प्रवेशिका नलिका: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Automotive technology}}[[File:1961 Ferrari 250 TR 61 Spyder Fantuzzi engine.jpg|thumb|कार्बोरेटर का सेवन धावकों के रूप में उपयोग किया जाता है]]
{{Short description|Automotive technology}}[[File:1961 Ferrari 250 TR 61 Spyder Fantuzzi engine.jpg|thumb|कार्बोरेटर का सेवन धावकों के रूप में उपयोग किया जाता है]]
[[File:Manly 1919 Fig 133 Fordson intake.png|thumb|मूल फोर्डसन ट्रैक्टर के सेवन का एक कटा हुआ दृश्य (इनटेक मैनिफोल्ड, [[कैब्युरटर]] # वेपोराइज़र, कार्बोरेटर और ईंधन लाइनों सहित)]][[ऑटोमोटिव इंजीनियरिंग]] में, एक इनलेट मैनिफोल्ड या इनटेक मैनिफोल्ड ([[अमेरिकी अंग्रेजी]] में) एक [[इंजन]] का हिस्सा है जो [[सिलेंडर (इंजन)]] को [[ईंधन]]/हवा के मिश्रण की आपूर्ति करता है।<ref>{{Cite web|date=2018-11-10|title=What Is an Intake Manifold? • STATE OF SPEED|url=https://stateofspeed.com/2018/11/10/what-is-an-intake-manifold/|access-date=2022-02-03|website=STATE OF SPEED|language=en-US}}</ref> मैनिफोल्ड (इंजीनियरिंग) शब्द पुराने अंग्रेजी शब्द मैनिगफिल्ड (एंग्लो-सैक्सन मैनिग [कई] और फील्ड [बार-बार] से) से आया है और एक (पाइप) को कई में गुणा करने के लिए संदर्भित करता है।<ref>manifold, (adv.) "in the proportion of many to one, by many times". AD1526 ''Oxford English Dictionary'',</ref> <!-- Consider displace it to "Manifold (fluid mechanics)" page -->
[[File:Manly 1919 Fig 133 Fordson intake.png|thumb|मूल फोर्डसन ट्रैक्टर के सेवन का एक कटा हुआ दृश्य (प्रवेशिका नलिका, [[कैब्युरटर]] # वेपोराइज़र, कार्बोरेटर और ईंधन लाइनों सहित)]]इनलेट मैनिफोल्ड(प्रवेशिका नलिका), [[ऑटोमोटिव इंजीनियरिंग|स्वचालित अभियांत्रिकी]] में [[इंजन]] का वह हिस्सा है जो [[सिलेंडर (इंजन)|सिलेंडर]] को [[ईंधन]] और हवा के मिश्रण की आपूर्ति करता है।<ref>{{Cite web|date=2018-11-10|title=What Is an Intake Manifold? • STATE OF SPEED|url=https://stateofspeed.com/2018/11/10/what-is-an-intake-manifold/|access-date=2022-02-03|website=STATE OF SPEED|language=en-US}}</ref> मैनिफोल्ड शब्द पुराने अंग्रेजी शब्द मैनिगफील्ड से आया है जिसमे मैनिग का तात्पर्य '''कई''' और फील्ड का तात्पर्य  '''बार-बार''' से है जो एक नलिका को कई गुणा करने से संदर्भित है।<ref>manifold, (adv.) "in the proportion of many to one, by many times". AD1526 ''Oxford English Dictionary'',</ref>  
इसके विपरीत, एक [[कई गुना निकास]] कई सिलेंडरों से [[निकास गैस]]ों को कम संख्या में पाइपों में एकत्र करता है - अक्सर एक पाइप के नीचे।
इसके विपरीत, [[कई गुना निकास|निकास नलिका]] कई सिलेंडरों से [[निकास गैस|निकास गैसों]] को कम नालिकाओ में एकत्र करता है।


इनटेक मैनिफोल्ड का प्राथमिक कार्य सिलेंडर हेड (ओं) में प्रत्येक इनटेक पोर्ट में दहन मिश्रण (या सीधे इंजेक्शन इंजन में सिर्फ हवा) को समान रूप से वितरित करना है। इंजन की दक्षता और प्रदर्शन को अनुकूलित करने के लिए समान वितरण महत्वपूर्ण है। यह कार्बोरेटर, थ्रॉटल बॉडी, ईंधन इंजेक्टर और इंजन के अन्य घटकों के लिए माउंट के रूप में भी काम कर सकता है।
प्रवेशिका नलिका का प्राथमिक कार्य सिलेंडर हेडों में प्रत्येक प्रवेश द्वार में दहन मिश्रण को समान रूप से वितरित करना है। इंजन की दक्षता और प्रदर्शन को अनुकूलित करने के लिए समान वितरण महत्वपूर्ण है। यह कार्बोरेटर, थ्रॉटल बॉडी, ईंधन इंजेक्टर और इंजन के अन्य घटकों के लिएआलंबन के रूप में भी कार्य कर सकता है।


[[पिस्टन]] के नीचे की ओर गति और थ्रॉटल वाल्व के कारण प्रतिबंध के कारण, एक प्रत्यागामी [[प्रज्वलन चिंगारी]] [[पिस्टन इंजन]] में, एक आंशिक [[खालीपन]] (वायुमंडलीय दबाव से कम) इनटेक मैनिफोल्ड में मौजूद होता है। यह [[कई गुना वैक्यूम]] पर्याप्त हो सकता है, और सहायक प्रणालियों को चलाने के लिए [[ऑटोमोबाइल सहायक शक्ति]] के स्रोत के रूप में इस्तेमाल किया जा सकता है: पावर असिस्टेड [[ब्रेक]], एमिशन कंट्रोल डिवाइस, [[क्रूज नियंत्रण]], [[ज्वलन प्रणाली]] एडवांस, [[गाड़ी का वाइपर]], [[पावर विंडो]], वेंटिलेशन सिस्टम वाल्व, आदि।
[[पिस्टन]] के नीचे की ओर गति और थ्रॉटल वाल्व के प्रतिबंध के कारण, एक प्रत्यागामी [[प्रज्वलन चिंगारी]] [[पिस्टन इंजन]] के,प्रवेशिका नलिका में आंशिक [[खालीपन|निर्वात]] उपलब्ध होता है। यह [[कई गुना वैक्यूम|नलिका निर्वात]] सहायक प्रणालियों को चलाने हेतु [[ऑटोमोबाइल सहायक शक्ति|ऑटोमोबाइल सहायक बल]] के स्रोत, बल सहायक [[ब्रेक]], उत्सर्जन नियंत्रक उपकरण ,[[क्रूज नियंत्रण]], [[ज्वलन प्रणाली|उन्नत ज्वलन प्रणाली]] ,[[गाड़ी का वाइपर|वाहनों के वाइपर]], [[पावर विंडो|विद्युत खिड़की]], सावातन वाल्व प्रणाली आदि के रूप में प्रयोग किया जा सकता है।


इस वैक्यूम का उपयोग इंजन के [[क्रैंककेस]] से किसी भी पिस्टन ब्लो-बाय गैसों को खींचने के लिए भी किया जा सकता है। इसे सकारात्मक [[क्रैंककेस वेंटिलेशन सिस्टम]] के रूप में जाना जाता है, जिसमें गैसों को ईंधन/हवा के मिश्रण से जलाया जाता है।
इस निर्वात का उपयोग इंजन के [[क्रैंककेस]] से किसी भी पिस्टन गैसों को खींचने के लिए भी किया जा सकता है। इसे सकारात्मक [[क्रैंककेस वेंटिलेशन सिस्टम|क्रैंककेस संवातन प्रणाली]] के रूप में जाना जाता है, जिसमें गैसों को ईंधन और वायु के मिश्रण से जलाया जाता है।


इनटेक मैनिफोल्ड ऐतिहासिक रूप से [[अल्युमीनियम]] या कच्चा लोहा से निर्मित किया गया है, लेकिन समग्र प्लास्टिक सामग्री का उपयोग लोकप्रियता प्राप्त कर रहा है (उदाहरण के लिए अधिकांश क्रिसलर 4-सिलेंडर, [[फोर्ड जेटेक इंजन]] 2.0, ड्यूरेटेक 2.0 और 2.3, और जीएम की [[जीएम इकोटेक इंजन]] श्रृंखला)।
प्रवेशिका नलिका ऐतिहासिक रूप से [[अल्युमीनियम]] या कच्चा लोहा से निर्मित किया गया है, लेकिन संयुक्त प्लास्टिक सामग्री का उपयोग लोकप्रियता प्राप्त कर रहा है उदाहरण के लिए अधिकांश क्रिसलर 4-सिलेंडर, [[फोर्ड जेटेक इंजन|फोर्ड जेटेक 2.0 इंजन]], ड्यूरेटेक 2.0 और 2.3, और [[जीएम इकोटेक इंजन]] श्रृंखला आदि।


== अशांति ==
== अशांति ==
Line 20: Line 20:
{{see also|Cylinder head porting}}
{{see also|Cylinder head porting}}


[[File:Manifold comparison.jpg|right|thumb|वोक्सवैगन ग्रुप के पेट्रोल इंजनों की सूची #1.8 R4 20vT 110-221kW|1.8T इंजन (टॉप) के स्टॉक इनटेक मैनिफोल्ड की प्रतियोगिता में इस्तेमाल किए गए कस्टम-बिल्ट (नीचे) से तुलना। कस्टम-बिल्ट मैनिफोल्ड में, सिलेंडर हेड पर इनटेक पोर्ट्स के रनर ज्यादा चौड़े और अधिक धीरे से टेप किए गए हैं। यह अंतर इंजन के ईंधन/वायु सेवन की मात्रात्मक दक्षता में सुधार करता है।]]इनटेक मैनिफोल्ड का डिज़ाइन और ओरिएंटेशन एक इंजन की वॉल्यूमेट्रिक दक्षता का एक प्रमुख कारक है। अचानक समोच्च परिवर्तन दबाव की बूंदों को भड़काते हैं, जिसके परिणामस्वरूप कम हवा (और/या ईंधन) दहन कक्ष में प्रवेश करती है; उच्च-प्रदर्शन मैनिफोल्ड में आसन्न खंडों के बीच चिकनी आकृति और क्रमिक संक्रमण होते हैं।
[[File:Manifold comparison.jpg|right|thumb|1.8T इंजन (टॉप) के स्टॉक प्रवेशिका नलिका की प्रतियोगिता में इस्तेमाल किए गए कस्टम-बिल्ट (नीचे) से तुलना। कस्टम-बिल्ट मैनिफोल्ड में, सिलेंडर हेड पर इनटेक पोर्ट्स के रनर ज्यादा चौड़े और अधिक धीरे से टेप किए गए हैं। यह अंतर इंजन के ईंधन/वायु सेवन की मात्रात्मक दक्षता में सुधार करता है।]]प्रवेशिका नलिका का डिज़ाइन और ओरिएंटेशन एक इंजन की वॉल्यूमेट्रिक दक्षता का एक प्रमुख कारक है। अचानक समोच्च परिवर्तन दबाव की बूंदों को भड़काते हैं, जिसके परिणामस्वरूप कम हवा (और/या ईंधन) दहन कक्ष में प्रवेश करती है; उच्च-प्रदर्शन मैनिफोल्ड में आसन्न खंडों के बीच चिकनी आकृति और क्रमिक संक्रमण होते हैं।


आधुनिक इनटेक मैनिफोल्ड आमतौर पर धावकों को नियुक्त करते हैं, सिलेंडर हेड पर प्रत्येक इनटेक पोर्ट तक फैली हुई व्यक्तिगत ट्यूबें जो कार्बोरेटर के नीचे एक केंद्रीय आयतन या प्लेनम से निकलती हैं। धावक का उद्देश्य हवा के हेल्महोल्ट्ज़ प्रतिध्वनि गुण का लाभ उठाना है। हवा खुले वाल्व के माध्यम से काफी गति से बहती है। जब वाल्व बंद हो जाता है, तो हवा जो अभी तक वाल्व में प्रवेश नहीं करती है, उसमें अभी भी बहुत अधिक गति होती है और वाल्व के खिलाफ संपीड़ित होती है, जिससे उच्च दबाव की जेब बन जाती है। यह उच्च दबाव वाली हवा कई गुना कम दबाव वाली हवा के साथ बराबरी करने लगती है। हवा की जड़ता के कारण, समानता दोलन करने लगती है: पहले रनर में हवा कई गुना से कम दबाव में होगी। मैनिफोल्ड में हवा फिर रनर में वापस बराबरी करने की कोशिश करती है, और दोलन दोहराता है। यह प्रक्रिया ध्वनि की गति से होती है, और वाल्व के फिर से खुलने से पहले कई बार रनर कई गुना ऊपर और नीचे जाता है।
आधुनिक प्रवेशिका नलिका आमतौर पर धावकों को नियुक्त करते हैं, सिलेंडर हेड पर प्रत्येक इनटेक पोर्ट तक फैली हुई व्यक्तिगत ट्यूबें जो कार्बोरेटर के नीचे एक केंद्रीय आयतन या प्लेनम से निकलती हैं। धावक का उद्देश्य हवा के हेल्महोल्ट्ज़ प्रतिध्वनि गुण का लाभ उठाना है। हवा खुले वाल्व के माध्यम से काफी गति से बहती है। जब वाल्व बंद हो जाता है, तो हवा जो अभी तक वाल्व में प्रवेश नहीं करती है, उसमें अभी भी बहुत अधिक गति होती है और वाल्व के खिलाफ संपीड़ित होती है, जिससे उच्च दबाव की जेब बन जाती है। यह उच्च दबाव वाली हवा कई गुना कम दबाव वाली हवा के साथ बराबरी करने लगती है। हवा की जड़ता के कारण, समानता दोलन करने लगती है: पहले रनर में हवा कई गुना से कम दबाव में होगी। मैनिफोल्ड में हवा फिर रनर में वापस बराबरी करने की कोशिश करती है, और दोलन दोहराता है। यह प्रक्रिया ध्वनि की गति से होती है, और वाल्व के फिर से खुलने से पहले कई बार रनर कई गुना ऊपर और नीचे जाता है।


रनर का क्रॉस-सेक्शनल क्षेत्र जितना छोटा होता है, किसी दिए गए एयरफ्लो के लिए अनुनाद पर दबाव उतना ही अधिक होता है। [[हेल्महोल्ट्ज़ अनुनाद]] का यह पहलू [[वेंटुरी प्रभाव]] के एक परिणाम को पुन: उत्पन्न करता है। जब पिस्टन नीचे की ओर गति करता है, तो इनटेक रनर के आउटपुट पर दबाव कम हो जाता है। यह लो प्रेशर पल्स इनपुट एंड तक चलता है, जहां इसे ओवर-प्रेशर पल्स में बदल दिया जाता है। यह पल्स रनर के माध्यम से वापस यात्रा करता है और वाल्व के माध्यम से हवा को घुमाता है। वाल्व फिर बंद हो जाता है।
रनर का क्रॉस-सेक्शनल क्षेत्र जितना छोटा होता है, किसी दिए गए एयरफ्लो के लिए अनुनाद पर दबाव उतना ही अधिक होता है। [[हेल्महोल्ट्ज़ अनुनाद]] का यह पहलू [[वेंटुरी प्रभाव]] के एक परिणाम को पुन: उत्पन्न करता है। जब पिस्टन नीचे की ओर गति करता है, तो इनटेक रनर के आउटपुट पर दबाव कम हो जाता है। यह लो प्रेशर पल्स इनपुट एंड तक चलता है, जहां इसे ओवर-प्रेशर पल्स में बदल दिया जाता है। यह पल्स रनर के माध्यम से वापस यात्रा करता है और वाल्व के माध्यम से हवा को घुमाता है। वाल्व फिर बंद हो जाता है।
Line 28: Line 28:
हेल्महोल्ट्ज़ अनुनाद प्रभाव की पूरी शक्ति का उपयोग करने के लिए, सेवन वाल्व का उद्घाटन सही समय पर होना चाहिए, अन्यथा नाड़ी का नकारात्मक प्रभाव हो सकता है। यह इंजनों के लिए एक बहुत ही कठिन समस्या है, क्योंकि वाल्व का समय गतिशील है और इंजन की गति पर आधारित है, जबकि पल्स टाइमिंग स्थिर है और इनटेक रनर की लंबाई और ध्वनि की गति पर निर्भर है। पारंपरिक समाधान एक विशिष्ट इंजन गति के लिए इनटेक रनर की लंबाई को ट्यून करना है जहां अधिकतम प्रदर्शन वांछित है। हालांकि, आधुनिक तकनीक ने इलेक्ट्रॉनिक रूप से नियंत्रित वाल्व टाइमिंग (उदाहरण के लिए [[वेल्वेट्रोनिक]]), और डायनेमिक इनटेक ज्योमेट्री (नीचे देखें) से जुड़े कई समाधानों को जन्म दिया है।
हेल्महोल्ट्ज़ अनुनाद प्रभाव की पूरी शक्ति का उपयोग करने के लिए, सेवन वाल्व का उद्घाटन सही समय पर होना चाहिए, अन्यथा नाड़ी का नकारात्मक प्रभाव हो सकता है। यह इंजनों के लिए एक बहुत ही कठिन समस्या है, क्योंकि वाल्व का समय गतिशील है और इंजन की गति पर आधारित है, जबकि पल्स टाइमिंग स्थिर है और इनटेक रनर की लंबाई और ध्वनि की गति पर निर्भर है। पारंपरिक समाधान एक विशिष्ट इंजन गति के लिए इनटेक रनर की लंबाई को ट्यून करना है जहां अधिकतम प्रदर्शन वांछित है। हालांकि, आधुनिक तकनीक ने इलेक्ट्रॉनिक रूप से नियंत्रित वाल्व टाइमिंग (उदाहरण के लिए [[वेल्वेट्रोनिक]]), और डायनेमिक इनटेक ज्योमेट्री (नीचे देखें) से जुड़े कई समाधानों को जन्म दिया है।


अनुनाद ट्यूनिंग के परिणामस्वरूप, कुछ स्वाभाविक रूप से एस्पिरेटेड सेवन प्रणालियां 100% से अधिक वॉल्यूमेट्रिक दक्षता पर काम करती हैं: संपीड़न स्ट्रोक से पहले दहन कक्ष में हवा का दबाव वायुमंडलीय दबाव से अधिक होता है। इस इनटेक मैनिफोल्ड डिज़ाइन फीचर के संयोजन में, एग्जॉस्ट मैनिफोल्ड डिज़ाइन, साथ ही एग्जॉस्ट वाल्व के खुलने का समय इतना कैलिब्रेट किया जा सकता है कि सिलेंडर की अधिक से अधिक निकासी प्राप्त हो सके। पिस्टन के शीर्ष मृत केंद्र तक पहुंचने से ठीक पहले निकास कई गुना सिलेंडर में एक वैक्यूम प्राप्त करता है।{{Citation needed|date=July 2008}} उद्घाटन इनलेट वाल्व तब - सामान्य संपीड़न अनुपात में - नीचे की ओर यात्रा शुरू करने से पहले सिलेंडर का 10% भर सकता है।{{Citation needed|date=July 2008}} सिलेंडर में उच्च दबाव प्राप्त करने के बजाय, पिस्टन के निचले मृत केंद्र तक पहुंचने के बाद इनलेट वाल्व खुला रह सकता है, जबकि हवा अभी भी बहती है।{{Citation needed|date=July 2008}}{{Vague|date=February 2009}}
अनुनाद ट्यूनिंग के परिणामस्वरूप, कुछ स्वाभाविक रूप से एस्पिरेटेड सेवन प्रणालियां 100% से अधिक वॉल्यूमेट्रिक दक्षता पर काम करती हैं: संपीड़न स्ट्रोक से पहले दहन कक्ष में हवा का दबाव वायुमंडलीय दबाव से अधिक होता है। इस प्रवेशिका नलिका डिज़ाइन फीचर के संयोजन में, एग्जॉस्ट मैनिफोल्ड डिज़ाइन, साथ ही एग्जॉस्ट वाल्व के खुलने का समय इतना कैलिब्रेट किया जा सकता है कि सिलेंडर की अधिक से अधिक निकासी प्राप्त हो सके। पिस्टन के शीर्ष मृत केंद्र तक पहुंचने से ठीक पहले निकास कई गुना सिलेंडर में एक वैक्यूम प्राप्त करता है।{{Citation needed|date=July 2008}} उद्घाटन इनलेट वाल्व तब - सामान्य संपीड़न अनुपात में - नीचे की ओर यात्रा शुरू करने से पहले सिलेंडर का 10% भर सकता है।{{Citation needed|date=July 2008}} सिलेंडर में उच्च दबाव प्राप्त करने के बजाय, पिस्टन के निचले मृत केंद्र तक पहुंचने के बाद इनलेट वाल्व खुला रह सकता है, जबकि हवा अभी भी बहती है।{{Citation needed|date=July 2008}}{{Vague|date=February 2009}}
कुछ इंजनों में इनटेक रनर न्यूनतम प्रतिरोध के लिए सीधे होते हैं। अधिकांश इंजनों में, हालांकि, धावकों में वक्र होते हैं, वांछित धावक लंबाई प्राप्त करने के लिए कुछ बहुत जटिल होते हैं। परिणामस्वरूप, पूरे इंजन की सघन पैकेजिंग के साथ ये मोड़ अधिक कॉम्पैक्ट मैनिफोल्ड की अनुमति देते हैं। इसके अलावा, इन साँप वाले धावकों को कुछ चर लंबाई / विभाजित धावक डिजाइनों के लिए आवश्यक है, और प्लेनम स्थान के आकार को कम करने की अनुमति देता है। कम से कम छह सिलेंडर वाले इंजन में औसत सेवन प्रवाह लगभग स्थिर होता है और प्लेनम वॉल्यूम छोटा हो सकता है। [[प्लेनम स्पेस]] भीतर खड़ी लहरों से बचने के लिए इसे यथासंभव कॉम्पैक्ट बनाया जाता है। इनटेक रनर प्रत्येक इनलेट की तुलना में प्लेनम सतह के एक छोटे हिस्से का उपयोग करते हैं, जो वायुगतिकीय कारणों से प्लेनम को हवा की आपूर्ति करता है। प्रत्येक धावक को मुख्य इनलेट से लगभग समान दूरी पर रखा गया है। धावक जिनके सिलेंडर एक दूसरे के करीब आग लगाते हैं, उन्हें पड़ोसियों के रूप में नहीं रखा जाता है।
कुछ इंजनों में इनटेक रनर न्यूनतम प्रतिरोध के लिए सीधे होते हैं। अधिकांश इंजनों में, हालांकि, धावकों में वक्र होते हैं, वांछित धावक लंबाई प्राप्त करने के लिए कुछ बहुत जटिल होते हैं। परिणामस्वरूप, पूरे इंजन की सघन पैकेजिंग के साथ ये मोड़ अधिक कॉम्पैक्ट मैनिफोल्ड की अनुमति देते हैं। इसके अलावा, इन साँप वाले धावकों को कुछ चर लंबाई / विभाजित धावक डिजाइनों के लिए आवश्यक है, और प्लेनम स्थान के आकार को कम करने की अनुमति देता है। कम से कम छह सिलेंडर वाले इंजन में औसत सेवन प्रवाह लगभग स्थिर होता है और प्लेनम वॉल्यूम छोटा हो सकता है। [[प्लेनम स्पेस]] भीतर खड़ी लहरों से बचने के लिए इसे यथासंभव कॉम्पैक्ट बनाया जाता है। इनटेक रनर प्रत्येक इनलेट की तुलना में प्लेनम सतह के एक छोटे हिस्से का उपयोग करते हैं, जो वायुगतिकीय कारणों से प्लेनम को हवा की आपूर्ति करता है। प्रत्येक धावक को मुख्य इनलेट से लगभग समान दूरी पर रखा गया है। धावक जिनके सिलेंडर एक दूसरे के करीब आग लगाते हैं, उन्हें पड़ोसियों के रूप में नहीं रखा जाता है।


180-डिग्री इनटेक मैनिफोल्ड्स में, मूल रूप से कार्बोरेटर वी 8 इंजन के लिए डिज़ाइन किया गया, दो प्लेन, स्प्लिट प्लेनम इनटेक मैनिफोल्ड इनटेक दालों को अलग करता है जो कि फायरिंग क्रम में 180 डिग्री तक कई गुना अनुभव करता है। यह एक सिलेंडर की दबाव तरंगों को दूसरे के साथ हस्तक्षेप को कम करता है, चिकनी मध्य-श्रेणी के प्रवाह से बेहतर टोक़ देता है। इस तरह के मैनिफोल्ड मूल रूप से दो या चार बैरल कार्बोरेटर के लिए डिज़ाइन किए गए हो सकते हैं, लेकिन अब थ्रॉटल-बॉडी और [[बहु बिंदु ईंधन इंजेक्शन]] दोनों के साथ उपयोग किए जाते हैं। उत्तरार्द्ध का एक उदाहरण [[होंडा जे इंजन]] है जो अधिक पीक फ्लो और हॉर्स पावर के लिए 3500 आरपीएम के आसपास सिंगल प्लेन मैनिफोल्ड में परिवर्तित होता है।
180-डिग्री प्रवेशिका नलिका्स में, मूल रूप से कार्बोरेटर वी 8 इंजन के लिए डिज़ाइन किया गया, दो प्लेन, स्प्लिट प्लेनम प्रवेशिका नलिका इनटेक दालों को अलग करता है जो कि फायरिंग क्रम में 180 डिग्री तक कई गुना अनुभव करता है। यह एक सिलेंडर की दबाव तरंगों को दूसरे के साथ हस्तक्षेप को कम करता है, चिकनी मध्य-श्रेणी के प्रवाह से बेहतर टोक़ देता है। इस तरह के मैनिफोल्ड मूल रूप से दो या चार बैरल कार्बोरेटर के लिए डिज़ाइन किए गए हो सकते हैं, लेकिन अब थ्रॉटल-बॉडी और [[बहु बिंदु ईंधन इंजेक्शन]] दोनों के साथ उपयोग किए जाते हैं। उत्तरार्द्ध का एक उदाहरण [[होंडा जे इंजन]] है जो अधिक पीक फ्लो और हॉर्स पावर के लिए 3500 आरपीएम के आसपास सिंगल प्लेन मैनिफोल्ड में परिवर्तित होता है।


कार्बोरेटेड इंजनों के लिए 'वेट रनर्स' के साथ पुराने हीट रिसर मैनिफोल्ड्स ने वाष्पशील गर्मी प्रदान करने के लिए इनटेक मैनिफोल्ड के माध्यम से एग्जॉस्ट गैस डायवर्जन का इस्तेमाल किया। एग्जॉस्ट गैस फ्लो डायवर्जन की मात्रा को एग्जॉस्ट मैनिफोल्ड में हीट रिसर वाल्व द्वारा नियंत्रित किया गया था, और एक [[द्विधातु पट्टी]] | बाई-मेटैलिक स्प्रिंग को नियोजित किया गया था, जो मैनिफोल्ड में गर्मी के अनुसार तनाव को बदल देता था। आज के फ्यूल-इंजेक्टेड इंजनों को ऐसे उपकरणों की आवश्यकता नहीं होती है।
कार्बोरेटेड इंजनों के लिए 'वेट रनर्स' के साथ पुराने हीट रिसर मैनिफोल्ड्स ने वाष्पशील गर्मी प्रदान करने के लिए प्रवेशिका नलिका के माध्यम से एग्जॉस्ट गैस डायवर्जन का इस्तेमाल किया। एग्जॉस्ट गैस फ्लो डायवर्जन की मात्रा को एग्जॉस्ट मैनिफोल्ड में हीट रिसर वाल्व द्वारा नियंत्रित किया गया था, और एक [[द्विधातु पट्टी]] | बाई-मेटैलिक स्प्रिंग को नियोजित किया गया था, जो मैनिफोल्ड में गर्मी के अनुसार तनाव को बदल देता था। आज के फ्यूल-इंजेक्टेड इंजनों को ऐसे उपकरणों की आवश्यकता नहीं होती है।


== चर-लंबाई का सेवन कई गुना ==
== चर-लंबाई का सेवन कई गुना ==

Revision as of 19:44, 3 February 2023

कार्बोरेटर का सेवन धावकों के रूप में उपयोग किया जाता है
मूल फोर्डसन ट्रैक्टर के सेवन का एक कटा हुआ दृश्य (प्रवेशिका नलिका, कैब्युरटर # वेपोराइज़र, कार्बोरेटर और ईंधन लाइनों सहित)

इनलेट मैनिफोल्ड(प्रवेशिका नलिका), स्वचालित अभियांत्रिकी में इंजन का वह हिस्सा है जो सिलेंडर को ईंधन और हवा के मिश्रण की आपूर्ति करता है।[1] मैनिफोल्ड शब्द पुराने अंग्रेजी शब्द मैनिगफील्ड से आया है जिसमे मैनिग का तात्पर्य कई और फील्ड का तात्पर्य बार-बार से है जो एक नलिका को कई गुणा करने से संदर्भित है।[2]

इसके विपरीत, निकास नलिका कई सिलेंडरों से निकास गैसों को कम नालिकाओ में एकत्र करता है।

प्रवेशिका नलिका का प्राथमिक कार्य सिलेंडर हेडों में प्रत्येक प्रवेश द्वार में दहन मिश्रण को समान रूप से वितरित करना है। इंजन की दक्षता और प्रदर्शन को अनुकूलित करने के लिए समान वितरण महत्वपूर्ण है। यह कार्बोरेटर, थ्रॉटल बॉडी, ईंधन इंजेक्टर और इंजन के अन्य घटकों के लिएआलंबन के रूप में भी कार्य कर सकता है।

पिस्टन के नीचे की ओर गति और थ्रॉटल वाल्व के प्रतिबंध के कारण, एक प्रत्यागामी प्रज्वलन चिंगारी पिस्टन इंजन के,प्रवेशिका नलिका में आंशिक निर्वात उपलब्ध होता है। यह नलिका निर्वात सहायक प्रणालियों को चलाने हेतु ऑटोमोबाइल सहायक बल के स्रोत, बल सहायक ब्रेक, उत्सर्जन नियंत्रक उपकरण ,क्रूज नियंत्रण, उन्नत ज्वलन प्रणाली ,वाहनों के वाइपर, विद्युत खिड़की, सावातन वाल्व प्रणाली आदि के रूप में प्रयोग किया जा सकता है।

इस निर्वात का उपयोग इंजन के क्रैंककेस से किसी भी पिस्टन गैसों को खींचने के लिए भी किया जा सकता है। इसे सकारात्मक क्रैंककेस संवातन प्रणाली के रूप में जाना जाता है, जिसमें गैसों को ईंधन और वायु के मिश्रण से जलाया जाता है।

प्रवेशिका नलिका ऐतिहासिक रूप से अल्युमीनियम या कच्चा लोहा से निर्मित किया गया है, लेकिन संयुक्त प्लास्टिक सामग्री का उपयोग लोकप्रियता प्राप्त कर रहा है उदाहरण के लिए अधिकांश क्रिसलर 4-सिलेंडर, फोर्ड जेटेक 2.0 इंजन, ड्यूरेटेक 2.0 और 2.3, और जीएम इकोटेक इंजन श्रृंखला आदि।

अशांति

कार्बोरेटर या ईंधन इंजेक्शन कई गुना हवा में ईंधन की बूंदों का छिड़काव करता है। इलेक्ट्रोस्टैटिक बलों और सीमा परत से संघनन के कारण, कुछ ईंधन मैनिफोल्ड की दीवारों के साथ पूल में बनेंगे, और ईंधन के सतही तनाव के कारण, छोटी बूंदें हवाई पट्टी में बड़ी बूंदों में मिल सकती हैं। दोनों क्रियाएं अवांछनीय हैं क्योंकि वे वायु-ईंधन अनुपात में विसंगतियां पैदा करती हैं। सेवन में अशांति ईंधन की बूंदों को तोड़ने में मदद करती है, परमाणुकरण की डिग्री में सुधार करती है। बेहतर एटमाइज़र नोजल पूरे ईंधन को पूरी तरह जलाने में मदद करता है और आग के अग्र भाग को बड़ा करके इंजन की दस्तक को कम करने में मदद करता है। इस विक्षोभ को प्राप्त करने के लिए सिलेंडर हेड में सेवन और सेवन बंदरगाहों की सतहों को खुरदरा और बिना पॉलिश किए छोड़ना एक आम बात है।

सेवन में केवल एक निश्चित डिग्री की अशांति उपयोगी है। एक बार जब ईंधन पर्याप्त रूप से परमाणुकृत हो जाता है तो अतिरिक्त अशांति अनावश्यक दबाव की बूंदों और इंजन के प्रदर्शन में गिरावट का कारण बनती है।

वॉल्यूमेट्रिक दक्षता

1.8T इंजन (टॉप) के स्टॉक प्रवेशिका नलिका की प्रतियोगिता में इस्तेमाल किए गए कस्टम-बिल्ट (नीचे) से तुलना। कस्टम-बिल्ट मैनिफोल्ड में, सिलेंडर हेड पर इनटेक पोर्ट्स के रनर ज्यादा चौड़े और अधिक धीरे से टेप किए गए हैं। यह अंतर इंजन के ईंधन/वायु सेवन की मात्रात्मक दक्षता में सुधार करता है।

प्रवेशिका नलिका का डिज़ाइन और ओरिएंटेशन एक इंजन की वॉल्यूमेट्रिक दक्षता का एक प्रमुख कारक है। अचानक समोच्च परिवर्तन दबाव की बूंदों को भड़काते हैं, जिसके परिणामस्वरूप कम हवा (और/या ईंधन) दहन कक्ष में प्रवेश करती है; उच्च-प्रदर्शन मैनिफोल्ड में आसन्न खंडों के बीच चिकनी आकृति और क्रमिक संक्रमण होते हैं।

आधुनिक प्रवेशिका नलिका आमतौर पर धावकों को नियुक्त करते हैं, सिलेंडर हेड पर प्रत्येक इनटेक पोर्ट तक फैली हुई व्यक्तिगत ट्यूबें जो कार्बोरेटर के नीचे एक केंद्रीय आयतन या प्लेनम से निकलती हैं। धावक का उद्देश्य हवा के हेल्महोल्ट्ज़ प्रतिध्वनि गुण का लाभ उठाना है। हवा खुले वाल्व के माध्यम से काफी गति से बहती है। जब वाल्व बंद हो जाता है, तो हवा जो अभी तक वाल्व में प्रवेश नहीं करती है, उसमें अभी भी बहुत अधिक गति होती है और वाल्व के खिलाफ संपीड़ित होती है, जिससे उच्च दबाव की जेब बन जाती है। यह उच्च दबाव वाली हवा कई गुना कम दबाव वाली हवा के साथ बराबरी करने लगती है। हवा की जड़ता के कारण, समानता दोलन करने लगती है: पहले रनर में हवा कई गुना से कम दबाव में होगी। मैनिफोल्ड में हवा फिर रनर में वापस बराबरी करने की कोशिश करती है, और दोलन दोहराता है। यह प्रक्रिया ध्वनि की गति से होती है, और वाल्व के फिर से खुलने से पहले कई बार रनर कई गुना ऊपर और नीचे जाता है।

रनर का क्रॉस-सेक्शनल क्षेत्र जितना छोटा होता है, किसी दिए गए एयरफ्लो के लिए अनुनाद पर दबाव उतना ही अधिक होता है। हेल्महोल्ट्ज़ अनुनाद का यह पहलू वेंटुरी प्रभाव के एक परिणाम को पुन: उत्पन्न करता है। जब पिस्टन नीचे की ओर गति करता है, तो इनटेक रनर के आउटपुट पर दबाव कम हो जाता है। यह लो प्रेशर पल्स इनपुट एंड तक चलता है, जहां इसे ओवर-प्रेशर पल्स में बदल दिया जाता है। यह पल्स रनर के माध्यम से वापस यात्रा करता है और वाल्व के माध्यम से हवा को घुमाता है। वाल्व फिर बंद हो जाता है।

हेल्महोल्ट्ज़ अनुनाद प्रभाव की पूरी शक्ति का उपयोग करने के लिए, सेवन वाल्व का उद्घाटन सही समय पर होना चाहिए, अन्यथा नाड़ी का नकारात्मक प्रभाव हो सकता है। यह इंजनों के लिए एक बहुत ही कठिन समस्या है, क्योंकि वाल्व का समय गतिशील है और इंजन की गति पर आधारित है, जबकि पल्स टाइमिंग स्थिर है और इनटेक रनर की लंबाई और ध्वनि की गति पर निर्भर है। पारंपरिक समाधान एक विशिष्ट इंजन गति के लिए इनटेक रनर की लंबाई को ट्यून करना है जहां अधिकतम प्रदर्शन वांछित है। हालांकि, आधुनिक तकनीक ने इलेक्ट्रॉनिक रूप से नियंत्रित वाल्व टाइमिंग (उदाहरण के लिए वेल्वेट्रोनिक), और डायनेमिक इनटेक ज्योमेट्री (नीचे देखें) से जुड़े कई समाधानों को जन्म दिया है।

अनुनाद ट्यूनिंग के परिणामस्वरूप, कुछ स्वाभाविक रूप से एस्पिरेटेड सेवन प्रणालियां 100% से अधिक वॉल्यूमेट्रिक दक्षता पर काम करती हैं: संपीड़न स्ट्रोक से पहले दहन कक्ष में हवा का दबाव वायुमंडलीय दबाव से अधिक होता है। इस प्रवेशिका नलिका डिज़ाइन फीचर के संयोजन में, एग्जॉस्ट मैनिफोल्ड डिज़ाइन, साथ ही एग्जॉस्ट वाल्व के खुलने का समय इतना कैलिब्रेट किया जा सकता है कि सिलेंडर की अधिक से अधिक निकासी प्राप्त हो सके। पिस्टन के शीर्ष मृत केंद्र तक पहुंचने से ठीक पहले निकास कई गुना सिलेंडर में एक वैक्यूम प्राप्त करता है।[citation needed] उद्घाटन इनलेट वाल्व तब - सामान्य संपीड़न अनुपात में - नीचे की ओर यात्रा शुरू करने से पहले सिलेंडर का 10% भर सकता है।[citation needed] सिलेंडर में उच्च दबाव प्राप्त करने के बजाय, पिस्टन के निचले मृत केंद्र तक पहुंचने के बाद इनलेट वाल्व खुला रह सकता है, जबकि हवा अभी भी बहती है।[citation needed][vague] कुछ इंजनों में इनटेक रनर न्यूनतम प्रतिरोध के लिए सीधे होते हैं। अधिकांश इंजनों में, हालांकि, धावकों में वक्र होते हैं, वांछित धावक लंबाई प्राप्त करने के लिए कुछ बहुत जटिल होते हैं। परिणामस्वरूप, पूरे इंजन की सघन पैकेजिंग के साथ ये मोड़ अधिक कॉम्पैक्ट मैनिफोल्ड की अनुमति देते हैं। इसके अलावा, इन साँप वाले धावकों को कुछ चर लंबाई / विभाजित धावक डिजाइनों के लिए आवश्यक है, और प्लेनम स्थान के आकार को कम करने की अनुमति देता है। कम से कम छह सिलेंडर वाले इंजन में औसत सेवन प्रवाह लगभग स्थिर होता है और प्लेनम वॉल्यूम छोटा हो सकता है। प्लेनम स्पेस भीतर खड़ी लहरों से बचने के लिए इसे यथासंभव कॉम्पैक्ट बनाया जाता है। इनटेक रनर प्रत्येक इनलेट की तुलना में प्लेनम सतह के एक छोटे हिस्से का उपयोग करते हैं, जो वायुगतिकीय कारणों से प्लेनम को हवा की आपूर्ति करता है। प्रत्येक धावक को मुख्य इनलेट से लगभग समान दूरी पर रखा गया है। धावक जिनके सिलेंडर एक दूसरे के करीब आग लगाते हैं, उन्हें पड़ोसियों के रूप में नहीं रखा जाता है।

180-डिग्री प्रवेशिका नलिका्स में, मूल रूप से कार्बोरेटर वी 8 इंजन के लिए डिज़ाइन किया गया, दो प्लेन, स्प्लिट प्लेनम प्रवेशिका नलिका इनटेक दालों को अलग करता है जो कि फायरिंग क्रम में 180 डिग्री तक कई गुना अनुभव करता है। यह एक सिलेंडर की दबाव तरंगों को दूसरे के साथ हस्तक्षेप को कम करता है, चिकनी मध्य-श्रेणी के प्रवाह से बेहतर टोक़ देता है। इस तरह के मैनिफोल्ड मूल रूप से दो या चार बैरल कार्बोरेटर के लिए डिज़ाइन किए गए हो सकते हैं, लेकिन अब थ्रॉटल-बॉडी और बहु बिंदु ईंधन इंजेक्शन दोनों के साथ उपयोग किए जाते हैं। उत्तरार्द्ध का एक उदाहरण होंडा जे इंजन है जो अधिक पीक फ्लो और हॉर्स पावर के लिए 3500 आरपीएम के आसपास सिंगल प्लेन मैनिफोल्ड में परिवर्तित होता है।

कार्बोरेटेड इंजनों के लिए 'वेट रनर्स' के साथ पुराने हीट रिसर मैनिफोल्ड्स ने वाष्पशील गर्मी प्रदान करने के लिए प्रवेशिका नलिका के माध्यम से एग्जॉस्ट गैस डायवर्जन का इस्तेमाल किया। एग्जॉस्ट गैस फ्लो डायवर्जन की मात्रा को एग्जॉस्ट मैनिफोल्ड में हीट रिसर वाल्व द्वारा नियंत्रित किया गया था, और एक द्विधातु पट्टी | बाई-मेटैलिक स्प्रिंग को नियोजित किया गया था, जो मैनिफोल्ड में गर्मी के अनुसार तनाव को बदल देता था। आज के फ्यूल-इंजेक्टेड इंजनों को ऐसे उपकरणों की आवश्यकता नहीं होती है।

चर-लंबाई का सेवन कई गुना

1999 मज़्दा मिता मज़्दा बी इंजन # BP-4W पर कम सेवन कई गुना, एक चर लंबाई सेवन प्रणाली के घटकों को दिखा रहा है।

एक चर-लंबाई सेवन कई गुना (वीएलआईएम) एक आंतरिक दहन इंजन कई गुना तकनीक है।

चार सामान्य कार्यान्वयन मौजूद हैं। सबसे पहले, अलग-अलग लंबाई वाले दो असतत सेवन धावक कार्यरत हैं, और एक तितली वाल्व छोटे रास्ते को बंद कर सकता है। दूसरा इनटेक रनर्स को एक सामान्य प्लेनम के चारों ओर झुकाया जा सकता है, और एक स्लाइडिंग वाल्व उन्हें एक चर लंबाई के साथ प्लेनम से अलग करता है। सीधे हाई-स्पीड रनर प्लग प्राप्त कर सकते हैं, जिसमें छोटे लंबे रनर एक्सटेंशन होते हैं। एक 6- या 8-सिलेंडर इंजन के प्लेनम को आधे हिस्से में विभाजित किया जा सकता है, जिसमें एक हिस्से में सम फायरिंग सिलेंडर और दूसरे हिस्से में विषम फायरिंग सिलेंडर होते हैं। सब-प्लेनम और वायु सेवन दोनों एक वाई (मुख्य प्लेनम की तरह) से जुड़े हैं। हवा दोनों उप-प्लेनमों के बीच दोलन करती है, वहां एक बड़े दबाव दोलन के साथ, लेकिन मुख्य प्लेनम पर एक निरंतर दबाव होता है। सब प्लेनम से मुख्य प्लेनम तक प्रत्येक रनर को लंबाई में बदला जा सकता है। वी इंजनों के लिए इसे गति कम होने पर इसमें वाल्व फिसलने के माध्यम से उच्च इंजन गति पर एक बड़े प्लेनम को विभाजित करके कार्यान्वित किया जा सकता है।

जैसा कि नाम से पता चलता है, वीएलआईएम शक्ति (भौतिकी) और टोक़ को अनुकूलित करने के साथ-साथ बेहतर ईंधन दक्षता प्रदान करने के लिए सेवन पथ की लंबाई को बदल सकता है।

वेरिएबल इनटेक ज्योमेट्री के दो मुख्य प्रभाव हैं:

  • वेंटुरी प्रभाव: प्रति मिनट कम क्रांतियों पर, सीमित क्षमता (क्रॉस-सेक्शनल एरिया) वाले पथ के माध्यम से हवा को निर्देशित करके वायु प्रवाह की गति बढ़ा दी जाती है। भार बढ़ने पर बड़ा रास्ता खुल जाता है ताकि अधिक मात्रा में हवा कक्ष में प्रवेश कर सके। दोहरी ओवरहेड कैम (डीओएचसी) डिज़ाइन में, वायु पथ अक्सर अलग-अलग पॉपट वॉल्व से जुड़े होते हैं, इसलिए सेवन वाल्व को निष्क्रिय करके छोटे पथ को बाहर रखा जा सकता है।
  • दबावीकरण: एक इंजन ट्यूनिंग सेवन पथ में हेल्महोल्ट्ज अनुनाद के कारण कम दबाव वाले सुपरचार्जर के समान हल्का दबाव प्रभाव हो सकता है। हालाँकि, यह प्रभाव केवल एक संकीर्ण इंजन गति सीमा पर होता है जो सीधे सेवन की लंबाई से प्रभावित होता है। एक चर सेवन दो या अधिक दबाव वाले गर्म स्थान बना सकता है। जब सेवन हवा की गति अधिक होती है, तो इंजन के अंदर हवा (और/या मिश्रण) को धक्का देने वाला गतिशील दबाव बढ़ जाता है। गतिशील दबाव इनलेट हवा की गति के वर्ग के समानुपाती होता है, इसलिए मार्ग को संकरा या लंबा बनाने से गति/गतिशील दबाव बढ़ जाता है।

कई ऑटोमोबाइल निर्माता अलग-अलग नामों से समान तकनीक का उपयोग करते हैं। इस तकनीक के लिए एक अन्य सामान्य शब्द वेरिएबल रेजोनेंस इंडक्शन सिस्टम (वीआरआईएस) है।

Vehicles using variable intake geometry


यह भी देखें

संदर्भ

  1. "What Is an Intake Manifold? • STATE OF SPEED". STATE OF SPEED (in English). 2018-11-10. Retrieved 2022-02-03.
  2. manifold, (adv.) "in the proportion of many to one, by many times". AD1526 Oxford English Dictionary,
  3. Volvoclub UK: 850GLT Engine Info