आवेग (भौतिकी): Difference between revisions
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
}} | }} | ||
{{Classical mechanics|cTopic=Fundamental concepts}} | {{Classical mechanics|cTopic=Fundamental concepts}} | ||
[[ शास्त्रीय यांत्रिकी ]] में, आवेग (J या Imp प्रतीक द्वारा ) एक बल का [[ अभिन्न ]] अंग है, {{mvar|F}}, [[ समय | समय]] | [[ शास्त्रीय यांत्रिकी | शास्त्रीय यांत्रिकी]] में, आवेग (J या Imp प्रतीक द्वारा ) एक बल का [[ अभिन्न |अभिन्न]] अंग है, {{mvar|F}}, [[ समय |समय]] अंतराल में, {{mvar|t}}, जिसके लिए यह कार्य करता है। चूंकि बल एक [[ वेक्टर (भौतिकी) |वेक्टर (भौतिकी)]] मात्रा है, आवेग भी एक वेक्टर मात्रा है। किसी वस्तु पर लागू किया गया आवेग समतुल्य वेक्टर गणितकलन और उसके रैखिक [[ गति |गति तथा परिणामी दिशा]] में विश्लेषण करता है। [[ इकाइयों की अंतर्राष्ट्रीय प्रणाली |इकाइयों की अंतर्राष्ट्रीय प्रणाली]] आवेग ऑफ़ आवेग [[ न्यूटन सेकंड |न्यूटन सेकंड]] (N⋅s) है, और गति की [[ आकार जांच |आकार जांच]] यूनिट किलोग्राम मीटर प्रति सेकंड (kg⋅m/s) है। संबंधित [[ अंग्रेजी इंजीनियरिंग इकाई |अंग्रेजी इंजीनियरिंग इकाई]] पाउंड (बल) सेकंड (lbf⋅s) है, और [[ ब्रिटिश गुरुत्वाकर्षण प्रणाली |ब्रिटिश गुरुत्वाकर्षण प्रणाली]] में, इकाई [[ स्लग (इकाई) |स्लग]] फुट प्रति सेकंड (slug⋅ft/s) है। | ||
एक परिणामी बल [[ त्वरण ]] का कारण बनता है और जब तक यह कार्य करता है तब तक शरीर के वेग में परिवर्तन होता रहता है। एक परिणामी बल लंबे समय तक लगाया जाता है, इसलिए, समान रूप से लगाए गए बल की तुलना में रैखिक गति में एक बड़ा परिवर्तन उत्पन्न होता है: गति में परिवर्तन औसत बल और अवधि के उत्पाद के बराबर होता है। इसके विपरीत, एक लंबे समय के लिए लगाया गया एक छोटा सा बल संवेग में समान परिवर्तन पैदा करता है | एक परिणामी बल [[ त्वरण |त्वरण]] का कारण बनता है और जब तक यह कार्य करता है तब तक शरीर के वेग में परिवर्तन होता रहता है। एक परिणामी बल लंबे समय तक लगाया जाता है, इसलिए, समान रूप से लगाए गए बल की तुलना में रैखिक गति में एक बड़ा परिवर्तन उत्पन्न होता है: गति में परिवर्तन औसत बल और अवधि के उत्पाद के बराबर होता है। इसके विपरीत, एक लंबे समय के लिए लगाया गया एक छोटा सा बल संवेग में समान परिवर्तन पैदा करता है, वही आवेग जैसा कि एक बड़ा बल संक्षेप में लागू होता है। | ||
<math display=block>J = F_{\text{average}} (t_2 - t_1).</math> | <math display=block>J = F_{\text{average}} (t_2 - t_1).</math> | ||
Line 32: | Line 32: | ||
&= \int_{\mathbf{p}_1}^{\mathbf{p}_2} \mathrm{d}\mathbf{p} \\ | &= \int_{\mathbf{p}_1}^{\mathbf{p}_2} \mathrm{d}\mathbf{p} \\ | ||
&= \mathbf{p}_2 - \mathbf{p} _1= \Delta \mathbf{p}, \end{align}</math> | &= \mathbf{p}_2 - \mathbf{p} _1= \Delta \mathbf{p}, \end{align}</math> | ||
जहाँ {{math|Δ'''p'''}} समय से रैखिक गति में परिवर्तन है {{math|''t''<sub>1</sub>}} को {{math|''t''<sub>2</sub>}}. इसे अक्सर आवेग-संवेग प्रमेय कहा जाता है<ref>See, for example, section 9.2, page 257, of Serway (2004).</ref> ([[ कार्य-ऊर्जा प्रमेय ]] के अनुरूप)। | जहाँ {{math|Δ'''p'''}} समय से रैखिक गति में परिवर्तन है {{math|''t''<sub>1</sub>}} को {{math|''t''<sub>2</sub>}}. इसे अक्सर आवेग-संवेग प्रमेय कहा जाता है<ref>See, for example, section 9.2, page 257, of Serway (2004).</ref> ([[ कार्य-ऊर्जा प्रमेय | कार्य-ऊर्जा प्रमेय]] के अनुरूप)। | ||
नतीजतन, एक आवेग को किसी वस्तु की गति में परिवर्तन के रूप में भी माना जा सकता है जिसके परिणामस्वरूप बल लगाया जाता है। द्रव्यमान स्थिर होने पर आवेग को सरल रूप में व्यक्त किया जा सकता है: | नतीजतन, एक आवेग को किसी वस्तु की गति में परिवर्तन के रूप में भी माना जा सकता है जिसके परिणामस्वरूप बल लगाया जाता है। द्रव्यमान स्थिर होने पर आवेग को सरल रूप में व्यक्त किया जा सकता है: | ||
<math display=block qid=Q837940>\mathbf{J} = \int_{t_1}^{t_2} \mathbf{F}\, \mathrm{d}t = \Delta\mathbf{p} = m \mathbf{v_2} - m \mathbf{v_1},</math> | <math display=block qid=Q837940>\mathbf{J} = \int_{t_1}^{t_2} \mathbf{F}\, \mathrm{d}t = \Delta\mathbf{p} = m \mathbf{v_2} - m \mathbf{v_1},</math> | ||
[[File:Armedforces jeffery tee shot.jpg|thumbnail|बहुत कम अवधि के लिए लगाए गए एक बड़े बल, जैसे कि गोल्फ शॉट, को अक्सर गेंद को एक आवेग देने वाले क्लब के रूप में वर्णित किया जाता है।]]'''जहाँ | [[File:Armedforces jeffery tee shot.jpg|thumbnail|बहुत कम अवधि के लिए लगाए गए एक बड़े बल, जैसे कि गोल्फ शॉट, को अक्सर गेंद को एक आवेग देने वाले क्लब के रूप में वर्णित किया जाता है।]]'''जहाँ पर,''' | ||
*{{math|'''F'''}} परिणामी बल लगाया जाता है, | *{{math|'''F'''}} परिणामी बल लगाया जाता है, | ||
*{{math|''t''<sub>1</sub>}} और {{math|''t''<sub>2</sub>}} ऐसे समय होते हैं जब आवेग क्रमशः शुरू और समाप्त होता है, | *{{math|''t''<sub>1</sub>}} और {{math|''t''<sub>2</sub>}} ऐसे समय होते हैं जब आवेग क्रमशः शुरू और समाप्त होता है, | ||
Line 45: | Line 45: | ||
आवेग की समान इकाइयाँ और आयाम हैं {{nowrap|(MLT<sup>−1</sup>)}} गति के रूप में। इकाइयों की अंतर्राष्ट्रीय प्रणाली में, ये हैं {{nowrap|1=[[kilogram|kg]]⋅[[meter per second|m/s]] =}} {{nowrap|[[newton (units)|N]]⋅[[second|s]]}}. अंग्रेजी इंजीनियरिंग इकाइयों में, वे हैं {{nowrap|1=[[Slug (unit)|slug]]⋅[[foot per second|ft/s]] =}} {{nowrap|[[pound (force)|lbf]]⋅[[second|s]]}}. | आवेग की समान इकाइयाँ और आयाम हैं {{nowrap|(MLT<sup>−1</sup>)}} गति के रूप में। इकाइयों की अंतर्राष्ट्रीय प्रणाली में, ये हैं {{nowrap|1=[[kilogram|kg]]⋅[[meter per second|m/s]] =}} {{nowrap|[[newton (units)|N]]⋅[[second|s]]}}. अंग्रेजी इंजीनियरिंग इकाइयों में, वे हैं {{nowrap|1=[[Slug (unit)|slug]]⋅[[foot per second|ft/s]] =}} {{nowrap|[[pound (force)|lbf]]⋅[[second|s]]}}. | ||
आवेग शब्द का उपयोग तेजी से कार्य करने वाली शक्ति या [[ प्रभाव (यांत्रिकी) ]] के संदर्भ में भी किया जाता है। इस प्रकार के आवेग को अक्सर आदर्श बनाया जाता है ताकि बल द्वारा उत्पन्न संवेग में परिवर्तन बिना समय परिवर्तन के हो। इस प्रकार का परिवर्तन एक चरण कार्य है, और यह भौतिक रूप से संभव नहीं है। हालांकि, यह आदर्श टक्करों के प्रभावों की गणना के लिए एक उपयोगी मॉडल है (जैसे कि खेल [[ भौतिकी इंजन | भौतिकी इंजनो]] में)। इसके अतिरिक्त, रॉकेटरी में, कुल आवेग शब्द का आमतौर पर उपयोग किया जाता है और इसे आवेग शब्द का पर्याय माना जाता है। | आवेग शब्द का उपयोग तेजी से कार्य करने वाली शक्ति या [[ प्रभाव (यांत्रिकी) |प्रभाव (यांत्रिकी)]] के संदर्भ में भी किया जाता है। इस प्रकार के आवेग को अक्सर आदर्श बनाया जाता है ताकि बल द्वारा उत्पन्न संवेग में परिवर्तन बिना समय परिवर्तन के हो। इस प्रकार का परिवर्तन एक चरण कार्य है, और यह भौतिक रूप से संभव नहीं है। हालांकि, यह आदर्श टक्करों के प्रभावों की गणना के लिए एक उपयोगी मॉडल है (जैसे कि खेल [[ भौतिकी इंजन |भौतिकी इंजनो]] में)। इसके अतिरिक्त, रॉकेटरी में, कुल आवेग शब्द का आमतौर पर उपयोग किया जाता है और इसे आवेग शब्द का पर्याय माना जाता है। | ||
== चर द्रव्यमान == | == चर द्रव्यमान == | ||
{{Further| | {{Further|विशिष्ट आवेग}} | ||
परिवर्तनशील द्रव्यमान के लिए न्यूटन के दूसरे नियम के अनुप्रयोग से आवेग और संवेग को जेट प्रणोदन- या [[ राकेट | राकेट]] -चालित वाहनों के लिए विश्लेषण उपकरण के रूप में उपयोग करने की अनुमति मिलती है। रॉकेट के मामले में, प्रदान किए गए आवेग को प्रदर्शन पैरामीटर, [[ विशिष्ट आवेग | विशिष्ट आवेग]] बनाने के लिए खर्च किए गए [[ रॉकेट प्रणोदक | रॉकेट प्रणोदक]] की इकाई द्वारा सामान्यीकृत किया जा सकता है। इस तथ्य का उपयोग [[ Tsiolkovsky रॉकेट समीकरण | Tsiolkovsky रॉकेट समीकरण]] को प्राप्त करने के लिए किया जा सकता है, जो इंजन के विशिष्ट आवेग (या नोजल निकास वेग) और वाहन के प्रणोदक-[[ द्रव्यमान अनुपात | द्रव्यमान अनुपात]] में वेग में वाहन के प्रणोदक परिवर्तन से संबंधित है। | परिवर्तनशील द्रव्यमान के लिए न्यूटन के दूसरे नियम के अनुप्रयोग से आवेग और संवेग को जेट प्रणोदन- या [[ राकेट |राकेट]] -चालित वाहनों के लिए विश्लेषण उपकरण के रूप में उपयोग करने की अनुमति मिलती है। रॉकेट के मामले में, प्रदान किए गए आवेग को प्रदर्शन पैरामीटर, [[ विशिष्ट आवेग |विशिष्ट आवेग]] बनाने के लिए खर्च किए गए [[ रॉकेट प्रणोदक |रॉकेट प्रणोदक]] की इकाई द्वारा सामान्यीकृत किया जा सकता है। इस तथ्य का उपयोग [[ Tsiolkovsky रॉकेट समीकरण |Tsiolkovsky रॉकेट समीकरण]] को प्राप्त करने के लिए किया जा सकता है, जो इंजन के विशिष्ट आवेग (या नोजल निकास वेग) और वाहन के प्रणोदक-[[ द्रव्यमान अनुपात | द्रव्यमान अनुपात]] में वेग में वाहन के प्रणोदक परिवर्तन से संबंधित है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* तरंग-कण द्वैत एक तरंग टक्कर के आवेग को परिभाषित करता है। टकराव में संवेग के संरक्षण को फेज मैचिंग कहा जाता है। अनुप्रयोगों में | * तरंग-कण द्वैत एक तरंग टक्कर के आवेग को परिभाषित करता है। टकराव में संवेग के संरक्षण को फेज मैचिंग कहा जाता है। अनुप्रयोगों में सम्मिलित हैं: | ||
** [[ कॉम्पटन प्रभाव ]] | ** [[ कॉम्पटन प्रभाव ]] | ||
** नॉनलाइनियर प्रकाशिकी | ** नॉनलाइनियर प्रकाशिकी | ||
** [[ ध्वनिक-ऑप्टिक न्यूनाधिक | ध्वनिक-प्रकाशिकी न्यूनाधिक]] | ** [[ ध्वनिक-ऑप्टिक न्यूनाधिक | ध्वनिक-प्रकाशिकी न्यूनाधिक]] | ||
**इलेक्ट्रॉन [[ फोनन | फोनन]] प्रकीर्णन | **इलेक्ट्रॉन [[ फोनन |फोनन]] प्रकीर्णन | ||
* [[ डिराक डेल्टा समारोह ]], एक शुद्ध आवेग का गणितीय अमूर्तन | * [[ डिराक डेल्टा समारोह ]], एक शुद्ध आवेग का गणितीय अमूर्तन |
Revision as of 20:33, 31 January 2023
Impulse | |
---|---|
सामान्य प्रतीक | J, Imp |
Si इकाई | newton-second (N⋅s) (kg⋅m/s in SI base units) |
अन्य इकाइयां | pound⋅s |
संरक्षित? | yes |
आयाम | LMT-1 |
Part of a series on |
चिरसम्मत यांत्रिकी |
---|
शास्त्रीय यांत्रिकी में, आवेग (J या Imp प्रतीक द्वारा ) एक बल का अभिन्न अंग है, F, समय अंतराल में, t, जिसके लिए यह कार्य करता है। चूंकि बल एक वेक्टर (भौतिकी) मात्रा है, आवेग भी एक वेक्टर मात्रा है। किसी वस्तु पर लागू किया गया आवेग समतुल्य वेक्टर गणितकलन और उसके रैखिक गति तथा परिणामी दिशा में विश्लेषण करता है। इकाइयों की अंतर्राष्ट्रीय प्रणाली आवेग ऑफ़ आवेग न्यूटन सेकंड (N⋅s) है, और गति की आकार जांच यूनिट किलोग्राम मीटर प्रति सेकंड (kg⋅m/s) है। संबंधित अंग्रेजी इंजीनियरिंग इकाई पाउंड (बल) सेकंड (lbf⋅s) है, और ब्रिटिश गुरुत्वाकर्षण प्रणाली में, इकाई स्लग फुट प्रति सेकंड (slug⋅ft/s) है।
एक परिणामी बल त्वरण का कारण बनता है और जब तक यह कार्य करता है तब तक शरीर के वेग में परिवर्तन होता रहता है। एक परिणामी बल लंबे समय तक लगाया जाता है, इसलिए, समान रूप से लगाए गए बल की तुलना में रैखिक गति में एक बड़ा परिवर्तन उत्पन्न होता है: गति में परिवर्तन औसत बल और अवधि के उत्पाद के बराबर होता है। इसके विपरीत, एक लंबे समय के लिए लगाया गया एक छोटा सा बल संवेग में समान परिवर्तन पैदा करता है, वही आवेग जैसा कि एक बड़ा बल संक्षेप में लागू होता है।
आवेग J समय से उत्पादित t1 को t2 होना परिभाषित किया गया है[1]
जहां पे F से लागू परिणामी बल है t1 को t2.न्यूटन के गति के दूसरे नियम से, बल संवेग से संबंधित है p द्वारा
नतीजतन, एक आवेग को किसी वस्तु की गति में परिवर्तन के रूप में भी माना जा सकता है जिसके परिणामस्वरूप बल लगाया जाता है। द्रव्यमान स्थिर होने पर आवेग को सरल रूप में व्यक्त किया जा सकता है:
जहाँ पर,
- F परिणामी बल लगाया जाता है,
- t1 और t2 ऐसे समय होते हैं जब आवेग क्रमशः शुरू और समाप्त होता है,
- m वस्तु का द्रव्यमान है,
- v2 समय अंतराल के अंत में वस्तु का अंतिम वेग है, और
- v1 समय अंतराल शुरू होने पर वस्तु का प्रारंभिक वेग होता है।
आवेग की समान इकाइयाँ और आयाम हैं (MLT−1) गति के रूप में। इकाइयों की अंतर्राष्ट्रीय प्रणाली में, ये हैं kg⋅m/s = N⋅s. अंग्रेजी इंजीनियरिंग इकाइयों में, वे हैं slug⋅ft/s = lbf⋅s.
आवेग शब्द का उपयोग तेजी से कार्य करने वाली शक्ति या प्रभाव (यांत्रिकी) के संदर्भ में भी किया जाता है। इस प्रकार के आवेग को अक्सर आदर्श बनाया जाता है ताकि बल द्वारा उत्पन्न संवेग में परिवर्तन बिना समय परिवर्तन के हो। इस प्रकार का परिवर्तन एक चरण कार्य है, और यह भौतिक रूप से संभव नहीं है। हालांकि, यह आदर्श टक्करों के प्रभावों की गणना के लिए एक उपयोगी मॉडल है (जैसे कि खेल भौतिकी इंजनो में)। इसके अतिरिक्त, रॉकेटरी में, कुल आवेग शब्द का आमतौर पर उपयोग किया जाता है और इसे आवेग शब्द का पर्याय माना जाता है।
चर द्रव्यमान
परिवर्तनशील द्रव्यमान के लिए न्यूटन के दूसरे नियम के अनुप्रयोग से आवेग और संवेग को जेट प्रणोदन- या राकेट -चालित वाहनों के लिए विश्लेषण उपकरण के रूप में उपयोग करने की अनुमति मिलती है। रॉकेट के मामले में, प्रदान किए गए आवेग को प्रदर्शन पैरामीटर, विशिष्ट आवेग बनाने के लिए खर्च किए गए रॉकेट प्रणोदक की इकाई द्वारा सामान्यीकृत किया जा सकता है। इस तथ्य का उपयोग Tsiolkovsky रॉकेट समीकरण को प्राप्त करने के लिए किया जा सकता है, जो इंजन के विशिष्ट आवेग (या नोजल निकास वेग) और वाहन के प्रणोदक- द्रव्यमान अनुपात में वेग में वाहन के प्रणोदक परिवर्तन से संबंधित है।
यह भी देखें
- तरंग-कण द्वैत एक तरंग टक्कर के आवेग को परिभाषित करता है। टकराव में संवेग के संरक्षण को फेज मैचिंग कहा जाता है। अनुप्रयोगों में सम्मिलित हैं:
- कॉम्पटन प्रभाव
- नॉनलाइनियर प्रकाशिकी
- ध्वनिक-प्रकाशिकी न्यूनाधिक
- इलेक्ट्रॉन फोनन प्रकीर्णन
- डिराक डेल्टा समारोह , एक शुद्ध आवेग का गणितीय अमूर्तन
- वन-वे वेव समीकरण
टिप्पणियाँ
- ↑ Hibbeler, Russell C. (2010). Engineering Mechanics (12th ed.). Pearson Prentice Hall. p. 222. ISBN 978-0-13-607791-6.
- ↑ See, for example, section 9.2, page 257, of Serway (2004).
ग्रन्थसूची
- Serway, Raymond A.; Jewett, John W. (2004). Physics for Scientists and Engineers (6th ed.). Brooks/Cole. ISBN 0-534-40842-7.
- Tipler, Paul (2004). Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (5th ed.). W. H. Freeman. ISBN 0-7167-0809-4.