा के साथ कि विद्युत् तंत्र इस सिग्नल को अभिभूत कर देगा। विद्युत् तंत्र सिग्नल गायब होने पर सिस्टम अस्थिर होने के लिए बारीक ट्यून किए गए चरण-लॉक लूप की क्रियाओं पर निर्भर करता है; इस मामले में, पीएलएल सिग्नल को वापस अपने आप में समायोजित करने का प्रयास करता है, जिसे ड्रिफ्ट जारी रखने के लिए ट्यून किया जाता है। विद्युत् तंत्र की विफलता के मामले में, सिस्टम जल्दी से षड्यंत्र आवृत्ति से दूर हो जाएगा, अंततः इन्वर्टर को बंद करने का कारण बनता है।<ref name=br28>Bower & Ropp, pg. 28</ref> | ||
इस दृष्टिकोण का प्रमुख लाभ यह है कि इन्वर्टर में पहले से मौजूद सर्किट्री का उपयोग करके इसे लागू किया जा सकता है। मुख्य नुकसान यह है कि इन्वर्टर को हमेशा | इस दृष्टिकोण का प्रमुख लाभ यह है कि इन्वर्टर में पहले से मौजूद सर्किट्री का उपयोग करके इसे लागू किया जा सकता है। मुख्य नुकसान यह है कि इन्वर्टर को हमेशा विद्युत् तंत्र के साथ समय से थोड़ा बाहर रहने की आवश्यकता होती है, एक कम शक्ति कारक। आम तौर पर बोलते हुए, सिस्टम में गायब होने वाला छोटा एनडीजेड है और जल्दी से पृथक हो जाएगा, लेकिन यह ज्ञात है कि कुछ भार हैं जो पहचान को ऑफसेट करने के लिए प्रतिक्रिया देंगे।<ref name=br28/> | ||
==== आवृत्ति पूर्वाग्रह ==== | ==== आवृत्ति पूर्वाग्रह ==== | ||
फ़्रीक्वेंसी बायस | फ़्रीक्वेंसी बायस विद्युत् तंत्र में थोड़ी-सी ऑफ़-फ़्रीक्वेंसी सिग्नल को बाध्य करता है, लेकिन जब वोल्टेज शून्य हो जाता है, तो चरण में वापस कूदकर हर चक्र के अंत में इसे ठीक करता है। यह स्लिप मोड के समान एक सिग्नल बनाता है, लेकिन पावर फैक्टर विद्युत् तंत्र के करीब रहता है, और हर चक्र में खुद को रीसेट करता है। इसके अलावा, ज्ञात लोड द्वारा सिग्नल को फ़िल्टर किए जाने की संभावना कम होती है। मुख्य नुकसान यह है कि प्रत्येक इन्वर्टर को चक्र पर एक ही बिंदु पर सिग्नल को वापस शून्य पर स्थानांतरित करने के लिए सहमत होना होगा, जैसे कि वोल्टेज शून्य पर वापस आ जाता है, अन्यथा अलग-अलग इनवर्टर सिग्नल को अलग-अलग दिशाओं में बल देंगे और इसे फ़िल्टर करेंगे।<ref name=br29>Bower & Ropp, pg. 29</ref> | ||
इस मूल योजना में कई संभावित विविधताएँ हैं। फ़्रीक्वेंसी जंप संस्करण, जिसे ज़ेबरा विधि के रूप में भी जाना जाता है, एक सेट पैटर्न में केवल एक विशिष्ट संख्या में चक्रों पर बल डालता है। यह नाटकीय रूप से इस संभावना को कम करता है कि बाहरी | इस मूल योजना में कई संभावित विविधताएँ हैं। फ़्रीक्वेंसी जंप संस्करण, जिसे ज़ेबरा विधि के रूप में भी जाना जाता है, एक सेट पैटर्न में केवल एक विशिष्ट संख्या में चक्रों पर बल डालता है। यह नाटकीय रूप से इस संभावना को कम करता है कि बाहरी परिपथसिग्नल को फ़िल्टर कर सकते हैं। यह लाभ कई इनवर्टर के साथ गायब हो जाता है, जब तक कि पैटर्न को सिंक्रनाइज़ करने के किसी तरीके का उपयोग नहीं किया जाता है।<ref name=br34>Bower & Ropp, pg. 34</ref> | ||
Line 118: | Line 118: | ||
==== मैनुअल वियोग ==== | ==== मैनुअल वियोग ==== | ||
अधिकांश छोटे | अधिकांश छोटे जनित्रकनेक्शनों के लिए यांत्रिक पृथक बटन की आवश्यकता होती है, इसलिए कम से कम उपयोगिता एक मरम्मत करने वाले को उन सभी को खींचने के लिए भेज सकती है। बहुत बड़े स्रोतों के लिए, कोई बस एक समर्पित टेलीफोन हॉटलाइन स्थापित कर सकता है जिसका उपयोग ऑपरेटर को जनित्रको मैन्युअल रूप से बंद करने के लिए किया जा सकता है। किसी भी मामले में, प्रतिक्रिया समय मिनटों या घंटों के क्रम में होने की संभावना है। | ||
==== स्वचालित वियोग ==== | ==== स्वचालित वियोग ==== | ||
मैनुअल डिस्कनेक्शन को | मैनुअल डिस्कनेक्शन को विद्युत् तंत्र के माध्यम से या द्वितीयक माध्यमों से भेजे गए संकेतों के उपयोग के माध्यम से स्वचालित किया जा सकता है। उदाहरण के लिए, पावर लाइन वाहक संचार सभी इनवर्टर में स्थापित किया जा सकता है, समय-समय पर उपयोगिता से संकेतों की जांच कर रहा है और या तो कमांड पर पृथक कर रहा है, या यदि सिग्नल एक निश्चित समय के लिए गायब हो जाता है। ऐसी प्रणाली अत्यधिक विश्वसनीय होगी, लेकिन इसे लागू करना महंगा होगा।<ref name=br40>Bower & Ropp, pg. 40</ref><ref>CANMET, pg. 13-14</ref> | ||
====ट्रांसफ़र-ट्रिप विधि==== | ====ट्रांसफ़र-ट्रिप विधि==== | ||
जैसा कि उपयोगिता को यथोचित आश्वासन दिया जा सकता है कि उनके पास हमेशा एक गलती की खोज करने का एक तरीका होगा, चाहे वह स्वचालित हो या केवल पुनरावर्तक को देख रहा हो, उपयोगिता के लिए इस जानकारी का उपयोग करना और इसे लाइन में संचारित करना संभव है। इसका उपयोग डीजी सिस्टम को एनडीजेड से बाहर करने के लिए मजबूर करने के लिए डीजी सिस्टम को अलग करने के लिए | जैसा कि उपयोगिता को यथोचित आश्वासन दिया जा सकता है कि उनके पास हमेशा एक गलती की खोज करने का एक तरीका होगा, चाहे वह स्वचालित हो या केवल पुनरावर्तक को देख रहा हो, उपयोगिता के लिए इस जानकारी का उपयोग करना और इसे लाइन में संचारित करना संभव है। इसका उपयोग डीजी सिस्टम को एनडीजेड से बाहर करने के लिए मजबूर करने के लिए डीजी सिस्टम को अलग करने के लिए सुविचारित विद्युत् तंत्र में रिक्लोजर की एक श्रृंखला खोलकर उचित रूप से सुसज्जित डीजी सिस्टम की ट्रिपिंग को मजबूर करने के लिए किया जा सकता है। इस पद्धति को काम करने की गारंटी दी जा सकती है, लेकिन इसके लिए विद्युत् तंत्र को स्वचालित रिक्लोज़र सिस्टम से लैस करने की आवश्यकता होती है, और बाहरी संचार प्रणालियाँ जो सिग्नल की गारंटी देती हैं, इसे रिक्लोज़र के माध्यम से बनाएगी।<ref>CANMET, pg. 12-13</ref> | ||
==== प्रतिबाधा सम्मिलन ==== | ==== प्रतिबाधा सम्मिलन ==== | ||
एक संबंधित अवधारणा | एक संबंधित अवधारणा सुविचारित विद्युत् तंत्र के एक हिस्से को ऐसी स्थिति में मजबूर करना है जो डीजी सिस्टम को पृथक करने की गारंटी देगा। यह ट्रांसफर-ट्रिप विधि के समान है, लेकिन नेटवर्क के टोपोलॉजी पर भरोसा करने के विपरीत उपयोगिता के शीर्ष-अंत में सक्रिय सिस्टम का उपयोग करता है। | ||
एक साधारण उदाहरण [[संधारित्र]] का एक बड़ा बैंक है जो शाखा में जोड़ा जाता है, चार्ज किया जाता है और सामान्य रूप से | एक साधारण उदाहरण [[संधारित्र]] का एक बड़ा बैंक है जो शाखा में जोड़ा जाता है, चार्ज किया जाता है और सामान्य रूप से बटन द्वारा पृथक किया जाता है। विफलता की स्थिति में, कैपेसिटर को थोड़ी देर के बाद उपयोगिता द्वारा शाखा में बदल दिया जाता है। यह वितरण के बिंदु पर स्वत: साधनों के माध्यम से आसानी से पूरा किया जा सकता है। कैपेसिटर केवल एक संक्षिप्त अवधि के लिए करंट की आपूर्ति कर सकते हैं, यह सुनिश्चित करते हुए कि उनके द्वारा दी जाने वाली पल्स की शुरुआत या अंत इनवर्टर को ट्रिप करने के लिए पर्याप्त परिवर्तन का कारण होगा।<ref name=br37>Bower & Ropp, pg. 37</ref> | ||
ऐसा प्रतीत होता है कि द्वीप-विरोधी के इस तरीके के लिए कोई NDZ नहीं है। इसका मुख्य नुकसान लागत है; कैपेसिटर बैंक को वोल्टेज में बदलाव के कारण काफी बड़ा होना चाहिए, और यह शाखा पर भार की मात्रा का एक कार्य है। सिद्धांत रूप में, बहुत बड़े बैंकों की आवश्यकता होगी, एक ऐसा खर्च जिसे यूटिलिटी द्वारा अनुकूल रूप से देखने की संभावना नहीं है।<ref name=br38>Bower & Ropp, pg. 38</ref> | ऐसा प्रतीत होता है कि द्वीप-विरोधी के इस तरीके के लिए कोई NDZ नहीं है। इसका मुख्य नुकसान लागत है; कैपेसिटर बैंक को वोल्टेज में बदलाव के कारण काफी बड़ा होना चाहिए, और यह शाखा पर भार की मात्रा का एक कार्य है। सिद्धांत रूप में, बहुत बड़े बैंकों की आवश्यकता होगी, एक ऐसा खर्च जिसे यूटिलिटी द्वारा अनुकूल रूप से देखने की संभावना नहीं है।<ref name=br38>Bower & Ropp, pg. 38</ref> | ||
स्काडा === | स्काडा === | ||
उपयोगिता बाजार में पहले से ही व्यापक रूप से उपयोग किए जाने वाले पर्यवेक्षी नियंत्रण और डेटा अधिग्रहण (SCADA) सिस्टम के उपयोग के माध्यम से एंटी- | उपयोगिता बाजार में पहले से ही व्यापक रूप से उपयोग किए जाने वाले पर्यवेक्षी नियंत्रण और डेटा अधिग्रहण (SCADA) सिस्टम के उपयोग के माध्यम से एंटी-द्वीप सुरक्षा में सुधार किया जा सकता है। उदाहरण के लिए, यदि SCADA प्रणाली एक लाइन पर वोल्टेज का पता लगाती है, जहां एक विफलता प्रगति पर है, तो एक अलार्म बज सकता है। यह एंटी-द्वीप सिस्टम को प्रभावित नहीं करता है, लेकिन ऊपर उल्लिखित किसी भी सिस्टम को जल्दी से लागू करने की अनुमति दे सकता है। | ||
== संदर्भ == | == संदर्भ == |
Revision as of 21:46, 28 January 2023
द्वीप वह स्थिति है जिसमें वितरित उत्पादन (डीजी) एक स्थान को बिजली देना जारी रखता है, भले ही बाहरी विद्युत जाली शक्ति अब उपस्थित न हो। उपयोगिता कार्यकर्ता के लिए द्वीप खतरनाक हो सकता है, जिन्हें यह महसूस नहीं हो सकता है कि एक परिपथ अभी भी संचालित है, और यह उपकरणों के स्वत: पुन: संपर्क को रोक सकता है। इसके अतिरिक्त, सख्त आवृत्ति नियंत्रण के बिना, द्वीपीय परिपथ में भार और उत्पादन के बीच संतुलन का उल्लंघन किया जा सकता है, जिससे सामान्य आवृत्तियों और वोल्टता हो सकते हैं। उन कारणों से, वितरित जनित्र को द्वीप का पता लगाना चाहिए और तुरंत परिपथ से पृथक करना चाहिए; इसे विरोधी-द्वीप कहा जाता है।
कुछ युक्ति, जिन्हें सामान्यतः पर microgrid के रूप में जाना जाता है, सुविचारित द्वीप की अनुमति देते हैं। बिजली कटौती के मामले में, माइक्रोविद्युत् तंत्र नियंत्रक एक समर्पित बटन पर विद्युत् तंत्र से स्थानीय परिपथ को पृथक करता है और पूरे स्थानीय भार को बिजली देने के लिए वितरित जनित्र (एस) को बाध्य करता है।[1][2] सुविचारित द्वीप का एक सामान्य उदाहरण वितरण सहायक है जिसमें सौर पैनल लगे होते हैं। कटौती की स्थिति में, सौर पैनल तब तक बिजली देना जारी रखेंगे जब तक विकिरण पर्याप्त है। इस स्थिति में, कटौती द्वारा अलग किया गया परिपथ एक द्वीप बन जाता है। इस कारण से, सौर अंर्तवर्तक जो विद्युत् तंत्र को बिजली की आपूर्ति करने के लिए षड्यंत्र किए गए हैं, सामान्यतःपर किसी प्रकार के स्वचालित एंटी-द्वीप सर्किट्री की आवश्यकता होती है।
परमाणु ऊर्जा संयंत्रों में, द्वीपसमूह परमाणु रिएक्टर के संचालन का एक असाधारण तरीका है। इस मोड में, बिजली संयंत्र को विद्युत् तंत्र से काट दिया जाता है, और शीतलन प्रणाली के लिए बिजली रिएक्टर से ही आती है। कुछ प्रकार के रिएक्टरों के लिए, द्वीपीकरण सामान्य प्रक्रिया का हिस्सा है जब बिजली उत्पादन को जल्दी से ठीक करने के लिए बिजली संयंत्र विद्युत् तंत्र से पृथक हो जाता है।[3] जब द्वीप विफल हो जाती है, तो आपातकालीन प्रणालियाँ (जैसे डीजल जनरेटर) अपना स्थान ले लेती हैं। उदाहरण के लिए, फ्रांसीसी परमाणु ऊर्जा संयंत्र हर चार साल में द्वीपीय परीक्षण करते हैं।[4]
द्वीप बेसिक्स
विद्युत इनवर्टर ऐसे उपकरण हैं जो प्रत्यक्ष धारा (DC) को प्रत्यावर्ती धारा (AC) में परिवर्तित करते हैं। विद्युत् तंत्र-इंटरैक्टिव इनवर्टर की अतिरिक्त आवश्यकता होती है कि वे ऐसी एसी बिजली का उत्पादन करें जो विद्युत् तंत्र पर प्रस्तुत मौजूदा शक्ति से मेल खाती हो। विशेष रूप से, एक विद्युत् तंत्र-इंटरैक्टिव इन्वर्टर को उस पावर लाइन के वोल्टेज, आवृत्ति और चरण से मेल खाना चाहिए जिससे वह जुड़ता है। इस ट्रैकिंग की सटीकता के लिए कई तकनीकी आवश्यकताएं हैं।
छत पर सौर पैनलों की एक सरणी वाले घर के मामले पर विचार करें। पैनलों से जुड़े इन्वर्टर (एस) पैनलों द्वारा प्रदान किए गए अलग-अलग डीसी करंट को एसी पावर में परिवर्तित करते हैं जो विद्युत् तंत्र आपूर्ति से मेल खाता है। यदि विद्युत् तंत्र काट दिया जाता है, तो विद्युत् तंत्र लाइन पर वोल्टेज के शून्य तक गिरने की उम्मीद की जा सकती है, जो सेवा में रुकावट का एक स्पष्ट संकेत है। हालाँकि, उस मामले पर विचार करें जब घर का भार विद्युत् तंत्र रुकावट के तुरंत बाद पैनल के आउटपुट से बिल्कुल मेल खाता हो। इस मामले में पैनल बिजली की आपूर्ति जारी रख सकते हैं, जिसका उपयोग घर के भार द्वारा किया जाता है। इस मामले में कोई स्पष्ट संकेत नहीं है कि रुकावट हुई है।
आम तौर पर, भले ही लोड और उत्पादन बिल्कुल मेल खाते हों, तथाकथित संतुलित स्थिति, विद्युत् तंत्र की विफलता के परिणामस्वरूप कई अतिरिक्त क्षणिक संकेत उत्पन्न होंगे। उदाहरण के लिए, लाइन वोल्टेज में लगभग हमेशा एक संक्षिप्त कमी होगी, जो संभावित गलती की स्थिति को संकेत देगी। हालाँकि, ऐसी घटनाएँ सामान्य ऑपरेशन के कारण भी हो सकती हैं, जैसे कि एक बड़ी विद्युत इन्वर्टर का शुरू होना।
बड़ी संख्या में झूठी सकारात्मकता के बिना द्वीपों का पता लगाने वाले तरीके काफी शोध का विषय हैं। प्रत्येक विधि में कुछ सीमाएँ होती हैं जिन्हें एक शर्त से पहले पार करने की आवश्यकता होती है जिसे विद्युत् तंत्र रुकावट का संकेत माना जाता है, जो एक गैर-पहचान क्षेत्र (NDZ) की ओर जाता है, स्थितियों की सीमा जहाँ एक वास्तविक विद्युत् तंत्र विफलता को फ़िल्टर किया जाएगा।[5] इस कारण से, फील्ड परिनियोजन से पहले, विद्युत् तंत्र-इंटरैक्टिव इनवर्टर का परीक्षण सामान्यतःपर उनके आउटपुट टर्मिनलों पर विशिष्ट विद्युत् तंत्र स्थितियों को पुन: प्रस्तुत करके और द्वीप स्थितियों का पता लगाने में द्वीप विधियों की प्रभावशीलता का मूल्यांकन करके किया जाता है। [2][6]
संदिग्ध तर्क
क्षेत्र में गतिविधि को देखते हुए, और द्वीपों का पता लगाने के लिए विकसित की गई विभिन्न प्रकार की विधियों को देखते हुए, यह विचार करना महत्वपूर्ण है कि समस्या वास्तव में खर्च किए जा रहे प्रयास की मात्रा की मांग करती है या नहीं। आम तौर पर बोलते हुए, विरोधी-द्वीप के कारण इस प्रकार दिए गए हैं (किसी विशेष क्रम में नहीं):[7][8]
- सुरक्षा संबंधी चिंताएँ: यदि कोई द्वीप बनता है, तो मरम्मत करने वाले कर्मचारियों को अप्रत्याशित लाइव तारों का सामना करना पड़ सकता है
- एंड-यूज़र उपकरण क्षति: ग्राहक उपकरण सैद्धांतिक रूप से क्षतिग्रस्त हो सकते हैं यदि ऑपरेटिंग पैरामीटर मानदंड से बहुत भिन्न होते हैं। इस मामले में, उपयोगिता क्षति के लिए उत्तरदायी है।
- विफलता को समाप्त करना: एक सक्रिय द्वीप पर परिपथको पुनः बंद करने से उपयोगिता के उपकरण के साथ समस्या हो सकती है, या समस्या को नोटिस करने में विफल होने का कारण हो सकता है।
- इन्वर्टर भ्रम: एक सक्रिय द्वीप पर वापस जाने से इनवर्टर के बीच भ्रम हो सकता है।
बिजली उद्योग में कई लोगों द्वारा पहले मुद्दे को व्यापक रूप से खारिज कर दिया गया है। सामान्य घटनाओं के दौरान लाइन कर्मचारी पहले से ही अप्रत्याशित रूप से लाइव तारों के संपर्क में आते हैं (यानी एक घर ब्लैक आउट हो गया है क्योंकि इसमें कोई शक्ति नहीं है, या क्योंकि रहने वाले ने मुख्य ब्रेकर को अंदर खींच लिया है?)। हॉट-लाइन नियमों या डेड-लाइन नियमों के तहत सामान्य संचालन प्रक्रियाओं के लिए निश्चित रूप से शक्ति के परीक्षण के लिए लाइन कर्मचारियों की आवश्यकता होती है, और यह गणना की गई है कि सक्रिय द्वीप एक नगण्य जोखिम जोड़ेंगे।[9] हालाँकि, अन्य आपातकालीन कर्मचारियों के पास लाइन की जाँच करने का समय नहीं हो सकता है, और जोखिम-विश्लेषण उपकरणों का उपयोग करके इन मुद्दों का व्यापक रूप से पता लगाया गया है। यूके स्थित एक अध्ययन ने निष्कर्ष निकाला कि नेटवर्क ऑपरेटरों और ग्राहकों दोनों के लिए सबसे खराब स्थिति वाले पीवी पैठ परिदृश्यों के तहत पीवी सिस्टम के द्वीप से जुड़े बिजली के झटके का जोखिम सामान्यतःपर <10 है−9 प्रति वर्ष।[10] दूसरी संभावना भी अत्यंत दूरस्थ मानी जाती है। थ्रेसहोल्ड के अलावा जो जल्दी से संचालित करने के लिए षड्यंत्र किए गए हैं, द्वीप डिटेक्शन सिस्टम में पूर्ण थ्रेसहोल्ड भी हैं जो उन स्थितियों तक पहुंचने से बहुत पहले ट्रिप हो जाएंगे जो एंड-यूज़र उपकरण क्षति का कारण बन सकते हैं। यह आम तौर पर अंतिम दो मुद्दे हैं जो उपयोगिताओं के बीच सबसे अधिक चिंता का कारण बनते हैं। रेक्लोजर का उपयोग सामान्यतःपर विद्युत् तंत्र को छोटे वर्गों में विभाजित करने के लिए किया जाता है जो स्वचालित रूप से और जल्दी से, गलती की स्थिति (उदाहरण के लिए लाइनों पर एक पेड़ की शाखा) को साफ करते ही शाखा को फिर से सक्रिय कर देगा। कुछ चिंता है कि एक द्वीप के मामले में रिक्लोजर्स फिर से सक्रिय नहीं हो सकते हैं, या यह कि तेजी से साइकिल चलाने से डीजी सिस्टम की गलती को साफ करने के बाद फिर से विद्युत् तंत्र से मिलान करने की क्षमता में हस्तक्षेप हो सकता है।
यदि कोई द्वीपसमूह समस्या मौजूद है, तो ऐसा लगता है कि यह कुछ प्रकार के जनित्रतक ही सीमित है। 2004 की एक कनाडाई रिपोर्ट ने निष्कर्ष निकाला कि सिंक्रोनस जेनरेटर, microhydro जैसे प्रतिष्ठान, मुख्य चिंता का विषय थे। इन प्रणालियों में काफी यांत्रिक जड़ता हो सकती है जो एक उपयोगी संकेत प्रदान करेगी। इन्वर्टर-आधारित प्रणालियों के लिए, रिपोर्ट ने बड़े पैमाने पर समस्या को खारिज कर दिया, जिसमें कहा गया है: इन्वर्टर आधारित डीजी सिस्टम के लिए एंटी-द्वीप तकनीक बहुत बेहतर विकसित है, और प्रकाशित जोखिम आकलन से पता चलता है कि वर्तमान तकनीक और मानक वितरण में डीजी के प्रवेश के दौरान पर्याप्त सुरक्षा प्रदान करते हैं। सिस्टम अपेक्षाकृत कम रहता है।[11] रिपोर्ट में यह भी कहा गया है कि महत्व पर विचार इस मुद्दे का बहुत ध्रुवीकरण होता है, उपयोगिताओं के साथ आम तौर पर घटना की संभावना और इसके प्रभावों पर विचार करते हुए, जबकि डीजी सिस्टम का समर्थन करने वाले सामान्यतःपर जोखिम आधारित दृष्टिकोण और एक द्वीप बनाने की बहुत कम संभावनाओं का उपयोग करते हैं।[12] इस तरह के एक दृष्टिकोण का एक उदाहरण, जो इस मामले को मजबूत करता है कि द्वीपसमूह काफी हद तक एक गैर-मुद्दा है, एक प्रमुख वास्तविक दुनिया द्वीपसमूह प्रयोग है जो 1999 में नीदरलैंड में किया गया था। हालांकि तत्कालीन-वर्तमान एंटी-द्वीप प्रणाली पर आधारित है , सामान्यतःपर सबसे बुनियादी वोल्टेज कूद-पता लगाने के तरीके, परीक्षण ने स्पष्ट रूप से प्रदर्शित किया कि द्वीप 60 सेकंड से अधिक समय तक नहीं रह सकते। इसके अलावा, सैद्धांतिक भविष्यवाणियां सच थीं; मौजूदा संतुलन स्थिति की संभावना 10 के क्रम में थी-6 एक वर्ष, और उस समय विद्युत् तंत्र के पृथक होने की संभावना और भी कम थी। एक द्वीप के रूप में केवल तभी बन सकता है जब दोनों स्थितियाँ सत्य हों, उन्होंने निष्कर्ष निकाला कि एक द्वीप का सामना करने की संभावना लगभग शून्य है[13] फिर भी, उपयोगिता कंपनियों ने वितरित उत्पादन प्रणालियों के कार्यान्वयन में देरी या इनकार करने के कारण के रूप में द्वीपसमूह का उपयोग करना जारी रखा है। ओंटारियो में, हाइड्रो वन ने हाल ही में इंटरकनेक्शन दिशानिर्देश पेश किए हैं जो कनेक्शन से इनकार करते हैं यदि शाखा पर कुल वितरित उत्पादन क्षमता अधिकतम वार्षिक पीक पावर का 7% है।[14] वहीं, कैलिफ़ोर्निया केवल समीक्षा के लिए 15% की सीमा निर्धारित करता है, 30% तक कनेक्शन की अनुमति देता है,[15] और सक्रिय रूप से समीक्षा-केवल सीमा को 50% तक ले जाने पर विचार कर रहा है।
मामला गरमा राजनीतिक हो सकता है। ओंटारियो में 2009 में और बाद में, एक नए शुल्क डालें प्रोग्राम का लाभ लेने वाले कई संभावित ग्राहकों को उनके सिस्टम के निर्माण के बाद ही कनेक्शन देने से मना कर दिया गया था। यह विशेष रूप से ग्रामीण क्षेत्रों में एक समस्या थी, जहां कई किसान छोटे (10 kWp) सिस्टम स्थापित करने में सक्षम थे, केवल यह पता लगाने के लिए कि हाइड्रो वन ने सिस्टम के बाद कई मामलों में एक नया क्षमता विनियमन लागू किया था। स्थापित किया गया था।[16]
बैकअप पावर के लिए सुविचारित द्वीप
This section does not cite any sources. (December 2021) (Learn how and when to remove this template message) |
उपयोगिताओं द्वारा सार्वजनिक सुरक्षा पावर शटऑफ (पीएसपीएस) और अन्य पावर विद्युत् तंत्र शटडाउन के बहुत अधिक उपयोग के कारण, पिछले कई वर्षों में घरों और व्यवसायों के लिए बैकअप और आपातकालीन बिजली की आवश्यकता बहुत बढ़ गई है। उदाहरण के लिए, कैलिफोर्निया यूटिलिटी पीजी एंड ई द्वारा कुछ शटडाउन दिनों तक चले हैं क्योंकि पीजी एंड ई जंगल की आग को शुष्क और हवादार जलवायु स्थितियों के दौरान शुरू होने से रोकने का प्रयास करता है। बैकअप विद्युत् तंत्र पावर की इस जरूरत को पूरा करने के लिए, बैटरी बैकअप और द्वीप इनवर्टर के साथ सौर ऊर्जा प्रणालियों को घर और व्यापार मालिकों द्वारा भारी मांग मिल रही है। सामान्य ऑपरेशन के दौरान जब विद्युत् तंत्र पावर मौजूद होती है, तो इनवर्टर सौर पैनलों द्वारा प्रदान की जाने वाली बिजली को घर या व्यवसाय में लोड करने के लिए विद्युत् तंत्र टाई कर सकते हैं, और इस तरह यूटिलिटी से खपत होने वाली बिजली की मात्रा को कम कर सकते हैं। यदि सौर पैनलों से अतिरिक्त बिजली उपलब्ध है तो इसका उपयोग बैटरी को चार्ज करने और/या बिजली को विद्युत् तंत्र में फीड करने के लिए किया जा सकता है ताकि प्रभावी रूप से यूटिलिटी को बिजली बेची जा सके। यह ऑपरेशन बिजली की लागत को कम कर सकता है जिसे मालिक को उपयोगिता से खरीदना पड़ता है और सौर ऊर्जा प्रणाली की खरीद और स्थापना लागत को ऑफसेट करने में मदद करता है।
विद्युत् तंत्र पावर मौजूद होने पर आधुनिक इनवर्टर स्वचालित रूप से विद्युत् तंत्र टाई कर सकते हैं, और जब विद्युत् तंत्र पावर खो जाती है या स्वीकार्य गुणवत्ता नहीं होती है तो ये इनवर्टर घर या व्यापार विद्युत प्रणाली को विद्युत् तंत्र से अलग करने के लिए ट्रांसफर बटन के साथ काम करते हैं और इन्वर्टर उस तक बिजली की आपूर्ति करता है। एक द्वीप मोड में प्रणाली। जबकि अधिकांश घर या व्यवसाय इन्वर्टर की तुलना में एक बड़ा लोड पेश कर सकते हैं, लोड शेडिंग इन्वर्टर से एसी पावर आउटपुट की आवृत्ति को अलग करके पूरा किया जाता है (केवल द्वीप मोड में) इन्वर्टर पर लोड के जवाब में फैशन ऐसा है कि एसी बिजली आवृत्ति उस लोडिंग का प्रतिनिधित्व करती है। एयर कंडीशनर और इलेक्ट्रिक ओवन जैसे बड़े लोड के लिए पावर फीड में स्थापित लोड मॉड्यूल, द्वीप इन्वर्टर से एसी पावर फ्रीक्वेंसी को मापते हैं और उन लोड को प्राथमिकता क्रम में पृथक करते हैं क्योंकि इन्वर्टर अपनी अधिकतम पावर आउटपुट क्षमता के पास होता है। उदाहरण के लिए, जब इन्वर्टर पावर आउटपुट इन्वर्टर की अधिकतम आउटपुट क्षमता के 50% से कम होता है, तो एसी पावर फ्रीक्वेंसी को मानक आवृत्ति (जैसे 60 हर्ट्ज) पर बनाए रखा जाता है, लेकिन जैसे ही पावर आउटपुट 50% से ऊपर बढ़ता है, आवृत्ति को रैखिक रूप से कम किया जाता है। से 2 हर्ट्ज (जैसे 60 हर्ट्ज से 58 हर्ट्ज तक) जब इन्वर्टर आउटपुट अपने अधिकतम पावर आउटपुट तक पहुँच जाता है। द्वीप मोड में इन्वर्टर एसी पावर फ्रीक्वेंसी कंट्रोल की आसानी और सटीकता के कारण, यह फ्रीक्वेंसी कंट्रोल इन्वर्टर लोडिंग को इलेक्ट्रिकल सिस्टम के हर कोने तक पहुँचाने का एक सस्ता और प्रभावी तरीका है। कम प्राथमिकता वाले लोड के लिए एक लोड मॉड्यूल इस बिजली की आवृत्ति को मापेगा और यदि आवृत्ति 1 हर्ट्ज या अधिक उदाहरण के लिए कम हो जाती है (उदाहरण के लिए 59 हर्ट्ज से कम) तो लोड मॉड्यूल अपने लोड को पृथक कर देता है। कई लोड मॉड्यूल, जिनमें से प्रत्येक अपने लोड की प्राथमिकता के आधार पर एक अलग आवृत्ति पर संचालित होता है, इन्वर्टर पर कुल लोड को अपनी अधिकतम क्षमता से कम रखने के लिए काम कर सकता है।
ये द्वीप इन्वर्टर सौर ऊर्जा प्रणालियाँ सभी भारों को संभावित रूप से संचालित करने की अनुमति देती हैं, बस एक ही समय में नहीं। ये सिस्टम आंतरिक दहन इंजन संचालित जनित्रके लिए एक हरित, विश्वसनीय और लागत प्रभावी बैकअप पावर विकल्प प्रदान करते हैं। द्वीप इन्वर्टर सिस्टम स्वचालित रूप से संचालित होता है जब विद्युत् तंत्र पावर यह सुनिश्चित करने में विफल रहता है कि महत्वपूर्ण विद्युत भार जैसे प्रकाश व्यवस्था, हीटिंग सिस्टम के निर्माण के लिए पंखे और खाद्य भंडारण उपकरण पूरे कटौती में काम करते रहें, भले ही व्यवसाय में कोई मौजूद न हो या घर में रहने वाले सो रहे हों।
द्वीप डिटेक्शन मेथड्स
एक द्वीपीय स्थिति का पता लगाना काफी शोध का विषय है। सामान्य तौर पर, इन्हें निष्क्रिय तरीकों में वर्गीकृत किया जा सकता है, जो विद्युत् तंत्र पर क्षणिक घटनाओं की तलाश करते हैं, और सक्रिय तरीके, जो इन्वर्टर या विद्युत् तंत्र वितरण बिंदु से किसी प्रकार के सिग्नल भेजकर विद्युत् तंत्र की जांच करते हैं। ऐसे तरीके भी हैं जिनका उपयोगिता उन स्थितियों का पता लगाने के लिए उपयोग कर सकती है जो इन्वर्टर-आधारित विधियों को विफल कर सकती हैं, और इनवर्टर को बंद करने के लिए सुविचारित उन स्थितियों को परेशान करती हैं। एक Sandia Labs रिपोर्ट में इनमें से कई कार्यपद्धतियां शामिल हैं, जो उपयोग में हैं और भविष्य में विकास दोनों हैं। इन विधियों का सारांश नीचे दिया गया है।
निष्क्रिय तरीके
निष्क्रिय तरीकों में कोई भी प्रणाली शामिल होती है जो विद्युत् तंत्र पर क्षणिक परिवर्तनों का पता लगाने का प्रयास करती है, और उस जानकारी को आधार के रूप में उपयोग करती है कि विद्युत् तंत्र विफल हो गया है या नहीं, या किसी अन्य स्थिति के परिणामस्वरूप अस्थायी परिवर्तन हुआ है।
अंडर/ओवर वोल्टेज
ओम के नियम के अनुसार, विद्युत परिपथ में वोल्टेज विद्युत प्रवाह (इलेक्ट्रॉनों की आपूर्ति) और लागू भार (प्रतिरोध) का एक कार्य है। विद्युत् तंत्र रुकावट के मामले में, स्थानीय स्रोत द्वारा आपूर्ति की जा रही धारा लोड से इतनी अच्छी तरह से मेल खाने की संभावना नहीं है कि एक निरंतर वोल्टेज बनाए रखने में सक्षम हो। एक प्रणाली जो समय-समय पर वोल्टेज का नमूना लेती है और अचानक परिवर्तन की तलाश करती है, गलती की स्थिति का पता लगाने के लिए उपयोग की जा सकती है।[17] अंडर/ओवर वोल्टेज डिटेक्शन सामान्यतःपर विद्युत् तंत्र-इंटरैक्टिव इनवर्टर में लागू करने के लिए तुच्छ है, क्योंकि इन्वर्टर का मूल कार्य वोल्टेज सहित विद्युत् तंत्र की स्थिति से मेल खाना है। इसका मतलब यह है कि सभी विद्युत् तंत्र-इंटरैक्टिव इनवर्टर में परिवर्तनों का पता लगाने के लिए आवश्यक सर्किट्री होती है। अचानक परिवर्तनों का पता लगाने के लिए केवल एक एल्गोरिथम की आवश्यकता होती है। हालाँकि, वोल्टेज में अचानक परिवर्तन विद्युत् तंत्र पर एक सामान्य घटना है क्योंकि भार जुड़ा और हटा दिया जाता है, इसलिए झूठे डिस्कनेक्शन से बचने के लिए एक सीमा का उपयोग किया जाना चाहिए।[18] इस पद्धति के साथ गैर-पता लगाने वाली स्थितियों की श्रेणी बड़ी हो सकती है, और इन प्रणालियों का उपयोग आम तौर पर अन्य पहचान प्रणालियों के साथ किया जाता है।[19]
कम/अधिक आवृत्ति
विद्युत् तंत्र को दी जाने वाली बिजली की आवृत्ति आपूर्ति का एक कार्य है, जिसे इनवर्टर सावधानीपूर्वक मेल खाते हैं। जब विद्युत् तंत्र स्रोत खो जाता है, तो बिजली की आवृत्ति द्वीप में परिपथकी प्राकृतिक गुंजयमान आवृत्ति पर गिर जाएगी। वोल्टेज की तरह इस फ्रीक्वेंसी में बदलाव की तलाश करना, पहले से ही आवश्यक कार्यक्षमता का उपयोग करके लागू करना आसान है, और इस कारण से लगभग सभी इनवर्टर भी इस पद्धति का उपयोग करके गलती की स्थिति की तलाश करते हैं।
वोल्टेज में परिवर्तन के विपरीत, यह आम तौर पर अत्यधिक संभावना नहीं माना जाता है कि एक यादृच्छिक परिपथस्वाभाविक रूप से विद्युत् तंत्र पावर के समान प्राकृतिक आवृत्ति होगी। हालाँकि, कई डिवाइस सुविचारित विद्युत् तंत्र फ्रीक्वेंसी को सिंक्रोनाइज़ करते हैं, जैसे टेलीविज़न। मोटर्स, विशेष रूप से, एक संकेत प्रदान करने में सक्षम हो सकते हैं जो एनडीजेड के भीतर कुछ समय के लिए बंद हो जाता है। वोल्टेज और फ़्रीक्वेंसी शिफ्ट का संयोजन अभी भी एक NDZ में परिणामित होता है जिसे सभी के द्वारा पर्याप्त नहीं माना जाता है।[20]
आवृत्ति के परिवर्तन की दर
एक द्वीप का पता लगाने के समय को कम करने के लिए, पता लगाने की विधि के रूप में आवृत्ति के परिवर्तन की दर को अपनाया गया है। आवृत्ति के परिवर्तन की दर निम्नलिखित अभिव्यक्ति द्वारा दी गई है:
कहाँ पे प्रणाली आवृत्ति है, समय है, शक्ति असंतुलन है (), सिस्टम क्षमता है, और प्रणाली जड़ता है।
आवृत्ति के परिवर्तन की दर, या आरओसीओएफ मूल्य, एक निश्चित मूल्य से अधिक होना चाहिए, एम्बेडेड पीढ़ी नेटवर्क से पृथक हो जाएगी।
वोल्टेज फेज जंप डिटेक्शन
भार में आम तौर पर शक्ति कारक होते हैं जो सही नहीं होते हैं, जिसका अर्थ है कि वे विद्युत् तंत्र से वोल्टेज को पूरी तरह से स्वीकार नहीं करते हैं, लेकिन इसे थोड़ा बाधित करते हैं। विद्युत् तंत्र-टाई इनवर्टर, परिभाषा के अनुसार, 1 के शक्ति तत्व होते हैं। इससे विद्युत् तंत्र के विफल होने पर फेज में परिवर्तन हो सकता है, जिसका उपयोग द्वीप का पता लगाने के लिए किया जा सकता है।
इन्वर्टर सामान्यतःपर किसी प्रकार के चरण लॉक लूप (पीएलएल) का उपयोग करके विद्युत् तंत्र सिग्नल के चरण को ट्रैक करते हैं। जब सिग्नल शून्य वोल्ट को पार कर जाता है तो PLL ट्रैक करके विद्युत् तंत्र सिग्नल के साथ सिंक में रहता है। उन घटनाओं के बीच, सिस्टम अनिवार्य रूप से एक साइन-आकार का आउटपुट खींच रहा है, जो उचित वोल्टेज तरंग उत्पन्न करने के लिए वर्तमान आउटपुट को परिपथमें बदलता है। जब विद्युत् तंत्र पृथक हो जाता है, तो पावर फैक्टर अचानक विद्युत् तंत्र (1) से लोड (~1) में बदल जाता है। चूंकि परिपथअभी भी एक वर्तमान प्रदान कर रहा है जो ज्ञात भारों को देखते हुए एक चिकनी वोल्टेज आउटपुट का उत्पादन करेगा, इस स्थिति के परिणामस्वरूप वोल्टेज में अचानक परिवर्तन होगा। जब तक वेवफॉर्म पूरा हो जाता है और शून्य पर वापस आ जाता है, तब तक सिग्नल फेज से बाहर हो जाएगा।[20]
इस दृष्टिकोण का मुख्य लाभ यह है कि चरण में बदलाव तब भी होगा जब भार ओम के नियम के संदर्भ में आपूर्ति से बिल्कुल मेल खाता हो - NDZ द्वीप के शक्ति कारकों पर आधारित है, जो बहुत कम 1 हैं। नकारात्मक पक्ष यह है कि कई सामान्य घटनाएँ, जैसे मोटर स्टार्ट करना, फेज़ जंप का कारण भी बनता है क्योंकि परिपथमें नए प्रतिबाधाएँ जुड़ जाती हैं। यह सिस्टम को इसकी प्रभावशीलता को कम करने, अपेक्षाकृत बड़ी थ्रेसहोल्ड का उपयोग करने के लिए मजबूर करता है।[21]
हार्मोनिक्स डिटेक्शन
मोटर जैसे शोर स्रोतों के साथ भी, विद्युत् तंत्र से जुड़े परिपथका कुल हार्मोनिक विरूपण (THD) सामान्यतःपर इन घटनाओं को फ़िल्टर करने वाली विद्युत् तंत्र की अनिवार्य रूप से अनंत क्षमता के कारण अमापनीय होता है। दूसरी ओर, इनवर्टर में सामान्यतःपर बहुत बड़ी विकृतियाँ होती हैं, जितना कि 5% THD। यह उनके निर्माण का एक कार्य है; कुछ THD स्विच-मोड बिजली की आपूर्ति परिपथका एक प्राकृतिक साइड-इफेक्ट है, जिस पर अधिकांश इनवर्टर आधारित होते हैं।[22] इस प्रकार, जब विद्युत् तंत्र पृथक हो जाता है, तो स्थानीय परिपथका टीएचडी स्वाभाविक रूप से इनवर्टर के टीएचडी तक बढ़ जाएगा। यह द्वीप का पता लगाने का एक बहुत ही सुरक्षित तरीका प्रदान करता है, क्योंकि सामान्यतःपर THD का कोई अन्य स्रोत नहीं होता है जो इन्वर्टर से मेल खाता हो। इसके अतिरिक्त, इनवर्टर के भीतर परस्पर क्रियाएं, विशेष रूप से ट्रांसफार्मर, में गैर-रैखिक प्रभाव होते हैं जो अद्वितीय दूसरे और तीसरे हार्मोनिक्स का उत्पादन करते हैं जो आसानी से मापने योग्य होते हैं।[22]
इस दृष्टिकोण की कमी यह है कि कुछ भार विरूपण को फ़िल्टर कर सकते हैं, उसी तरह इन्वर्टर प्रयास करता है। यदि यह फ़िल्टरिंग प्रभाव काफी मजबूत है, तो यह पता लगाने के लिए आवश्यक सीमा से नीचे THD को कम कर सकता है। पृथक बिंदु के अंदर ट्रांसफॉर्मर के बिना सिस्टम पहचान को और अधिक कठिन बना देगा। हालाँकि, सबसे बड़ी समस्या यह है कि आधुनिक इनवर्टर THD को जितना संभव हो उतना कम करने का प्रयास करते हैं, कुछ मामलों में यह अमापनीय सीमा तक होता है।[22]
सक्रिय तरीके
सक्रिय विधियाँ आम तौर पर लाइन में छोटे संकेतों को इंजेक्ट करके विद्युत् तंत्र की विफलता का पता लगाने का प्रयास करती हैं, और फिर यह पता लगाती हैं कि सिग्नल बदलता है या नहीं।
नकारात्मक-अनुक्रम वर्तमान इंजेक्शन
यह विधि एक सक्रिय द्वीपसमूह का पता लगाने की विधि है जिसका उपयोग तीन-चरण इलेक्ट्रॉनिक रूप से युग्मित वितरित पीढ़ी (डीजी) इकाइयों द्वारा किया जा सकता है। विधि वोल्टेज-स्रोत कनवर्टर (वीएससी) नियंत्रक के माध्यम से एक नकारात्मक-अनुक्रम धारा को इंजेक्ट करने पर आधारित है और एक एकीकृत तीन के माध्यम से वीएससी के सामान्य युग्मन (पीसीसी) के बिंदु पर संबंधित नकारात्मक-अनुक्रम वोल्टेज का पता लगाने और मापने पर आधारित है- चरण सिग्नल प्रोसेसर (UTSP)। यूटीएसपी सिस्टम एक उन्नत चरण-लॉक लूप (पीएलएल) है जो शोर के प्रति उच्च स्तर की प्रतिरक्षा प्रदान करता है, और इस प्रकार एक छोटे से नकारात्मक-अनुक्रम प्रवाह को इंजेक्ट करने के आधार पर द्वीपों का पता लगाने में सक्षम बनाता है। नकारात्मक-अनुक्रम धारा को एक नकारात्मक-अनुक्रम नियंत्रक द्वारा इंजेक्ट किया जाता है जिसे पारंपरिक VSC वर्तमान नियंत्रक के पूरक के रूप में अपनाया जाता है। नकारात्मक-अनुक्रम वर्तमान इंजेक्शन विधि UL1741 परीक्षण स्थितियों के तहत 60 एमएस (3.5 चक्र) के भीतर एक द्वीप घटना का पता लगाती है, द्वीप पर पहचान के लिए 2% से 3% नकारात्मक-अनुक्रम वर्तमान इंजेक्शन की आवश्यकता होती है, विद्युत् तंत्र शॉर्ट परिपथअनुपात के लिए एक द्वीप घटना का सही पता लगा सकता है 2 या उच्चतर, और UL1741 परीक्षण प्रणाली के लोड मापदंडों की विविधता के प्रति असंवेदनशील है।
[23]
प्रतिबाधा माप
प्रतिबाधा मापन इन्वर्टर द्वारा खिलाए जा रहे परिपथके समग्र विद्युत प्रतिबाधा को मापने का प्रयास करता है। यह एसी चक्र के माध्यम से वर्तमान आयाम को थोड़ा बल देकर करता है, एक निश्चित समय में बहुत अधिक वर्तमान पेश करता है। आम तौर पर इसका मापा वोल्टेज पर कोई प्रभाव नहीं पड़ेगा, क्योंकि विद्युत् तंत्र प्रभावी रूप से असीम रूप से कठोर वोल्टेज स्रोत है। एक वियोग की स्थिति में, यहां तक कि छोटे बल के परिणामस्वरूप वोल्टेज में ध्यान देने योग्य परिवर्तन होगा, जिससे द्वीप का पता लगाया जा सकेगा।[24] इस पद्धति का मुख्य लाभ यह है कि इसमें किसी भी एकल इन्वर्टर के लिए गायब होने वाला छोटा एनडीजेड है। हालाँकि, उलटा भी इस पद्धति की मुख्य कमजोरी है; कई इनवर्टर के मामले में, प्रत्येक एक लाइन में थोड़ा अलग सिग्नल के लिए मजबूर होगा, किसी एक इन्वर्टर पर प्रभाव को छिपाएगा। इनवर्टर के बीच संचार द्वारा इस समस्या का समाधान करना संभव है ताकि यह सुनिश्चित किया जा सके कि वे सभी एक ही समय पर लागू हों, लेकिन एक गैर-सजातीय स्थापना (एक ही शाखा पर कई संस्थापन) में यह व्यवहार में मुश्किल या असंभव हो जाता है। इसके अतिरिक्त, विधि केवल तभी काम करती है जब विद्युत् तंत्र प्रभावी रूप से अनंत हो, और व्यवहार में कई वास्तविक-विश्व विद्युत् तंत्र कनेक्शन पर्याप्त रूप से इस मानदंड को पूरा नहीं करते हैं।[24]
एक विशिष्ट आवृत्ति पर प्रतिबाधा माप
यद्यपि पद्धति प्रतिबाधा मापन के समान है, यह विधि, जिसे हार्मोनिक आयाम कूद के रूप में भी जाना जाता है, वास्तव में हार्मोनिक्स डिटेक्शन के करीब है। इस मामले में, इन्वर्टर सुविचारित एक निश्चित आवृत्ति पर हार्मोनिक्स का परिचय देता है, और जैसा कि प्रतिबाधा मापन के मामले में होता है, विद्युत् तंत्र से संकेत की अपेक्षा करता है कि जब तक विद्युत् तंत्र विफल न हो जाए। हार्मोनिक्स डिटेक्शन की तरह, सिग्नल को वास्तविक दुनिया के परिपथद्वारा फ़िल्टर किया जा सकता है।[25]
स्लिप मोड फ्रीक्वेंसी शिफ्ट
यह द्वीपों का पता लगाने के नवीनतम तरीकों में से एक है, और सिद्धांत रूप में, सर्वश्रेष्ठ में से एक है। यह इन्वर्टर के आउटपुट के चरण को विद्युत् तंत्र के साथ थोड़ा गलत संरेखित करने के लिए मजबूर करने पर आधारित है, इस अपेक्षा के साथ कि विद्युत् तंत्र इस सिग्नल को अभिभूत कर देगा। विद्युत् तंत्र सिग्नल गायब होने पर सिस्टम अस्थिर होने के लिए बारीक ट्यून किए गए चरण-लॉक लूप की क्रियाओं पर निर्भर करता है; इस मामले में, पीएलएल सिग्नल को वापस अपने आप में समायोजित करने का प्रयास करता है, जिसे ड्रिफ्ट जारी रखने के लिए ट्यून किया जाता है। विद्युत् तंत्र की विफलता के मामले में, सिस्टम जल्दी से षड्यंत्र आवृत्ति से दूर हो जाएगा, अंततः इन्वर्टर को बंद करने का कारण बनता है।[26] इस दृष्टिकोण का प्रमुख लाभ यह है कि इन्वर्टर में पहले से मौजूद सर्किट्री का उपयोग करके इसे लागू किया जा सकता है। मुख्य नुकसान यह है कि इन्वर्टर को हमेशा विद्युत् तंत्र के साथ समय से थोड़ा बाहर रहने की आवश्यकता होती है, एक कम शक्ति कारक। आम तौर पर बोलते हुए, सिस्टम में गायब होने वाला छोटा एनडीजेड है और जल्दी से पृथक हो जाएगा, लेकिन यह ज्ञात है कि कुछ भार हैं जो पहचान को ऑफसेट करने के लिए प्रतिक्रिया देंगे।[26]
आवृत्ति पूर्वाग्रह
फ़्रीक्वेंसी बायस विद्युत् तंत्र में थोड़ी-सी ऑफ़-फ़्रीक्वेंसी सिग्नल को बाध्य करता है, लेकिन जब वोल्टेज शून्य हो जाता है, तो चरण में वापस कूदकर हर चक्र के अंत में इसे ठीक करता है। यह स्लिप मोड के समान एक सिग्नल बनाता है, लेकिन पावर फैक्टर विद्युत् तंत्र के करीब रहता है, और हर चक्र में खुद को रीसेट करता है। इसके अलावा, ज्ञात लोड द्वारा सिग्नल को फ़िल्टर किए जाने की संभावना कम होती है। मुख्य नुकसान यह है कि प्रत्येक इन्वर्टर को चक्र पर एक ही बिंदु पर सिग्नल को वापस शून्य पर स्थानांतरित करने के लिए सहमत होना होगा, जैसे कि वोल्टेज शून्य पर वापस आ जाता है, अन्यथा अलग-अलग इनवर्टर सिग्नल को अलग-अलग दिशाओं में बल देंगे और इसे फ़िल्टर करेंगे।[27] इस मूल योजना में कई संभावित विविधताएँ हैं। फ़्रीक्वेंसी जंप संस्करण, जिसे ज़ेबरा विधि के रूप में भी जाना जाता है, एक सेट पैटर्न में केवल एक विशिष्ट संख्या में चक्रों पर बल डालता है। यह नाटकीय रूप से इस संभावना को कम करता है कि बाहरी परिपथसिग्नल को फ़िल्टर कर सकते हैं। यह लाभ कई इनवर्टर के साथ गायब हो जाता है, जब तक कि पैटर्न को सिंक्रनाइज़ करने के किसी तरीके का उपयोग नहीं किया जाता है।[28]
उपयोगिता-आधारित विधियाँ
विफलता की स्थिति में सिस्टम को ऑफ़लाइन करने के लिए उपयोगिता के पास कई प्रकार की विधियाँ उपलब्ध हैं।
मैनुअल वियोग
अधिकांश छोटे जनित्रकनेक्शनों के लिए यांत्रिक पृथक बटन की आवश्यकता होती है, इसलिए कम से कम उपयोगिता एक मरम्मत करने वाले को उन सभी को खींचने के लिए भेज सकती है। बहुत बड़े स्रोतों के लिए, कोई बस एक समर्पित टेलीफोन हॉटलाइन स्थापित कर सकता है जिसका उपयोग ऑपरेटर को जनित्रको मैन्युअल रूप से बंद करने के लिए किया जा सकता है। किसी भी मामले में, प्रतिक्रिया समय मिनटों या घंटों के क्रम में होने की संभावना है।
स्वचालित वियोग
मैनुअल डिस्कनेक्शन को विद्युत् तंत्र के माध्यम से या द्वितीयक माध्यमों से भेजे गए संकेतों के उपयोग के माध्यम से स्वचालित किया जा सकता है। उदाहरण के लिए, पावर लाइन वाहक संचार सभी इनवर्टर में स्थापित किया जा सकता है, समय-समय पर उपयोगिता से संकेतों की जांच कर रहा है और या तो कमांड पर पृथक कर रहा है, या यदि सिग्नल एक निश्चित समय के लिए गायब हो जाता है। ऐसी प्रणाली अत्यधिक विश्वसनीय होगी, लेकिन इसे लागू करना महंगा होगा।[29][30]
ट्रांसफ़र-ट्रिप विधि
जैसा कि उपयोगिता को यथोचित आश्वासन दिया जा सकता है कि उनके पास हमेशा एक गलती की खोज करने का एक तरीका होगा, चाहे वह स्वचालित हो या केवल पुनरावर्तक को देख रहा हो, उपयोगिता के लिए इस जानकारी का उपयोग करना और इसे लाइन में संचारित करना संभव है। इसका उपयोग डीजी सिस्टम को एनडीजेड से बाहर करने के लिए मजबूर करने के लिए डीजी सिस्टम को अलग करने के लिए सुविचारित विद्युत् तंत्र में रिक्लोजर की एक श्रृंखला खोलकर उचित रूप से सुसज्जित डीजी सिस्टम की ट्रिपिंग को मजबूर करने के लिए किया जा सकता है। इस पद्धति को काम करने की गारंटी दी जा सकती है, लेकिन इसके लिए विद्युत् तंत्र को स्वचालित रिक्लोज़र सिस्टम से लैस करने की आवश्यकता होती है, और बाहरी संचार प्रणालियाँ जो सिग्नल की गारंटी देती हैं, इसे रिक्लोज़र के माध्यम से बनाएगी।[31]
प्रतिबाधा सम्मिलन
एक संबंधित अवधारणा सुविचारित विद्युत् तंत्र के एक हिस्से को ऐसी स्थिति में मजबूर करना है जो डीजी सिस्टम को पृथक करने की गारंटी देगा। यह ट्रांसफर-ट्रिप विधि के समान है, लेकिन नेटवर्क के टोपोलॉजी पर भरोसा करने के विपरीत उपयोगिता के शीर्ष-अंत में सक्रिय सिस्टम का उपयोग करता है।
एक साधारण उदाहरण संधारित्र का एक बड़ा बैंक है जो शाखा में जोड़ा जाता है, चार्ज किया जाता है और सामान्य रूप से बटन द्वारा पृथक किया जाता है। विफलता की स्थिति में, कैपेसिटर को थोड़ी देर के बाद उपयोगिता द्वारा शाखा में बदल दिया जाता है। यह वितरण के बिंदु पर स्वत: साधनों के माध्यम से आसानी से पूरा किया जा सकता है। कैपेसिटर केवल एक संक्षिप्त अवधि के लिए करंट की आपूर्ति कर सकते हैं, यह सुनिश्चित करते हुए कि उनके द्वारा दी जाने वाली पल्स की शुरुआत या अंत इनवर्टर को ट्रिप करने के लिए पर्याप्त परिवर्तन का कारण होगा।[32] ऐसा प्रतीत होता है कि द्वीप-विरोधी के इस तरीके के लिए कोई NDZ नहीं है। इसका मुख्य नुकसान लागत है; कैपेसिटर बैंक को वोल्टेज में बदलाव के कारण काफी बड़ा होना चाहिए, और यह शाखा पर भार की मात्रा का एक कार्य है। सिद्धांत रूप में, बहुत बड़े बैंकों की आवश्यकता होगी, एक ऐसा खर्च जिसे यूटिलिटी द्वारा अनुकूल रूप से देखने की संभावना नहीं है।[33]
स्काडा ===
उपयोगिता बाजार में पहले से ही व्यापक रूप से उपयोग किए जाने वाले पर्यवेक्षी नियंत्रण और डेटा अधिग्रहण (SCADA) सिस्टम के उपयोग के माध्यम से एंटी-द्वीप सुरक्षा में सुधार किया जा सकता है। उदाहरण के लिए, यदि SCADA प्रणाली एक लाइन पर वोल्टेज का पता लगाती है, जहां एक विफलता प्रगति पर है, तो एक अलार्म बज सकता है। यह एंटी-द्वीप सिस्टम को प्रभावित नहीं करता है, लेकिन ऊपर उल्लिखित किसी भी सिस्टम को जल्दी से लागू करने की अनुमति दे सकता है।
संदर्भ
- ↑ Saleh, M.; Esa, Y.; Mhandi, Y.; Brandauer, W.; Mohamed, A. (October 2016). "Design and implementation of CCNY DC microgrid testbed". 2016 IEEE Industry Applications Society Annual Meeting: 1–7. doi:10.1109/IAS.2016.7731870. ISBN 978-1-4799-8397-1. S2CID 16464909.
- ↑ 2.0 2.1 "IEEE 1547.4 - 2011". IEEE Standards Association Working Group Site & Liaison Index. IEEE. Retrieved 3 March 2017.
- ↑ Autorité de sûreté nucléaire. "Îlotage provoqué des deux réacteurs à la centrale nucléaire de Saint-Alban". ASN (in français). Retrieved 2019-02-25.
- ↑ "Centrale nucléaire de Fessenheim : Mise à l'arrêt de l'unité de production n°2". EDF France (in français). 2018-07-14. Retrieved 2019-02-25.
- ↑ Bower & Ropp, pg. 10
- ↑ Caldognetto, T.; Dalla Santa, L.; Magnone, P.; Mattavelli, P. (2017). "Power Electronics Based Active Load for Unintentional Islanding Testbenches". IEEE Transactions on Industry Applications. 53 (4): 3831–3839. doi:10.1109/TIA.2017.2694384. S2CID 40097383.
- ↑ Bower & Ropp, pg. 13
- ↑ CANMET, pg. 3
- ↑ CANMET, pg. 9-10
- ↑ Risk analysis of islanding of photovoltaic power systems within low voltage distribution networks. 2002. CiteSeerX 10.1.1.114.2752.
- ↑ CANMET, pg. 45
- ↑ CANMET, pg. 1
- ↑ Verhoeven, pg. 46
- ↑ "Technical Interconnection Requirements for Distributed Generation" Archived 2014-02-07 at the Wayback Machine, Hydro One, 2010
- ↑ "California Electric Rule 21 Supplemental Review Guideline" Archived 2010-10-19 at the Wayback Machine
- ↑ Jonathan Sher, "Ontario Hydro pulls plug on solar plans", The London Free Press (via QMI), 14 February 2011
- ↑ Bower & Ropp, pg. 17
- ↑ Bower & Ropp, pg. 18
- ↑ Bower & Ropp, pg. 19
- ↑ 20.0 20.1 Bower & Ropp, pg. 20
- ↑ Bower & Ropp, pg. 21
- ↑ 22.0 22.1 22.2 Bower & Ropp, pg. 22
- ↑ "Negative-Sequence Current Injection for Fast Islanding Detection of a Distributed Resource Unit", Houshang Karimi, Amirnaser Yazdani, and Reza Iravani, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 1, JANUARY 2008.
- ↑ 24.0 24.1 Bower & Ropp, pg. 24
- ↑ Bower & Ropp, pg. 26
- ↑ 26.0 26.1 Bower & Ropp, pg. 28
- ↑ Bower & Ropp, pg. 29
- ↑ Bower & Ropp, pg. 34
- ↑ Bower & Ropp, pg. 40
- ↑ CANMET, pg. 13-14
- ↑ CANMET, pg. 12-13
- ↑ Bower & Ropp, pg. 37
- ↑ Bower & Ropp, pg. 38
ग्रन्थसूची
- Ward Bower and Michael Ropp, "Evaluation of Islanding Detection Methods for Utility-Interactive Inverters in Photovoltaic Systems", Sandia National Laboratories, November 2002
- CANMET (2004). An Assessment of Distributed Generation Islanding Detection Methods and Issues for Canada. CANMET Energy Center. CiteSeerX 10.1.1.131.6506.
- Bas Verhoeven, "Probability of Islanding in Utility Network due to Grid Connected Photovoltaic Power Systems", KEMA, 1999
- H. Karimi, A. Yazdani, and R. Iravani, Negative-Sequence Current Injection for Fast Islanding Detection of a
Distributed Resource Unit, IEEE Trans. on Power Electronics, VOL. 23, NO. 1, JANUARY 2008.
मानक
- IEEE 1547 मानक, इलेक्ट्रिक पावर सिस्टम्स के साथ वितरित संसाधनों को जोड़ने के लिए IEEE मानक
- UL 1741 विषय-सूची, UL 1741: मानक वितरित ऊर्जा संसाधनों के साथ उपयोग के लिए इनवर्टर, कन्वर्टर्स, कंट्रोलर और इंटरकनेक्शन सिस्टम उपकरण के लिए
आगे की पढाई