ओबेरथ प्रभाव: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Distinguish|Gravity assist}} | {{Distinguish|Gravity assist}} | ||
{{Astrodynamics}} | {{Astrodynamics}} | ||
[[अन्तरिक्ष]] में संचालित ओबेरथ प्रभाव वह युक्ति | [[अन्तरिक्ष]] में संचालित ओबेरथ प्रभाव वह युक्ति है। जिसमें अंतरिक्ष यान गुरुत्वाकर्षण कुएं में गिरता है और फिर अपने इंजनों को आगे बढ़ाने के लिए उपयोग करता है। चूंकि यह गिर रहा होता है, जिसके कारण अतिरिक्त गति प्राप्त होती है।<ref name=TwoBurn>{{cite report|url=https://ntrs.nasa.gov/api/citations/20100033146/downloads/20100033146.pdf|title=Using the Two-Burn Escape Maneuver for Fast Transfers in the Solar System and Beyond|author=Robert B. Adams, Georgia A. Richardson|date=25 July 2010|publisher=[[NASA]]|access-date=15 May 2015 |archive-url=https://web.archive.org/web/20220211014418/https://ntrs.nasa.gov/api/citations/20100033146/downloads/20100033146.pdf |archive-date=11 February 2022 |url-status=live }}</ref> परिणामस्वरूप यह युक्ति गुरुत्वाकर्षण कुएं के बाहर समान [[आवेग (भौतिकी)]] को प्रयुक्त करने की तुलना में [[गतिज ऊर्जा]] प्राप्त करने की अधिक कुशल प्रणाली है। दक्षता के लाभ को ओबेरथ प्रभाव द्वारा समझाया गया है, जिसमें कि उच्च गति पर [[प्रतिक्रिया इंजन]] का उपयोग करके कम गति पर इसके प्रयोग की तुलना में यांत्रिक ऊर्जा में अधिक परिवर्तन उत्पन्न करता है। व्यावहारिक रूप से इसका तात्पर्य यह है कि अंतरिक्ष यान को अपने ईंधन का [[दहन]] करने के लिए ऊर्जा-कुशल प्रणाली का सबसे कम संभव [[एप्स|प्रयास]] है, जब इसकी कक्षीय वेग (गतिज ऊर्जा) सबसे बड़ी होती है।<ref name=TwoBurn />कुछ स्थितियों में ओबेरथ प्रभाव की क्षमता का लाभ उठाने के लिए अंतरिक्ष यान के गुरुत्वाकर्षण कुएं को धीमा करने पर ईंधन उपयोग करने योग्य होता है।<ref name=TwoBurn/>युद्धाभ्यास और प्रभाव का नाम [[हरमन ओबेरथ]],[[ऑस्ट्रिया-हंगरी]] के नाम पर रखा गया है ऑस्ट्रो-हंगरी का जन्म सन् 1927 में हुआ था। ऑस्ट्रो-हंगरी [[जर्मनी]] के [[भौतिक विज्ञानी|भौतिक विज्ञान]] और आधुनिक [[राकेट]] के संस्थापक थे।<ref name=ways>{{cite web|url=https://archive.org/details/nasa_techdoc_19720008133|title=Ways to spaceflight|volume=NASA TT F-622|others=Translation of the German language original "Wege zur Raumschiffahrt," (1920)|location=Tunis, Tunisia|year=1970|author=Hermann Oberth|publisher=Agence Tunisienne de Public-Relations}}</ref> | ||
चूँकि वाहन | चूँकि वाहन मात्र थोड़े समय के लिए पेरियाप्सिस के समीप रहता है। जिस कारण ओबेरथ युक्ति में सबसे प्रभावी होने के कारण वाहन को कम से कम समय में जितना संभव हो उतना आवेग उत्पन्न करने में सक्षम होना चाहिए। जिसके परिणाम स्वरुप ओबेरथ युक्ति तरल-प्रणोदक रॉकेट जैसे उच्च-जोर वाले रॉकेट इंजनों के लिए अधिक उपयोगी होती है और [[आयन ड्राइव]] कम-जोर प्रतिक्रिया इंजनों के उपयोग में कम उपयोगी होती है जो कि गति प्राप्त करने में अधिक समय लेते हैं। बहु-स्तरीय रॉकेटों के सम्बन्ध को समझने के लिए ओबेरथ प्रभाव का उपयोग किया जाता है। ऊपरी चरण प्रणोदकों में कुल रासायनिक ऊर्जा की तुलना में अधिक उपयोगी गतिज ऊर्जा उत्पन्न करता है।<ref name="ways" /> | ||
जिससे कि सम्मलित ऊर्जाओं के संदर्भ में कह सकते है कि उच्च गति पर ओबेरथ प्रभाव अधिक प्रभावी होता है क्योंकि उच्च गति पर प्रणोदक में इसकी रासायनिक संभावित ऊर्जा के अतिरिक्त महत्वपूर्ण गतिज ऊर्जा होती है।<ref name=ways/>{{rp|204}} उच्च गति पर वाहन प्रणोदक की गतिज ऊर्जा में अधिक | जिससे कि सम्मलित ऊर्जाओं के संदर्भ में कह सकते है कि उच्च गति पर ओबेरथ प्रभाव अधिक प्रभावी होता है क्योंकि उच्च गति पर प्रणोदक में इसकी रासायनिक संभावित ऊर्जा के अतिरिक्त महत्वपूर्ण गतिज ऊर्जा होती है।<ref name=ways/>{{rp|204}} उच्च गति पर वाहन प्रणोदक की गतिज ऊर्जा में अधिक परिवर्तित कमी को नियोजित करने में सक्षम होता है क्योंकि यह पीछे की ओर समाप्त हो जाता है जिस कारण कम गति और गतिज ऊर्जा कम हो जाती है और वाहन की गतिज ऊर्जा में अधिक वृद्धि उत्पन्न करने के लिए उपयोग होता है।<ref name=ways/>{{rp|204}} | ||
== संवेग और गतिज ऊर्जा के संदर्भ में व्याख्या == | == संवेग और गतिज ऊर्जा के संदर्भ में व्याख्या == | ||
जब रॉकेट अपने प्रणोदक में संवेग स्थानांतरित करके कार्य करता है।<ref>[https://www.nasa.gov/audience/forstudents/k-4/stories/nasa-knows/what-is-a-rocket-k4.html What Is a Rocket?] 13 July 2011/ 7 August 2017 ''www.nasa.gov'', accessed 9 January 2021.</ref> तब निश्चित निकास वेग पर यह प्रणोदक के प्रति इकाई गति की निश्चित मात्रा होती है।<ref>[https://www.grc.nasa.gov/WWW/k-12/rocket/rockth.html Rocket thrust] 12 June 2014, ''www.grc.nasa.gov'', accessed 9 January 2021.</ref> रॉकेट | जब रॉकेट अपने प्रणोदक में संवेग स्थानांतरित करके कार्य करता है।<ref>[https://www.nasa.gov/audience/forstudents/k-4/stories/nasa-knows/what-is-a-rocket-k4.html What Is a Rocket?] 13 July 2011/ 7 August 2017 ''www.nasa.gov'', accessed 9 January 2021.</ref> तब निश्चित निकास वेग पर यह प्रणोदक के प्रति इकाई गति की निश्चित मात्रा होती है।<ref>[https://www.grc.nasa.gov/WWW/k-12/rocket/rockth.html Rocket thrust] 12 June 2014, ''www.grc.nasa.gov'', accessed 9 January 2021.</ref> रॉकेट में दिए गए द्रव्यमान (शेष प्रणोदक सहित) के लिए, इसका तात्पर्य प्रणोदक की प्रति इकाई वेग में निश्चित परिवर्तन से है क्योंकि गतिज ऊर्जा mv<sup>2</sup>/2 के समान होती है वेग में यह परिवर्तन कम वेग की तुलना में उच्च वेग पर गतिज ऊर्जा में अधिक वृद्धि प्रदान करता है। उदाहरण के लिए, 2 किलो के रॉकेट पर विचार करना इत्यदि। | ||
* 1 मी/से पर रॉकेट 1<sup>2</sup> = 1 J गतिज ऊर्जा से प्रारंभ होता है। 3 J के लाभ के लिए 1 मी/से जोड़ने पर गतिज ऊर्जा 2<sup>2</sup> = 4 J तक बढ़ जाती है। | * 1 मी/से पर रॉकेट 1<sup>2</sup> = 1 J गतिज ऊर्जा से प्रारंभ होता है। 3 J के लाभ के लिए 1 मी/से जोड़ने पर गतिज ऊर्जा 2<sup>2</sup> = 4 J तक बढ़ जाती है। | ||
* 10 मीटर/सेकेंड पर रॉकेट 10<sup>2</sup> = 100 J गतिज ऊर्जा से प्रारंभ होता है। 21 J के लाभ के लिए1 m/s जोड़ने पर गतिज ऊर्जा 11<sup>2</sup> = 121 J तक बढ़ जाती है। | * 10 मीटर/सेकेंड पर रॉकेट 10<sup>2</sup> = 100 J गतिज ऊर्जा से प्रारंभ होता है। 21 J के लाभ के लिए1 m/s जोड़ने पर गतिज ऊर्जा 11<sup>2</sup> = 121 J तक बढ़ जाती है। | ||
Line 15: | Line 15: | ||
==कार्य के संदर्भ में विवरण== | ==कार्य के संदर्भ में विवरण== | ||
जब रॉकेट इंजन अपने वेग की देखभाल किए बिना समान बल उत्पन्न करते | जब रॉकेट इंजन अपने वेग की देखभाल किए बिना समान बल उत्पन्न करते हैं।जैसा कि स्थिर फायरिंग में होता है, जो स्थिर वस्तु पर कार्य करने वाला रॉकेट कोई उपयोगी कार्य नहीं करता है। रॉकेट की संग्रहीत ऊर्जा पूरे प्रकार से इसके प्रणोदक को निकास के रूप में तेज करने पर व्यय की जाती है। लेकिन जब रॉकेट चलता है, तो उसका जोर उसके चलने की दूरी के माध्यम से कार्य करता है। जिससे दूरी से गुणा बल [[यांत्रिक कार्य]] को परिभाषित करता है। जो कि जलने के दौरान रॉकेट और पेलोड जितना आगे बढ़ते हैं (अर्थात वह इतनी तेज़ी से आगे बढ़ते हैं), उतनी ही अधिक गतिज ऊर्जा रॉकेट और उसके पेलोड को प्रदान की जाती है और उसके निकास को कम करती है। | ||
इसे इस प्रकार दिखाया गया है, रॉकेट पर किया गया यांत्रिक कार्य {{nowrap|(<math>W</math>)}} इंजन के थ्रस्ट के बल {{nowrap|(<math>\vec{F}</math>)}} के [[डॉट उत्पाद]] के रूप में परिभाषित किया गया है और वह विस्थापन {{nowrap|(<math>\vec{s}</math>):}} जो जलने के दौरान प्रस्थान करता है। | इसे इस प्रकार दिखाया गया है, रॉकेट पर किया गया यांत्रिक कार्य {{nowrap|(<math>W</math>)}} इंजन के थ्रस्ट के बल {{nowrap|(<math>\vec{F}</math>)}} के [[डॉट उत्पाद]] के रूप में परिभाषित किया गया है और वह विस्थापन {{nowrap|(<math>\vec{s}</math>):}} जो जलने के दौरान प्रस्थान करता है। | ||
Line 32: | Line 32: | ||
== आवेगी जलन == | == आवेगी जलन == | ||
जलने की अवधि कम होने पर उपरोक्त ऊर्जा में समीकरण को एकीकृत करना अधिकांशतः अनावश्यक होता है। पेरीएप्सिस या अन्य जगहों के समीप रासायनिक रॉकेट इंजनों की छोटी जलन सामान्यतः गणितीय रूप से आवेगी जलन में | आवेगी जलन के जलने की अवधि कम होने पर उपरोक्त ऊर्जा में समीकरण को एकीकृत करना अधिकांशतः अनावश्यक होता है। पेरीएप्सिस या अन्य जगहों के समीप रासायनिक रॉकेट इंजनों की छोटी जलन सामान्यतः गणितीय रूप से आवेगी जलन में प्रस्तुत की जाती है, जहां इंजन का बल किसी भी अन्य बल पर प्रभावी होता है जो कि जलने पर वाहन की ऊर्जा में परिवर्तित हो जाता है। | ||
उदाहरण के लिए, जैसे ही कोई वाहन किसी भी कक्षा (बंद या बच निकलने वाली कक्षा) में [[पेरीपसिस]] की ओर गिरता है तो केंद्रीय निकाय के सापेक्ष वेग बढ़ जाता है। इंजन को संक्षिप्त रूप से जलाना (आवेगपूर्ण जलाना) पेरीएप्सिस पर [[प्रोग्रेस मोशन|प्रगति गति]] किसी अन्य समय की भाति उसी वृद्धि से वेग को बढ़ाती है (डेल्टा-वी या <math>\Delta v</math>) चूंकि | उदाहरण के लिए, जैसे ही कोई वाहन किसी भी कक्षा (बंद या बच निकलने वाली कक्षा) में [[पेरीपसिस]] की ओर गिरता है तो केंद्रीय निकाय के सापेक्ष वेग बढ़ जाता है। इंजन को संक्षिप्त रूप से जलाना (आवेगपूर्ण जलाना) पेरीएप्सिस पर [[प्रोग्रेस मोशन|प्रगति गति]] किसी अन्य समय की भाति उसी वृद्धि से वेग को बढ़ाती है (डेल्टा-वी या <math>\Delta v</math>) चूंकि वाहन की गतिज ऊर्जा उसके वेग के वर्ग से संबंधित है। जैसा कि स्थिर फायरिंग में होता है, वेग में इस वृद्धि के वाहन की गतिज ऊर्जा पर गैर-रैखिक प्रभाव पड़ता है। जिससे इसे उच्च ऊर्जा के साथ छोड़ दिया जाता है, यदि जला किसी अन्य समय प्राप्त किया गया हो।<ref>[http://www.projectrho.com/rocket/rocket3b.html Atomic Rockets web site: nyrath@projectrho.com]. {{webarchive |url=https://web.archive.org/web/20070701211813/http://www.projectrho.com/rocket/rocket3b.html |date=July 1, 2007 }}</ref> | ||
=== एक परवलयिक कक्षा के लिए ओबेरथ गणना === | === एक परवलयिक कक्षा के लिए ओबेरथ गणना === | ||
यदि डेल्टा-v या Δv का आवेगी जलन [[परवलयिक प्रक्षेपवक्र]] में पेरीएप्सिस पर किया जाता है, तो जलने से पहले पेरीएप्सिस पर वेग [[एस्केप वेलोसिटी]] (V<sub>esc</sub>) के बराबर होता है और जलने के बाद विशिष्ट गतिज ऊर्जा होती है।<ref>Following the [https://groups.google.com/forum/#!topicsearchin/rec.arts.sf.science/Landis$20after$3A1994$2F11$2F01$20before$3A1994$2F11$2F30/rec.arts.sf.science/F_icqT7IzAs calculation] on rec.arts.sf.science.</ref> | यदि डेल्टा-v या Δv का आवेगी जलन [[परवलयिक प्रक्षेपवक्र]] में पेरीएप्सिस पर किया जाता है, तो जलने से पहले पेरीएप्सिस पर वेग [[एस्केप वेलोसिटी]] (V<sub>esc</sub>) के बराबर होता है और जलने के बाद विशिष्ट गतिज ऊर्जा होती है।<ref>Following the [https://groups.google.com/forum/#!topicsearchin/rec.arts.sf.science/Landis$20after$3A1994$2F11$2F01$20before$3A1994$2F11$2F30/rec.arts.sf.science/F_icqT7IzAs calculation] on rec.arts.sf.science.</ref> | ||
Line 42: | Line 42: | ||
&= \tfrac{1}{2} V_\text{esc} ^ 2 + \Delta v V_\text{esc} + \tfrac{1}{2} \Delta v^2, | &= \tfrac{1}{2} V_\text{esc} ^ 2 + \Delta v V_\text{esc} + \tfrac{1}{2} \Delta v^2, | ||
\end{align}</math> | \end{align}</math> | ||
जंहा पर <math>V = V_\text{esc} + \Delta v</math>. | |||
जब वाहन गुरुत्वाकर्षण क्षेत्र से मुक्त होता है,तो विशिष्ट गतिज ऊर्जा को हानि होती है। | जब वाहन गुरुत्वाकर्षण क्षेत्र से मुक्त होता है,तो विशिष्ट गतिज ऊर्जा को हानि होती है। | ||
Line 52: | Line 52: | ||
जब वाहन ने गुरुत्वाकर्षण को अच्छी प्रकार से मुक्त कर दिया है, तो वह गति से प्रस्थान करता है। | जब वाहन ने गुरुत्वाकर्षण को अच्छी प्रकार से मुक्त कर दिया है, तो वह गति से प्रस्थान करता है। | ||
: <math>V = \Delta v \sqrt{1 + \frac{2 V_\text{esc}}{\Delta v}}.</math> | : <math>V = \Delta v \sqrt{1 + \frac{2 V_\text{esc}}{\Delta v}}.</math> | ||
ऐसे स्थितियों के लिए जहां जोड़ा गया आवेग Δv बचने के वेग की तुलना में छोटा है वहा 1 को अनदेखा किया जाता है, और आवेगी जलने के प्रभावी Δv का | ऐसे स्थितियों के लिए जहां जोड़ा गया आवेग Δv बचने के वेग की तुलना में छोटा है वहा 1 को अनदेखा किया जाता है, और आवेगी जलने के प्रभावी Δv का मात्र कारक से गुणा किया जाता है। | ||
: <math>\sqrt{\frac{2 V_\text{esc}}{\Delta v}}</math> और मिलता है | : <math>\sqrt{\frac{2 V_\text{esc}}{\Delta v}}</math> और मिलता है | ||
: <math>V</math> ≈ <math>\sqrt{{2 V_\text{esc}}{\Delta v}} .</math> | : <math>V</math> ≈ <math>\sqrt{{2 V_\text{esc}}{\Delta v}} .</math> | ||
Line 68: | Line 68: | ||
== विरोधाभास == | == विरोधाभास == | ||
ऐसा कहा जा सकता है कि रॉकेट मुफ्त रूप से ऊर्जा प्राप्त करता है, जो ऊर्जा के संरक्षण का उल्लंघन करता है चूंकि | ऐसा कहा जा सकता है कि रॉकेट मुफ्त रूप से ऊर्जा प्राप्त करता है, जो ऊर्जा के संरक्षण का उल्लंघन करता है चूंकि रॉकेट की गतिज ऊर्जा में किसी भी प्रकार के लाभ को गतिज ऊर्जा में सापेक्ष कमी से संतुलित किया जाता है, जिसके साथ निकास को मुक्त कर दिया जाता है (निकास की गतिज ऊर्जा अभी भी बढ़ सकती है, लेकिन यह उतनी नहीं बढ़ती है)।<ref name=ways/>{{rp|204}} इसकी तुलना स्टैटिक फायरिंग की स्थिति में की जाती है, जहां इंजन की गति शून्य पर निर्धारित की जाती है। इसका तात्पर्य यह है कि इसकी गतिज ऊर्जा बिल्कुल नहीं बढ़ती है और ईंधन द्वारा जारी सभी रासायनिक ऊर्जा निकास की गतिज ऊर्जा में परिवर्तित हो जाती है। | ||
जिससे कि बहुत तेज गति पर रॉकेट को प्रदान की जाने वाली यांत्रिक शक्ति प्रणोदक के दहन में मुक्त कुल शक्ति से अधिक हो जाती है। यह ऊर्जा के संरक्षण का उल्लंघन भी प्रतीत होता है। लेकिन तेज गति वाले रॉकेट में प्रणोदक न | जिससे कि बहुत तेज गति पर रॉकेट को प्रदान की जाने वाली यांत्रिक शक्ति प्रणोदक के दहन में मुक्त कुल शक्ति से अधिक हो जाती है। यह ऊर्जा के संरक्षण का उल्लंघन भी प्रतीत होता है। लेकिन तेज गति वाले रॉकेट में प्रणोदक न मात्र रासायनिक रूप से परन्तु अपनी स्वयं की गतिज ऊर्जा में भी ऊर्जा ले जाते हैं, जो कुछ किलोमीटर प्रति सेकंड से ऊपर की गति पर रासायनिक घटक से अधिक होती है। जब इन प्रणोदकों को जलाया जाता है, तो जलने से निकलने वाली रासायनिक ऊर्जा के साथ इस गतिज ऊर्जा का कुछ हिस्सा रॉकेट में स्थानांतरित हो जाता है।<ref name="tptoberth">{{cite journal |last1=Blanco |first1=Philip |last2=Mungan |first2=Carl |title=Rocket propulsion, classical relativity, and the Oberth effect |journal=The Physics Teacher |date=October 2019 |volume=57 |issue=7 |pages=439–441 |doi=10.1119/1.5126818 |bibcode=2019PhTea..57..439B |doi-access=free }}</ref> | ||
इसलिए ओबेरथ प्रभाव आंशिक रूप से रॉकेट की उड़ान में बहुत कम दक्षता के लिए तैयार होता है जब यह | इसलिए ओबेरथ प्रभाव आंशिक रूप से रॉकेट की उड़ान में बहुत कम दक्षता के लिए तैयार होता है जब यह मात्र धीरे-धीरे आगे बढ़ रहा हो तब उड़ान के आरंभ में रॉकेट द्वारा किए गए अधिकांश कार्य प्रणोदक की गतिज ऊर्जा में निवेश करते हैं जो अभी तक नहीं जले हैं, जिसका हिस्सा वह बाद में जलाए जाने पर निर्धारित करता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 80: | Line 80: | ||
* [[प्रणोदक दक्षता]] | * [[प्रणोदक दक्षता]] | ||
<!-- please keep entries in alphabetical order --> | <!-- please keep entries in alphabetical order --> | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} |
Revision as of 17:07, 31 January 2023
Part of a series on |
Astrodynamics |
---|
अन्तरिक्ष में संचालित ओबेरथ प्रभाव वह युक्ति है। जिसमें अंतरिक्ष यान गुरुत्वाकर्षण कुएं में गिरता है और फिर अपने इंजनों को आगे बढ़ाने के लिए उपयोग करता है। चूंकि यह गिर रहा होता है, जिसके कारण अतिरिक्त गति प्राप्त होती है।[1] परिणामस्वरूप यह युक्ति गुरुत्वाकर्षण कुएं के बाहर समान आवेग (भौतिकी) को प्रयुक्त करने की तुलना में गतिज ऊर्जा प्राप्त करने की अधिक कुशल प्रणाली है। दक्षता के लाभ को ओबेरथ प्रभाव द्वारा समझाया गया है, जिसमें कि उच्च गति पर प्रतिक्रिया इंजन का उपयोग करके कम गति पर इसके प्रयोग की तुलना में यांत्रिक ऊर्जा में अधिक परिवर्तन उत्पन्न करता है। व्यावहारिक रूप से इसका तात्पर्य यह है कि अंतरिक्ष यान को अपने ईंधन का दहन करने के लिए ऊर्जा-कुशल प्रणाली का सबसे कम संभव प्रयास है, जब इसकी कक्षीय वेग (गतिज ऊर्जा) सबसे बड़ी होती है।[1]कुछ स्थितियों में ओबेरथ प्रभाव की क्षमता का लाभ उठाने के लिए अंतरिक्ष यान के गुरुत्वाकर्षण कुएं को धीमा करने पर ईंधन उपयोग करने योग्य होता है।[1]युद्धाभ्यास और प्रभाव का नाम हरमन ओबेरथ,ऑस्ट्रिया-हंगरी के नाम पर रखा गया है ऑस्ट्रो-हंगरी का जन्म सन् 1927 में हुआ था। ऑस्ट्रो-हंगरी जर्मनी के भौतिक विज्ञान और आधुनिक राकेट के संस्थापक थे।[2]
चूँकि वाहन मात्र थोड़े समय के लिए पेरियाप्सिस के समीप रहता है। जिस कारण ओबेरथ युक्ति में सबसे प्रभावी होने के कारण वाहन को कम से कम समय में जितना संभव हो उतना आवेग उत्पन्न करने में सक्षम होना चाहिए। जिसके परिणाम स्वरुप ओबेरथ युक्ति तरल-प्रणोदक रॉकेट जैसे उच्च-जोर वाले रॉकेट इंजनों के लिए अधिक उपयोगी होती है और आयन ड्राइव कम-जोर प्रतिक्रिया इंजनों के उपयोग में कम उपयोगी होती है जो कि गति प्राप्त करने में अधिक समय लेते हैं। बहु-स्तरीय रॉकेटों के सम्बन्ध को समझने के लिए ओबेरथ प्रभाव का उपयोग किया जाता है। ऊपरी चरण प्रणोदकों में कुल रासायनिक ऊर्जा की तुलना में अधिक उपयोगी गतिज ऊर्जा उत्पन्न करता है।[2]
जिससे कि सम्मलित ऊर्जाओं के संदर्भ में कह सकते है कि उच्च गति पर ओबेरथ प्रभाव अधिक प्रभावी होता है क्योंकि उच्च गति पर प्रणोदक में इसकी रासायनिक संभावित ऊर्जा के अतिरिक्त महत्वपूर्ण गतिज ऊर्जा होती है।[2]: 204 उच्च गति पर वाहन प्रणोदक की गतिज ऊर्जा में अधिक परिवर्तित कमी को नियोजित करने में सक्षम होता है क्योंकि यह पीछे की ओर समाप्त हो जाता है जिस कारण कम गति और गतिज ऊर्जा कम हो जाती है और वाहन की गतिज ऊर्जा में अधिक वृद्धि उत्पन्न करने के लिए उपयोग होता है।[2]: 204
संवेग और गतिज ऊर्जा के संदर्भ में व्याख्या
जब रॉकेट अपने प्रणोदक में संवेग स्थानांतरित करके कार्य करता है।[3] तब निश्चित निकास वेग पर यह प्रणोदक के प्रति इकाई गति की निश्चित मात्रा होती है।[4] रॉकेट में दिए गए द्रव्यमान (शेष प्रणोदक सहित) के लिए, इसका तात्पर्य प्रणोदक की प्रति इकाई वेग में निश्चित परिवर्तन से है क्योंकि गतिज ऊर्जा mv2/2 के समान होती है वेग में यह परिवर्तन कम वेग की तुलना में उच्च वेग पर गतिज ऊर्जा में अधिक वृद्धि प्रदान करता है। उदाहरण के लिए, 2 किलो के रॉकेट पर विचार करना इत्यदि।
- 1 मी/से पर रॉकेट 12 = 1 J गतिज ऊर्जा से प्रारंभ होता है। 3 J के लाभ के लिए 1 मी/से जोड़ने पर गतिज ऊर्जा 22 = 4 J तक बढ़ जाती है।
- 10 मीटर/सेकेंड पर रॉकेट 102 = 100 J गतिज ऊर्जा से प्रारंभ होता है। 21 J के लाभ के लिए1 m/s जोड़ने पर गतिज ऊर्जा 112 = 121 J तक बढ़ जाती है।
गतिज ऊर्जा में यह बड़ा परिवर्तन रॉकेट को कम गति से जलाए जाने की तुलना में गुरुत्वाकर्षण को उच्च स्तर पर ले जाता है।
कार्य के संदर्भ में विवरण
जब रॉकेट इंजन अपने वेग की देखभाल किए बिना समान बल उत्पन्न करते हैं।जैसा कि स्थिर फायरिंग में होता है, जो स्थिर वस्तु पर कार्य करने वाला रॉकेट कोई उपयोगी कार्य नहीं करता है। रॉकेट की संग्रहीत ऊर्जा पूरे प्रकार से इसके प्रणोदक को निकास के रूप में तेज करने पर व्यय की जाती है। लेकिन जब रॉकेट चलता है, तो उसका जोर उसके चलने की दूरी के माध्यम से कार्य करता है। जिससे दूरी से गुणा बल यांत्रिक कार्य को परिभाषित करता है। जो कि जलने के दौरान रॉकेट और पेलोड जितना आगे बढ़ते हैं (अर्थात वह इतनी तेज़ी से आगे बढ़ते हैं), उतनी ही अधिक गतिज ऊर्जा रॉकेट और उसके पेलोड को प्रदान की जाती है और उसके निकास को कम करती है।
इसे इस प्रकार दिखाया गया है, रॉकेट पर किया गया यांत्रिक कार्य () इंजन के थ्रस्ट के बल () के डॉट उत्पाद के रूप में परिभाषित किया गया है और वह विस्थापन (): जो जलने के दौरान प्रस्थान करता है।
यदि जला प्रतिगामी और आगे बढ़ने की दिशा में बनाया गया है तो . कार्य के परिणामस्वरूप गतिज ऊर्जा में परिवर्तन होता है
समय के संबंध में अंतर करने पर, हम प्राप्त करते हैं कि
या
जहा पर वेग है। तात्कालिक द्रव्यमान से विभाजित करना इसे विशिष्ट ऊर्जा के संदर्भ में व्यक्त करने के लिए (), हमे प्राप्त होता है।
जहा पर उचित त्वरण वेक्टर है।
इस प्रकार यह सरलता से देखा जा सकता है कि रॉकेट के प्रत्येक भाग की विशिष्ट ऊर्जा के लाभ की दर गति के समानुपाती होती है और इसे देखते हुए, रॉकेट की विशिष्ट ऊर्जा में समग्र वृद्धि की गणना करने के लिए समीकरण को एकीकृत (संख्यात्मक एकीकरण ) किया जाता है।
आवेगी जलन
आवेगी जलन के जलने की अवधि कम होने पर उपरोक्त ऊर्जा में समीकरण को एकीकृत करना अधिकांशतः अनावश्यक होता है। पेरीएप्सिस या अन्य जगहों के समीप रासायनिक रॉकेट इंजनों की छोटी जलन सामान्यतः गणितीय रूप से आवेगी जलन में प्रस्तुत की जाती है, जहां इंजन का बल किसी भी अन्य बल पर प्रभावी होता है जो कि जलने पर वाहन की ऊर्जा में परिवर्तित हो जाता है।
उदाहरण के लिए, जैसे ही कोई वाहन किसी भी कक्षा (बंद या बच निकलने वाली कक्षा) में पेरीपसिस की ओर गिरता है तो केंद्रीय निकाय के सापेक्ष वेग बढ़ जाता है। इंजन को संक्षिप्त रूप से जलाना (आवेगपूर्ण जलाना) पेरीएप्सिस पर प्रगति गति किसी अन्य समय की भाति उसी वृद्धि से वेग को बढ़ाती है (डेल्टा-वी या ) चूंकि वाहन की गतिज ऊर्जा उसके वेग के वर्ग से संबंधित है। जैसा कि स्थिर फायरिंग में होता है, वेग में इस वृद्धि के वाहन की गतिज ऊर्जा पर गैर-रैखिक प्रभाव पड़ता है। जिससे इसे उच्च ऊर्जा के साथ छोड़ दिया जाता है, यदि जला किसी अन्य समय प्राप्त किया गया हो।[5]
एक परवलयिक कक्षा के लिए ओबेरथ गणना
यदि डेल्टा-v या Δv का आवेगी जलन परवलयिक प्रक्षेपवक्र में पेरीएप्सिस पर किया जाता है, तो जलने से पहले पेरीएप्सिस पर वेग एस्केप वेलोसिटी (Vesc) के बराबर होता है और जलने के बाद विशिष्ट गतिज ऊर्जा होती है।[6]
जंहा पर .
जब वाहन गुरुत्वाकर्षण क्षेत्र से मुक्त होता है,तो विशिष्ट गतिज ऊर्जा को हानि होती है।
अर्थात, यह ऊर्जा को निरंतर रखता है।
जो () द्वारा गुरुत्वाकर्षण क्षेत्र के बाहर जलने की ऊर्जा से अधिक होती है।
जब वाहन ने गुरुत्वाकर्षण को अच्छी प्रकार से मुक्त कर दिया है, तो वह गति से प्रस्थान करता है।
ऐसे स्थितियों के लिए जहां जोड़ा गया आवेग Δv बचने के वेग की तुलना में छोटा है वहा 1 को अनदेखा किया जाता है, और आवेगी जलने के प्रभावी Δv का मात्र कारक से गुणा किया जाता है।
- और मिलता है
- ≈
इसी प्रकार के प्रभाव बंद और अतिशयोक्तिपूर्ण प्रक्षेपवक्र में होते हैं।
परवलयिक उदाहरण
यदि वाहन जलने के प्रारंभ में v वेग से यात्रा करता है जो कि वेग को Δv से बदलता है तब नई कक्षा के कारण विशिष्ट कक्षीय ऊर्जा (SOE) में परिवर्तन होता है
जब अंतरिक्ष यान फिर से ग्रह से दूर हो जाता है, तो विशिष्ट कक्षीय ऊर्जा (SOE) पूरी प्रकार से गतिज हो जाती है, चूंकि गुरुत्वाकर्षण ऊर्जा शून्य तक पहुंच जाती है इसलिए जलने के समय वेग v जितना बड़ा होगा, अंतिम गतिज ऊर्जा उतनी ही अधिक होगी और अंतिम वेग भी उतना ही अधिक होगा।
प्रभाव केंद्रीय निकाय के समीप अधिक स्पष्ट हो जाता है या सामान्य रूप से गुरुत्वाकर्षण क्षेत्र की क्षमता में गहरा होता है जिसमें जलन होती है, क्योंकि वहां वेग अधिक होता है।
इसलिए यदि कोई अंतरिक्ष यान बृहस्पति के परवलयिक प्रक्षेपवक्र पर 50 किमी/सेकेंड के पेरीएप्सिस वेग के साथ है और 5 किमी/सेकेंड का दहन करता है, तो यह पता चलता है कि बड़ी दूरी पर अंतिम वेग परिवर्तन 22.9 किमी/सेकेंड है, जो जला कर 4.58 बार गुणन देता है।
विरोधाभास
ऐसा कहा जा सकता है कि रॉकेट मुफ्त रूप से ऊर्जा प्राप्त करता है, जो ऊर्जा के संरक्षण का उल्लंघन करता है चूंकि रॉकेट की गतिज ऊर्जा में किसी भी प्रकार के लाभ को गतिज ऊर्जा में सापेक्ष कमी से संतुलित किया जाता है, जिसके साथ निकास को मुक्त कर दिया जाता है (निकास की गतिज ऊर्जा अभी भी बढ़ सकती है, लेकिन यह उतनी नहीं बढ़ती है)।[2]: 204 इसकी तुलना स्टैटिक फायरिंग की स्थिति में की जाती है, जहां इंजन की गति शून्य पर निर्धारित की जाती है। इसका तात्पर्य यह है कि इसकी गतिज ऊर्जा बिल्कुल नहीं बढ़ती है और ईंधन द्वारा जारी सभी रासायनिक ऊर्जा निकास की गतिज ऊर्जा में परिवर्तित हो जाती है।
जिससे कि बहुत तेज गति पर रॉकेट को प्रदान की जाने वाली यांत्रिक शक्ति प्रणोदक के दहन में मुक्त कुल शक्ति से अधिक हो जाती है। यह ऊर्जा के संरक्षण का उल्लंघन भी प्रतीत होता है। लेकिन तेज गति वाले रॉकेट में प्रणोदक न मात्र रासायनिक रूप से परन्तु अपनी स्वयं की गतिज ऊर्जा में भी ऊर्जा ले जाते हैं, जो कुछ किलोमीटर प्रति सेकंड से ऊपर की गति पर रासायनिक घटक से अधिक होती है। जब इन प्रणोदकों को जलाया जाता है, तो जलने से निकलने वाली रासायनिक ऊर्जा के साथ इस गतिज ऊर्जा का कुछ हिस्सा रॉकेट में स्थानांतरित हो जाता है।[7]
इसलिए ओबेरथ प्रभाव आंशिक रूप से रॉकेट की उड़ान में बहुत कम दक्षता के लिए तैयार होता है जब यह मात्र धीरे-धीरे आगे बढ़ रहा हो तब उड़ान के आरंभ में रॉकेट द्वारा किए गए अधिकांश कार्य प्रणोदक की गतिज ऊर्जा में निवेश करते हैं जो अभी तक नहीं जले हैं, जिसका हिस्सा वह बाद में जलाए जाने पर निर्धारित करता है।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 Robert B. Adams, Georgia A. Richardson (25 July 2010). Using the Two-Burn Escape Maneuver for Fast Transfers in the Solar System and Beyond (PDF) (Report). NASA. Archived (PDF) from the original on 11 February 2022. Retrieved 15 May 2015.
- ↑ 2.0 2.1 2.2 2.3 2.4 Hermann Oberth (1970). "Ways to spaceflight". Translation of the German language original "Wege zur Raumschiffahrt," (1920). Tunis, Tunisia: Agence Tunisienne de Public-Relations.
- ↑ What Is a Rocket? 13 July 2011/ 7 August 2017 www.nasa.gov, accessed 9 January 2021.
- ↑ Rocket thrust 12 June 2014, www.grc.nasa.gov, accessed 9 January 2021.
- ↑ Atomic Rockets web site: nyrath@projectrho.com. Archived July 1, 2007, at the Wayback Machine
- ↑ Following the calculation on rec.arts.sf.science.
- ↑ Blanco, Philip; Mungan, Carl (October 2019). "Rocket propulsion, classical relativity, and the Oberth effect". The Physics Teacher. 57 (7): 439–441. Bibcode:2019PhTea..57..439B. doi:10.1119/1.5126818.
बाहरी कड़ियाँ
- Animation (MP4) of the Oberth effect in orbit from the Blanco and Mungan paper cited above.