तापीय स्खलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Situation where an increase in temperature causes a further increase in temperature}}
{{Short description|Situation where an increase in temperature causes a further increase in temperature}}
[[File:ThermalRunaway.png|thumb|right|तापीय स्खलन का आरेख]]तापीय स्खलन ऐसी प्रक्रिया का वर्णन करता है जो बढ़े हुए [[तापमान]] से त्वरित होती है, बदले में [[तापीय ऊर्जा]] को निर्मुक्त करती है जो तापमान को अधिक बढ़ाती है। तापीय स्खलन उन स्थितियों में होता है जहां तापमान में वृद्धि परिस्थितियों को इस तरह से परिवर्तित करती है जिससे तापमान में अधिक वृद्धि होती है, जो प्रायः विनाशकारी परिणाम की ओर ले जाती है। यह का एक प्रकार की अनियंत्रित [[सकारात्मक प्रतिक्रिया]] है।
[[File:ThermalRunaway.png|thumb|right|ऊष्मीय स्खलन का आरेख]]ऊष्मीय स्खलन ऐसी प्रक्रिया का वर्णन करता है जो बढ़े हुए [[तापमान]] से त्वरित होती है, बदले में [[तापीय ऊर्जा|ऊष्मीय ऊर्जा]] को निर्मुक्त करती है जो तापमान को अधिक बढ़ाती है। ऊष्मीय स्खलन उन स्थितियों में होता है जहां तापमान में वृद्धि परिस्थितियों को इस तरह से परिवर्तित करती है जिससे तापमान में अधिक वृद्धि होती है, जो प्रायः विनाशकारी परिणाम की ओर ले जाती है। यह का एक प्रकार की अनियंत्रित [[सकारात्मक प्रतिक्रिया]] है।


[[रसायन विज्ञान]] (और [[केमिकल इंजीनियरिंग|रासायनिक अभियांत्रिकी]]) में, तापीय स्खलन दृढ़ता से [[एक्ज़ोथिर्मिक|ऊष्माक्षैपी]] अभिक्रियाओं के साथ जुड़ा हुआ है जो तापमान में वृद्धि से त्वरित होते हैं। [[विद्युत अभियन्त्रण]] में, तापीय स्खलन सामान्य रूप से बढ़े हुए [[विद्युत प्रवाह]] और विद्युत [[अपव्यय]] से जुड़ा होता है। [[असैनिक अभियंत्रण|सिविल अभियांत्रिकी]] में तापीय स्खलन हो सकता है, विशेष रूप से जब बड़ी मात्रा में संसाधन स्थूल द्वारा निर्गमन को नियंत्रित नहीं किया जाता है।{{Citation needed|date=July 2017}} [[खगोल भौतिकी]] में, तारों में स्खलन [[परमाणु संलयन]] प्रतिक्रियाओं से नवतारा और कई प्रकार के [[सुपरनोवा|अधिनव तारा]] (सुपरनोवा) विस्फोट हो सकते हैं, और सौर-द्रव्यमान सितारों के सामान्य विकास में "हीलियम फ्लैश" के रूप में कम प्रभावशाली घटना भी हो सकती है।
[[रसायन विज्ञान]] (और [[केमिकल इंजीनियरिंग|रासायनिक अभियांत्रिकी]]) में, ऊष्मीय स्खलन दृढ़ता से [[एक्ज़ोथिर्मिक|ऊष्माक्षैपी]] अभिक्रियाओं के साथ जुड़ा हुआ है जो तापमान में वृद्धि से त्वरित होते हैं। [[विद्युत अभियन्त्रण]] में, ऊष्मीय स्खलन सामान्य रूप से बढ़े हुए [[विद्युत प्रवाह]] और विद्युत [[अपव्यय|विसरण]] से जुड़ा होता है। [[असैनिक अभियंत्रण|सिविल अभियांत्रिकी]] में ऊष्मीय स्खलन हो सकता है, विशेष रूप से जब बड़ी मात्रा में संसाधन स्थूल द्वारा निर्गमन को नियंत्रित नहीं किया जाता है।{{Citation needed|date=July 2017}} [[खगोल भौतिकी]] में, तारों में स्खलन [[परमाणु संलयन]] प्रतिक्रियाओं से नवतारा और कई प्रकार के [[सुपरनोवा|अधिनव तारा]] (सुपरनोवा) विस्फोट हो सकते हैं, और सौर-द्रव्यमान सितारों के सामान्य विकास में "हीलियम फ्लैश" के रूप में कम प्रभावशाली घटना भी हो सकती है।


कुछ जलवायु शोधकर्ताओं ने अनुमान लगाया है कि पूर्व-औद्योगिक आधार रेखा से ऊपर 3-4 डिग्री सेल्सियस की वैश्विक औसत तापमान वृद्धि से सतह के तापमान में अधिक अधिक अनियंत्रित वृद्धि हो सकती है। उदाहरण के लिए, [[वायुमंडलीय मीथेन]] का निर्गमन, [[ग्रीनहाउस गैस]] जो कार्बन डाइऑक्साइड (CO<sub>2</sub>) की तुलना में अधिक शक्तिशाली है, आर्द्रभूमि से, पिघलने वाले स्थायी तुषार भूमि और महाद्वीपीय सीमांत समुद्र सतह   जालक निक्षेप सकारात्मक प्रतिक्रिया के अधीन हो सकते हैं।<ref name="ccsp abrupt climate change">
कुछ जलवायु शोधकर्ताओं ने अनुमान लगाया है कि पूर्व-औद्योगिक आधार रेखा से ऊपर 3-4 डिग्री सेल्सियस की वैश्विक औसत तापमान वृद्धि से सतह के तापमान में अधिक अधिक अनियंत्रित वृद्धि हो सकती है। उदाहरण के लिए, [[वायुमंडलीय मीथेन]] का निर्गमन, [[ग्रीनहाउस गैस]] जो कार्बन डाइऑक्साइड (CO<sub>2</sub>) की तुलना में अधिक शक्तिशाली है, आर्द्रभूमि से, पिघलने वाले स्थायी तुषार भूमि और महाद्वीपीय सीमांत समुद्र सतह जालक निक्षेप सकारात्मक प्रतिक्रिया के अधीन हो सकते हैं।<ref name="ccsp abrupt climate change">
{{Cite book
{{Cite book
  |author          = Clark, P.U.
  |author          = Clark, P.U.
Line 19: Line 19:


== रासायनिक अभियांत्रिकी ==
== रासायनिक अभियांत्रिकी ==
तापीय स्खलन से जुड़ी रासायनिक प्रतिक्रियाओं को रासायनिक अभियांत्रिकी में [[तापीय विस्फोट]] , या [[कार्बनिक रसायन विज्ञान]] में स्खलन प्रतिक्रियाएं भी कहा जाता है। यह ऐसी प्रक्रिया है जिसके द्वारा [[उष्माक्षेपी प्रतिक्रिया]] नियंत्रण से बाहर हो जाती है: तापमान में वृद्धि के कारण प्रतिक्रिया दर बढ़ जाती है, जिससे तापमान में अधिक वृद्धि होती है और इसलिए प्रतिक्रिया दर में अधिक तेजी से वृद्धि होती है। इसने औद्योगिक रासायनिक दुर्घटनाओं में योगदान दिया है, विशेष रूप से 1947 [[टेक्सास सिटी आपदा|टेक्सास शहर आपदा]] से जहाज के नियन्त्रण में अमोनियम नाइट्रेट से अधिक गरम होने से, और 1976 में किंग्स लिन में शोषित्र में ज़ोलेन का विस्फोट हुआ।<ref>{{cite web|url=https://www.icheme.org/communities/special-interest-groups/safety%20and%20loss%20prevention/resources/~/media/Documents/Subject%20Groups/Safety_Loss_Prevention/HSE%20Accident%20Reports/The%20Explosion%20at%20Dow%20Kings%20Lynn.pdf|title=The explosion at the Dow chemical factory, King's Lynn 27 June 1976|date=March 1977|publisher=Health & Safety Executive|access-date=9 January 2018}}</ref> फ्रैंक-कामेनेत्स्की सिद्धांत तापीय विस्फोट के लिए एक सरलीकृत विश्लेषणात्मक मॉडल प्रदान करता है। [[श्रृंखला अभिक्रिया]] अतिरिक्त सकारात्मक प्रतिक्रिया तंत्र है जिससे तेजी से बढ़ती प्रतिक्रिया दर के कारण तापमान भी वृद्धि हो सकता है।
ऊष्मीय स्खलन से जुड़ी रासायनिक प्रतिक्रियाओं को रासायनिक अभियांत्रिकी में [[तापीय विस्फोट|ऊष्मीय विस्फोट]], या [[कार्बनिक रसायन विज्ञान]] में स्खलन प्रतिक्रियाएं भी कहा जाता है। यह ऐसी प्रक्रिया है जिसके द्वारा [[उष्माक्षेपी प्रतिक्रिया]] नियंत्रण से बाहर हो जाती है: तापमान में वृद्धि के कारण प्रतिक्रिया दर बढ़ जाती है, जिससे तापमान में अधिक वृद्धि होती है और इसलिए प्रतिक्रिया दर में अधिक तेजी से वृद्धि होती है। इसने औद्योगिक रासायनिक दुर्घटनाओं में योगदान दिया है, विशेष रूप से 1947 [[टेक्सास सिटी आपदा|टेक्सास शहर आपदा]] से जहाज के नियन्त्रण में अमोनियम नाइट्रेट से अधिक गरम होने से, और 1976 में किंग्स लिन में शोषित्र में ज़ोलेन का विस्फोट हुआ।<ref>{{cite web|url=https://www.icheme.org/communities/special-interest-groups/safety%20and%20loss%20prevention/resources/~/media/Documents/Subject%20Groups/Safety_Loss_Prevention/HSE%20Accident%20Reports/The%20Explosion%20at%20Dow%20Kings%20Lynn.pdf|title=The explosion at the Dow chemical factory, King's Lynn 27 June 1976|date=March 1977|publisher=Health & Safety Executive|access-date=9 January 2018}}</ref> फ्रैंक-कामेनेत्स्की सिद्धांत ऊष्मीय विस्फोट के लिए एक सरलीकृत विश्लेषणात्मक मॉडल प्रदान करता है। [[श्रृंखला अभिक्रिया]] अतिरिक्त सकारात्मक प्रतिक्रिया तंत्र है जिससे तेजी से बढ़ती प्रतिक्रिया दर के कारण तापमान भी वृद्धि हो सकता है।


रासायनिक प्रतिक्रियाएं या तो ऊष्माशोषी या ऊष्माक्षैपी होती हैं, जैसा कि एन्थैल्पी में उनके परिवर्तन से व्यक्त किया गया है। कई प्रतिक्रियाएं अत्यधिक ऊष्माक्षैपी हैं, इसलिए कई औद्योगिक-पैमाने और [[तेल शोधशाला]] प्रक्रियाओं में तापीय स्खलन के जोखिम के कुछ स्तर होते हैं।इनमें हाइड्रोकार्बन, हाइड्रोजनीकरण, ऐल्किलन ((S<sub>N</sub>2), ऑक्सीकरण, धातुकरण और न्यूक्लियोफिलिक एरोमेटिक प्रतिस्थापन सम्मिलित हैं। उदाहरण के लिए, साइक्लोहेक्सेन के साइक्लोहेक्सेनोल में ऑक्सीकरण और साइक्लोहेक्सानोन और ऑर्थो-ज़ाइलीन को फ्थेलिक एनहाइड्राइड में ऑक्सीकरण ने प्रतिक्रिया नियंत्रण विफल होने पर विपाती विस्फोट किया है।
रासायनिक प्रतिक्रियाएं या तो ऊष्माशोषी या ऊष्माक्षैपी होती हैं, जैसा कि एन्थैल्पी में उनके परिवर्तन से व्यक्त किया गया है। कई प्रतिक्रियाएं अत्यधिक ऊष्माक्षैपी हैं, इसलिए कई औद्योगिक-पैमाने और [[तेल शोधशाला]] प्रक्रियाओं में ऊष्मीय स्खलन के जोखिम के कुछ स्तर होते हैं।इनमें हाइड्रोकार्बन, हाइड्रोजनीकरण, ऐल्किलन (S<sub>N</sub>2), ऑक्सीकरण, धातुकरण और न्यूक्लियोफिलिक एरोमेटिक प्रतिस्थापन सम्मिलित हैं। उदाहरण के लिए, साइक्लोहेक्सेन के साइक्लोहेक्सेनोल में ऑक्सीकरण और साइक्लोहेक्सानोन और ऑर्थो-ज़ाइलीन को फ्थेलिक एनहाइड्राइड में ऑक्सीकरण ने प्रतिक्रिया नियंत्रण विफल होने पर विपाती विस्फोट किया है।


तापीय स्खलन के परिणामस्वरूप अवांछित ऊष्माक्षैपी पार्श्व अभिक्रिया (एस) से हो सकता है जो प्रतिक्रिया मिश्रण के प्रारंभिक आकस्मिक अधितापन के बाद उच्च तापमान पर प्रारंभ होता है। यह परिदृश्य [[सेवेसो आपदा]] के पीछे था, जहां तापीय स्खलन ने तापमान पर प्रतिक्रिया को गर्म किया, जैसे कि 2,4,5-ट्राइक्लोरोफेनोल के अतिरिक्त, विषाक्त 2,3,7,8-टेट्राक्लोरोडिबेन्जो-पी-डाइऑक्सिन का भी उत्पादन किया गया था, और प्रतिघातित्र के संविदारण की चक्रिका प्रस्फोट के बाद पर्यावरण में विलग किया गया था।<ref name = "Kletz">{{cite book | last = Kletz | first = Trevor A. | author-link = Trevor Kletz | title = Learning from Accidents | edition = 3rd | publisher = Gulf Professional | date = 2001 | location = Oxford U.K. | pages = 103–9 | url = https://books.google.com/books?id=zulmgUi5_aEC&pg=PA103 | isbn = 978-0-7506-4883-7}}</ref>
ऊष्मीय स्खलन के परिणामस्वरूप अवांछित ऊष्माक्षैपी पार्श्व अभिक्रिया (एस) से हो सकता है जो प्रतिक्रिया मिश्रण के प्रारंभिक आकस्मिक अधितापन के बाद उच्च तापमान पर प्रारंभ होता है। यह परिदृश्य [[सेवेसो आपदा]] के पीछे था, जहां ऊष्मीय स्खलन ने तापमान पर प्रतिक्रिया को गर्म किया, जैसे कि 2,4,5-ट्राइक्लोरोफेनोल के अतिरिक्त, विषाक्त 2,3,7,8-टेट्राक्लोरोडिबेन्जो-पी-डाइऑक्सिन का भी उत्पादन किया गया था, और प्रतिघातित्र के संविदारण की चक्रिका प्रस्फोट के बाद पर्यावरण में विलग किया गया था।<ref name = "Kletz">{{cite book | last = Kletz | first = Trevor A. | author-link = Trevor Kletz | title = Learning from Accidents | edition = 3rd | publisher = Gulf Professional | date = 2001 | location = Oxford U.K. | pages = 103–9 | url = https://books.google.com/books?id=zulmgUi5_aEC&pg=PA103 | isbn = 978-0-7506-4883-7}}</ref>


तापीय स्खलन सबसे अधिक बार [[रासायनिक रिएक्टर|रासायनिक प्रतिघातित्र]] पोत की [[शीतलक]] प्रणाली की विफलता के कारण होता है। मिश्रण-यन्त्र की विफलता के परिणामस्वरूप स्थानीयकृत ताप हो सकती है, जो तापीय स्खलन की प्रारंभ करती है। इसी तरह, प्रवाह रिएक्टरों में, स्थानीयकृत अपर्याप्त मिश्रण के कारण अतिक्षेत्र का कारण बनता है, जिसमें तापीय स्खलन स्थिति उत्पन्न होती है, जो प्रतिघातित्र सामग्री और उत्प्रेरक के तीव्र विस्फोट का कारण बनती है। गलत उपकरण घटकों की स्थापना भी एक सामान्य कारण है I कई रासायनिक उत्पादन सुविधाओं को उच्च मात्रा वाले आपातकालीन निकास के साथ डिज़ाइन किया गया है, जब ऐसी दुर्घटनाएँ होती हैं तो चोट और संपत्ति के नुकसान की सीमा को सीमित करने का एक उपाय है।
ऊष्मीय स्खलन सबसे अधिक बार [[रासायनिक रिएक्टर|रासायनिक प्रतिघातित्र]] पोत की [[शीतलक]] प्रणाली की विफलता के कारण होता है। मिश्रण-यन्त्र की विफलता के परिणामस्वरूप स्थानीयकृत ताप हो सकती है, जो ऊष्मीय स्खलन की प्रारंभ करती है। इसी तरह, प्रवाह रिएक्टरों में, स्थानीयकृत अपर्याप्त मिश्रण के कारण अतिक्षेत्र का कारण बनता है, जिसमें ऊष्मीय स्खलन स्थिति उत्पन्न होती है, जो प्रतिघातित्र सामग्री और उत्प्रेरक के तीव्र विस्फोट का कारण बनती है। गलत उपकरण घटकों की स्थापना भी एक सामान्य कारण है I कई रासायनिक उत्पादन सुविधाओं को उच्च मात्रा वाले आपातकालीन निकास के साथ डिज़ाइन किया गया है, जब ऐसी दुर्घटनाएँ होती हैं तो चोट और संपत्ति के नुकसान की सीमा को सीमित करने का एक उपाय है।


बड़े पैमाने पर, सभी अभिकर्मकों को चार्ज करना और मिश्रण करना असुरक्षित है, जैसा कि प्रयोगशाला पैमाने में किया जाता है। ऐसा इसलिए है क्योंकि पोत के आकार के घन के साथ प्रतिक्रिया तराजू की मात्रा (v ∝ rγ), लेकिन गर्मी हस्तांतरण क्षेत्र आकार के वर्ग (a ric) के साथ तराजू है, ताकि गर्मी उत्पादन-से-क्षेत्रआकार के साथ अनुपात तराजू (v/a ∝ r)।परिणामस्वरूप, प्रयोगशाला में आसानी से पर्याप्त तेजी से ठंडा होने वाली प्रतिक्रियाएं टन पैमाने पर खतरनाक रूप से आत्म-हीट कर सकती हैं। 2007 में, इस तरह की गलत प्रक्रिया के कारण विस्फोट हुआ {{convert|2400|gal|liter}}-Reactor का उपयोग मेटेलिक [[सोडियम]] के साथ [[मेथिलसाइक्लोपेंटाडीना]] के लिए किया जाता है, जिससे चार लोगों की जान चली जाती है और प्रतिघातित्र के कुछ हिस्सों को फुलाया जाता है {{convert|400|ft|m}} दूर।<ref name="Lowe2009">{{cite web|last1=Lowe|first1=Derek|author-link1=Derek Lowe (chemist)|title=175 Times. And Then the Catastrophe|url=http://pipeline.corante.com/archives/2009/09/18/175_times_and_then_the_catastrophe.php|archive-url= https://web.archive.org/web/20150320042204/http://pipeline.corante.com/archives/2009/09/18/175_times_and_then_the_catastrophe.php|date= 2009-09-18|archive-date= 2015-03-20|website=Corante|access-date=16 April 2016|url-status= dead}}</ref><ref name="Lowe2008">{{cite web|last1=Lowe|first1=Derek|author-link1=Derek Lowe (chemist)|title=How Not To Do It: Diazomethane|url=https://www.science.org/content/blog-post/not-do-diazomethane|website=Science Translational Magazine|publisher=American Association for the Advancement of Science|date= 2008-04-30|access-date=16 April 2016}}</ref> इस प्रकार, तापीय स्खलन से ग्रस्त औद्योगिक पैमाने पर प्रतिक्रियाएं उपलब्ध शीतलन क्षमता के अनुरूप दर पर अभिकर्मक के अतिरिक्त को अधिमानतः नियंत्रित करती हैं।
बड़े पैमाने पर, "सभी अभिकर्मकों को आवेशित करना और मिश्रण करना" असुरक्षित है,, जैसा कि प्रयोगशाला पैमाने में किया जाता है। ऐसा इसलिए है क्योंकि प्रतिक्रिया की मात्रा बर्तन के आकार के घन (v ∝ rγ), के साथ मापी जाती है लेकिन उष्मा का स्थानांतरण क्षेत्र आकार के वर्ग (A ) के साथ बढ़ता है, ताकि ऊष्मा उत्पादन-से-क्षेत्र अनुपात का पैमाना हो आकार (v/a ∝ r)के साथ है। परिणामस्वरूप, प्रतिक्रियाएं जो आसानी से प्रयोगशाला में पर्याप्त तीव्रता से ठंडा हो जाती हैं, टन पैमाने पर असुरक्षित रूप से स्व-ऊष्मा कर सकती हैं। 2007 में, इस तरह की गलत प्रक्रिया के कारण 2,400 यू.एस. गैलन (9,100 एल) -रिएक्टर का विस्फोट हुआ, जिसका उपयोग धातु सोडियम के साथ मिथाइलसाइक्लोपेंटाडाइन को धातुकृत करने के लिए किया गया, जिससे चार लोगों की जान चली गई और रिएक्टर के कुछ हिस्से 400 फीट (120 मीटर) दूर बह गए।<ref name="Lowe2009">{{cite web|last1=Lowe|first1=Derek|author-link1=Derek Lowe (chemist)|title=175 Times. And Then the Catastrophe|url=http://pipeline.corante.com/archives/2009/09/18/175_times_and_then_the_catastrophe.php|archive-url= https://web.archive.org/web/20150320042204/http://pipeline.corante.com/archives/2009/09/18/175_times_and_then_the_catastrophe.php|date= 2009-09-18|archive-date= 2015-03-20|website=Corante|access-date=16 April 2016|url-status= dead}}</ref><ref name="Lowe2008">{{cite web|last1=Lowe|first1=Derek|author-link1=Derek Lowe (chemist)|title=How Not To Do It: Diazomethane|url=https://www.science.org/content/blog-post/not-do-diazomethane|website=Science Translational Magazine|publisher=American Association for the Advancement of Science|date= 2008-04-30|access-date=16 April 2016}}</ref> इस प्रकार, ऊष्मीय स्खलन से ग्रस्त औद्योगिक पैमाने पर प्रतिक्रियाएं उपलब्ध शीतलन क्षमता के अनुरूप दर पर एक अभिकर्मक के अतिरिक्त द्वारा नियंत्रित होती हैं।


कुछ प्रयोगशाला प्रतिक्रियाओं को अत्यधिक शीतलन के तहत चलाया जाना चाहिए, क्योंकि वे खतरनाक तापीय स्खलन के लिए बहुत प्रवण हैं। उदाहरण के लिए, स्वर्न ऑक्सीकरण में, [[सल्फोनियम]] क्लोराइड का गठन  ठंडा प्रणाली (−30 & nbsp; ° C) में किया जाना चाहिए, क्योंकि कमरे के तापमान पर प्रतिक्रिया विस्फोटक तापीय स्खलन से गुजरती है।<ref name="Lowe2008" />
कुछ प्रयोगशाला प्रतिक्रियाओं को अत्यधिक शीतलन के अंतर्गत चलाया जाना चाहिए, क्योंकि वे परिसंकटग्रस्त ऊष्मीय स्खलन के लिए बहुत प्रवण हैं। उदाहरण के लिए, स्वर्न ऑक्सीकरण में, सल्फोनियम क्लोराइड का निर्माण एक ठंडी प्रणाली (-30 डिग्री सेल्सियस) में किया जाना चाहिए, क्योंकि कमरे के तापमान पर प्रतिक्रिया विस्फोटक ऊष्मीय स्खलन से होकर गुजरती है।<ref name="Lowe2008" />
== माइक्रोवेव ताप ==
माइक्रोवेव का उपयोग खाना पकाने और विभिन्न औद्योगिक प्रक्रियाओं में विभिन्न सामग्रियों को गर्म करने के लिए किया जाता है। सामग्री के ताप की दर ऊर्जा अवशोषण पर निर्भर करती है, जो सामग्री के पारद्युतिक स्थिरांक पर निर्भर करती है। तापमान पर पारद्युतिक स्थिरांक की निर्भरता विभिन्न सामग्रियों के लिए भिन्न होती है; कुछ सामग्री बढ़ते तापमान के साथ महत्वपूर्ण वृद्धि प्रदर्शित करती है। यह व्यवहार, जब सामग्री माइक्रोवेव के संपर्क में आती है, तो चयनात्मक स्थानीय अतितापन की ओर जाता है, क्योंकि गर्म क्षेत्र ठंडे क्षेत्रों की तुलना में आगे की ऊर्जा को स्वीकार करने में सक्षम होते हैं - विशेष रूप से ऊष्मीय विद्युतरोधक के लिए संभावित रूप से असुरक्षित, जहां गर्म स्थानों और अन्य सामग्री के बीच ताप विनिमय मंद होता है। इन सामग्रियों को ऊष्मीय स्खलन सामग्री कहा जाता है। यह घटना कुछ सिरेमिक सामग्रियों में होती है।


== इलेक्ट्रिकल इंजीनियरिंग ==
कुछ इलेक्ट्रॉनिक घटक कम प्रतिरोध या कम प्रवर्तन विद्युत-दाब (गैर रेखीय प्रतिरोधों के लिए) विकसित करते हैं क्योंकि उनका आंतरिक तापमान बढ़ता है। यदि परिपथ की स्थिति इन स्थितियों में स्पष्ट रूप से धारा प्रवाह में वृद्धि का कारण बनती है, तब बढ़ी हुई शक्ति का विसरण जूल ताप द्वारा तापमान को अधिक बढ़ा सकता है। ऊष्मीय स्खलन का दुष्चक्र या सकारात्मक प्रतिक्रिया प्रभाव कभी-कभी प्रभावशाली विधि, (जैसे विद्युत विस्फोट या आग) में विफलता का कारण बन सकता है। इन खतरों को रोकने के लिए, अच्छी तरह से डिज़ाइन किए गए इलेक्ट्रॉनिक प्रणाली में सामान्य रूप से धारा सीमित सुरक्षा जैसे कि ऊष्मीय फ्यूज, परिपथ वियोजक, या [[तापमान गुणांक]] [[सकारात्मक तापमान गुणांक]] धारा सीमाएँ सम्मिलित होती है।


== [[माइक्रोवेव]] हीटिंग ==
बड़ी धाराओं को नियंत्रण करने के लिए, परिपथ अभिकल्पक [[समानांतर सर्किट|समानांतर परिपथ]] में कई कम-क्षमता वाले उपकरणों (जैसे प्रतिरोधान्तरित्र, डायोड, या [[धातु-ऑक्साइड वेरिस्टर|धातु-ऑक्साइड चररोधक]]) को जोड़ सकते हैं। यह तकनीक अच्छी तरह से काम कर सकती है, लेकिन धारा उत्रलन नामक घटना के लिए अतिसंवेदनशील है, जिसमें धारा को सभी उपकरणों में समान रूप से साझा नहीं किया जाता है। सामान्य रूप से, उपकरण में थोड़ा कम प्रतिरोध हो सकता है, और इस प्रकार अधिक धारा अवशोषित करता है, इसे अपने सहोदर उपकरणों की तुलना में अधिक गर्म करता है, जिससे इसका प्रतिरोध और कम हो जाता है। विद्युत भार ही उपकरण में फनलन (धुआँ निकलने का छिद्र ) को समाप्त करता है, जिससे तेजी से विफल हो जाता है। इस प्रकार, उपकरणों की सरणी अपने सबसे कमजोर घटक से अधिक मजबूत नहीं हो सकती है।
खाना पकाने और विभिन्न औद्योगिक प्रक्रियाओं में विभिन्न सामग्रियों के [[माइक्रोवेविंग]] के लिए माइक्रोवेव का उपयोग किया जाता है। सामग्री के ताप की दर ऊर्जा अवशोषण पर निर्भर करती है, जो सामग्री के ढांकता हुआ स्थिरांक पर निर्भर करती है। तापमान पर ढांकता हुआ स्थिरांक की निर्भरता विभिन्न सामग्रियों के लिए भिन्न होती है;कुछ सामग्री बढ़ते तापमान के साथ महत्वपूर्ण वृद्धि प्रदर्शित करती है। यह व्यवहार, जब सामग्री माइक्रोवेव के संपर्क में आती है, तो चयनात्मक स्थानीय ओवरहीटिंग की ओर जाता है, क्योंकि गर्म क्षेत्र ठंडे क्षेत्रों की तुलना में आगे की ऊर्जा को स्वीकार करने में सक्षम होते हैं - विशेष रूप से तापीय इंसुलेटरों के लिए संभावित रूप से खतरनाक, जहां गर्म स्थानों के बीच गर्मी का आदान -प्रदान होता है औरबाकी सामग्री धीमी है। इन सामग्रियों को तापीय स्खलन सामग्री कहा जाता है। यह घटना कुछ सिरेमिक सामग्रियों में होती है।


== इलेक्ट्रिकल इंजीनियरिंग ==
धारा-उत्रलन प्रभाव को प्रत्येक समान उपकरण की विशेषताओं से संयोजन करके, या विद्युत भार को संतुलित करने के लिए अन्य डिज़ाइन तकनीकों का उपयोग करके सावधानी से कम किया जा सकता है। हालांकि, अधिकतम परिस्थितियों में भार संतुलन बनाए रखना सरल नहीं हो सकता है। विद्युत प्रतिरोध के आंतरिक [[सकारात्मक तापमान गुणांक]] (पीटीसी) वाले उपकरण धारा उत्रलन के लिए कम प्रवण होते हैं, लेकिन ऊष्मीय स्खलन अभी भी अपशिष्ट ऊष्मा के गर्तन या अन्य समस्याओं के कारण हो सकते हैं।
कुछ इलेक्ट्रॉनिक घटक कम प्रतिरोध या कम ट्रिगरिंग विद्युत-दाब (नॉनलाइनर प्रतिरोधों के लिए) विकसित करते हैं क्योंकि उनका आंतरिक तापमान बढ़ता है। यदि परिपथ की स्थिति इन स्थितियों में स्पष्ट रूप से वर्तमान प्रवाह में वृद्धि का कारण बनती है, तो बढ़ी हुई विद्युत अपव्यय [[जौले हीटिंग]] द्वारा तापमान को और बढ़ा सकता है। तापीय स्खलन का  दुष्चक्र या सकारात्मक प्रतिक्रिया प्रभाव विफलता का कारण बन सकता है, कभी -कभी  शानदार फैशन (जैसे विद्युत विस्फोट या आग) में।इन खतरों को रोकने के लिए, अच्छी तरह से डिज़ाइन किए गए इलेक्ट्रॉनिक सिस्टम में सामान्य रूप से वर्तमान सीमित सुरक्षा सम्मिलित होती है, जैसे कि तापीय फ़्यूज़, परिपथ ब्रेकर, या [[तापमान गुणांक]] वर्तमान सीमाएँ।


बड़ी धाराओं को संभालने के लिए, परिपथ डिजाइनर [[समानांतर सर्किट|समानांतर परिपथ]] में कई कम-क्षमता वाले उपकरणों (जैसे  प्रतिरोधान्तरित्र, डायोड, या [[धातु-ऑक्साइड वेरिस्टर]]) को जोड़ सकते हैं। यह तकनीक अच्छी तरह से काम कर सकती है, लेकिन वर्तमान हॉगिंग नामक  घटना के लिए अतिसंवेदनशील है, जिसमें वर्तमान को सभी उपकरणों में समान रूप से साझा नहीं किया जाता है। सामान्य रूप से, उपकरण में थोड़ा कम प्रतिरोध हो सकता है, और इस प्रकार अधिक वर्तमान खींचता है, इसे अपने भाई -बहन उपकरणों की तुलना में अधिक गर्म करता है, जिससे इसके प्रतिरोध को और अधिक छोड़ दिया जाता है। विद्युत लोड  ही डिवाइस में फ़नलिंग को समाप्त करता है, जो तब तेजी से विफल हो जाता है। इस प्रकार, उपकरणों की  सरणी अपने सबसे कमजोर घटक से अधिक मजबूत नहीं हो सकती है।
कई इलेक्ट्रॉनिक परिपथ में ऊष्मीय स्खलन को रोकने के लिए विशेष प्रावधान होते हैं। यह प्रायः उच्च-शक्ति निर्गमित चरणों के लिए प्रतिरोधान्तरित्र झुकाव व्यवस्था में देखा जाता है। हालांकि, जब उपकरण को इसके डिज़ाइन किए गए परिवेश तापमान के ऊपर उपयोग किया जाता है, तो ऊष्मीय स्खलन अभी भी कुछ स्थितियो में हो सकता है। यह कभी -कभी गर्म वातावरण में उपकरण विफलताओं का कारण बनता है, या जब [[हवा ठंडी करना|वायु शीतन]] निर्गम अवरुद्ध हो जाते हैं।


वर्तमान-हॉगिंग प्रभाव को प्रत्येक समान डिवाइस की विशेषताओं से मिलान करके, या विद्युत लोड को संतुलित करने के लिए अन्य डिज़ाइन तकनीकों का उपयोग करके सावधानी से कम किया जा सकता है। हालांकि, अधिकतम परिस्थितियों में लोड संतुलन बनाए रखना सीधा नहीं हो सकता है। विद्युत प्रतिरोध के  आंतरिक [[सकारात्मक तापमान गुणांक]] (पीटीसी) वाले उपकरण वर्तमान हॉगिंग के लिए कम प्रवण होते हैं, लेकिन तापीय स्खलन अभी भी खराब गर्मी के डूबने या अन्य समस्याओं के कारण हो सकते हैं।
=== अर्द्धचालक ===
[[सिलिकॉन]] विशिष्ट रूपरेखा दिखाता है, जिसमें इसका विद्युत प्रतिरोध तापमान के साथ लगभग 160 डिग्री सेल्सियस तक बढ़ जाता है, फिर कम होने लगता है, और गलनांक तक पहुंचने पर आगे गिरता है। यह [[अर्धचालक जंक्शन|अर्धचालक संयोजन]] के आंतरिक क्षेत्रों के अंदर ऊष्मीय स्खलन घटना को उत्पन्न कर सकता है; उन क्षेत्रों में प्रतिरोध कम हो जाता है जो इस सीमा से ऊपर गर्म हो जाते हैं, जिससे अधिक धारा को गर्म क्षेत्रों के माध्यम से प्रवाहित करने की स्वीकृति मिलती है, बदले में आसपास के क्षेत्रों की तुलना में अभी तक अधिक ताप का कारण बनता है, जिससे आगे तापमान में वृद्धि होती है और प्रतिरोध में कमी आती है। यह [[वर्तमान भीड़|धारा संकुलन]] और [[वर्तमान फिलामेंट|धारा]] संवाहक तार (धारा उत्रलन के समान, लेकिन उपकरण के अंदर) की घटना की ओर जाता है,और कई अर्धचालक संयोजन विफलताओं के अंतर्निहित कारणों में से एक है।


कई इलेक्ट्रॉनिक परिपथ में तापीय स्खलन को रोकने के लिए विशेष प्रावधान होते हैं। यह प्रायः उच्च-शक्ति आउटपुट चरणों के लिए  प्रतिरोधान्तरित्र बायसिंग व्यवस्था में देखा जाता है। हालांकि, जब उपकरण को इसके डिज़ाइन किए गए परिवेश तापमान के ऊपर उपयोग किया जाता है, तो तापीय स्खलन अभी भी कुछ स्थितियो में हो सकता है। यह कभी -कभी गर्म वातावरण में उपकरण विफलताओं का कारण बनता है, या जब [[हवा ठंडी करना]] वेंट अवरुद्ध हो जाते हैं।
=== द्विध्रुवी संयोजन प्रतिरोधान्तरित्र (बीजेटी) ===
तापमान में वृद्धि के साथ द्विध्रुवी प्रतिरोधान्तरित्र (विशेष रूप से जर्मेनियम-आधारित द्विध्रुवी प्रतिरोधान्तरित्र) में क्षरण की धारा अधिकतम बढ़ जाती है। परिपथ के डिजाइन के आधार पर, रिसाव धारा में यह वृद्धि प्रतिरोधान्तरित्र के माध्यम से प्रवाह को बढ़ा सकती है और इस प्रकार विद्युत विसरण, संग्राहक-से-उत्सर्जक रिसाव धारा में अधिक वृद्धि का कारण बनता है। यह प्रायः कक्षा एबी प्रवर्धक के कर्षापकर्ष चरण में देखा जाता है; यदि विपटलन और अधोकर्षण प्रतिरोधान्तरित्र कमरे के तापमान पर न्यूनतम [[क्रॉसओवर विरूपण|विनिमय]] के [[क्रॉसओवर विरूपण|विरूपण]] के लिए अभिनत होता है, और अभिनति तापमान- प्रतिकारित नहीं है, तो जैसे ही तापमान बढ़ता है दोनों प्रतिरोधान्तरित्र तेजी से पक्षपाती होंगे, जिससे धारा और शक्ति में और वृद्धि होगी, और अंततः एक या दोनों उपकरणों को नष्ट कर देता है।


=== अर्द्धचालक ===
ऊष्मीय स्खलन से बचने के लिए अधीन का नियम द्विध्रुवी संयोजन प्रतिरोधान्तरित्र के संचालन बिंदु को रखना है ताकिv<sub>ce</sub> ≤ 1/2V<sub>cc</sub> हो।
[[सिलिकॉन]]  अजीबोगरीब प्रोफ़ाइल दिखाता है, जिसमें इसका विद्युत प्रतिरोध तापमान के साथ लगभग 160 & nbsp; ° C तक बढ़ जाता है, फिर कम होने लगता है, और पिघलने बिंदु तक पहुंचने पर आगे गिरता है। यह [[अर्धचालक जंक्शन]] के आंतरिक क्षेत्रों के भीतर तापीय स्खलन घटना को जन्म दे सकता है;उन क्षेत्रों में प्रतिरोध कम हो जाता है जो इस सीमा से ऊपर गर्म हो जाते हैं, जिससे अधिक वर्तमान को गर्म क्षेत्रों के माध्यम से प्रवाहित करने की स्वीकृति मिलती है, बदले में आसपास के क्षेत्रों की तुलना में अभी तक अधिक ताप का कारण बनता है, जिससे आगे तापमान में वृद्धि होती है और प्रतिरोध में कमी आती है।यह [[वर्तमान भीड़]] की घटना और [[वर्तमान फिलामेंट]]्स (वर्तमान हॉगिंग के समान, लेकिन  उपकरण के भीतर) की घटना की ओर जाता है, और इलेक्ट्रॉनिक्स के कई विफलता मोड के अंतर्निहित कारणों में से  है।


=== द्विध्रुवी जंक्शन  प्रतिरोधान्तरित्र (BJTS) ===
अन्य पद्धति [[क्रॉसओवर विरूपण|विनिमय]] अभिनति विद्युत-दाब को नियंत्रित करने के लिए ऊष्मा अभिगम पर ऊष्मीय पुनर्निवेशन संवेदन प्रतिरोधान्तरित्र या अन्य उपकरण को स्थापित करना है। जैसे -जैसे निर्गमित प्रतिरोधान्तरित्र गर्म हो जाता है, वैसे ही ऊष्मीय फीडबैक प्रतिरोधान्तरित्र होता है। यह बदले में ऊष्मीय फीडबैक प्रतिरोधान्तरित्र को थोड़ा कम विद्युत-दाब पर चालू करने का कारण बनता है, विनिमय अभिनति विद्युत-दाब को कम करता है, और इसलिए निर्गमित प्रतिरोधान्तरित्र द्वारा विघटित ऊष्मा को कम करता है।  
[[[[द्विध्रुवी ट्रांजिस्टर|द्विध्रुवी  प्रतिरोधान्तरित्र]] पूर्वाग्रह]]विशेष रूप से [[जर्मेनियम]]-आधारित द्विध्रुवी  प्रतिरोधान्तरित्र) में [[रिसाव (अर्धचालक)]] अधिकतम बढ़ जाता है क्योंकि वे तापमान में वृद्धि करते हैं। परिपथ के डिजाइन के आधार पर, रिसाव वर्तमान में यह वृद्धि  प्रतिरोधान्तरित्र के माध्यम से प्रवाह को बढ़ा सकती है और इस प्रकार विद्युत अपव्यय, कलेक्टर-से-एमिटर रिसाव करंट में अधिक वृद्धि का कारण बनता है। यह प्रायः  पुश & ndash में देखा जाता है; पुल आउटपुट | पुश & ndash;  इलेक्ट्रॉनिक एम्पलीफायर#क्लास एबी एम्पलीफायर का चरण चरण। यदि पुल-अप और पुल-डाउन  प्रतिरोधान्तरित्र द्विध्रुवी  प्रतिरोधान्तरित्र [[बयाझिंग]] होते हैं, तो कमरे के तापमान पर न्यूनतम [[क्रॉसओवर विरूपण]] होता है, और बायसिंग तापमान-मुआवजा नहीं होता है, तो जैसे ही तापमान बढ़ता है दोनों  प्रतिरोधान्तरित्र तेजी से पक्षपाती होंगे, जिससे करंट और पावर को वर्तमान और शक्ति मिलती है। आगे वृद्धि, और अंततः  या दोनों उपकरणों को नष्ट कर रहा है।


तापीय स्खलन से बचने के लिए अंगूठे का  नियम  द्विध्रुवी संधि ट्रांजिस्टर के पूर्वाग्रह को बनाए रखना है ताकि v<sub>ce</sub> ≤ 1/2V<sub>cc</sub>
यदि कई द्विध्रुवी संयोजन प्रतिरोधान्तरित्र समानांतर में जुड़े हुए हैं (जो उच्च धारा अनुप्रयोगों में विशिष्ट है), तो धारा उत्रलन समस्या हो सकती है। द्विध्रुवी संयोजन प्रतिरोधान्तरित्र की इस विशेषता भेद्यता को नियंत्रित करने के लिए विशेष उपाय किए जाने चाहिए।
अन्य अभ्यास क्रॉसओवर बायस विद्युत-दाब को नियंत्रित करने के लिए हीट सिंक पर  तापीय फीडबैक सेंसिंग  प्रतिरोधान्तरित्र या अन्य डिवाइस को माउंट करना है। जैसे -जैसे आउटपुट  प्रतिरोधान्तरित्र गर्म हो जाता है, वैसे ही तापीय फीडबैक  प्रतिरोधान्तरित्र होता है। यह बदले में तापीय फीडबैक  प्रतिरोधान्तरित्र को थोड़ा कम विद्युत-दाब पर चालू करने का कारण बनता है, क्रॉसओवर बायस विद्युत-दाब को कम करता है, और इसलिए आउटपुट  प्रतिरोधान्तरित्र द्वारा विघटित गर्मी को कम करता है।


यदि कई द्विध्रुवी संधि ट्रांजिस्टर  प्रतिरोधान्तरित्र समानांतर में जुड़े हुए हैं (जो उच्च वर्तमान अनुप्रयोगों में विशिष्ट है), तो  वर्तमान हॉगिंग समस्या हो सकती है। द्विध्रुवी संधि ट्रांजिस्टर की इस विशेषता भेद्यता को नियंत्रित करने के लिए विशेष उपाय किए जाने चाहिए।
शक्ति प्रतिरोधान्तरित्र में (जिसमें प्रभावी रूप से समानांतर में कई छोटे प्रतिरोधान्तरित्र सम्मिलित होते हैं), धारा उत्रलन प्रतिरोधान्तरित्र के विभिन्न भागों के बीच हो सकती है, प्रतिरोधान्तरित्र का भाग दूसरों की तुलना में अधिक गर्म हो जाता है। इसे दूसरा विघटन कहा जाता है, और इसके परिणामस्वरूप प्रतिरोधान्तरित्र का विनाश हो सकता है, यद्यपि जब औसत संयोजन तापमान सुरक्षित स्तर पर लगता है।


पावर  प्रतिरोधान्तरित्र में (जिसमें प्रभावी रूप से समानांतर में कई छोटे  प्रतिरोधान्तरित्र सम्मिलित होते हैं), वर्तमान हॉगिंग  प्रतिरोधान्तरित्र के विभिन्न हिस्सों के बीच ही हो सकती है, प्रतिरोधान्तरित्र का  हिस्सा दूसरों की तुलना में अधिक गर्म हो जाता है।इसे दूसरा ब्रेकडाउन कहा जाता है, और इसके परिणामस्वरूप  प्रतिरोधान्तरित्र को विनाश हो सकता है, तब भी जब औसत जंक्शन तापमान सुरक्षित स्तर पर लगता है।
=== शक्ति धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव ट्रांजिस्टर ===
शक्ति [[MOSFET|धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव प्रतिरोधान्तरित्र]] सामान्य रूप से तापमान के साथ अपने प्रतिरोध को बढ़ाते हैं। कुछ परिस्थितियों में, इस प्रतिरोध में विघटित विद्युत संयोजन के अधिक ताप का कारण बनती है, जो सकारात्मक प्रतिक्रिया कुंडली में [[जंक्शन तापमान|संयोजन तापमान]] को अधिक बढ़ाती है। परिणामस्वरूप, शक्ति धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव प्रतिरोधान्तरित्र में संचालन के स्थिर और अस्थिर क्षेत्र हैं।<ref name="powerMOSFETstability">{{cite journal|last1=Ferrara|first1=A.|last2=Steeneken|first2=P. G.|last3=Boksteen|first3=B. K.|last4=Heringa|first4=A.|last5=Scholten|first5=A. J.|last6=Schmitz|first6= J.|last7=Hueting|first7=R. J. E.|title=Physics-based stability analysis of MOS transistors|journal=Solid-State Electronics|volume=113|date=November 2015|pages=28–34|doi=10.1016/j.sse.2015.05.010|bibcode=2015SSEle.113...28F}}</ref> हालांकि, तापमान के साथ प्रति-प्रतिरोध की वृद्धि समानांतर में जुड़े कई धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव प्रतिरोधान्तरित्र में धारा को संतुलित करने में सहायता करती है, इसलिए धारा उत्रलन नहीं होती है। यदि धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव प्रतिरोधान्तरित्र [[ताप सिंक|ऊष्मा अभिगम]] की तुलना में अधिक ऊष्मा उत्पन्न करता है, तो ऊष्मीय स्खलन अभी भी प्रतिरोधान्तरित्र को नष्ट कर सकता है। प्रतिरोधान्तरित्र क्षय और ऊष्माशोषी के बीच [[थर्मल प्रतिरोध|ऊष्मीय प्रतिरोध]] को कम करके इस समस्या को अधिकतम सीमा तक कम किया जा सकता है। [[थर्मल डिज़ाइन पावर|ऊष्मीय डिज़ाइन शक्ति]] भी देखें।


=== पावर मोसफेट्स ===
=== धातु ऑक्साइड चररोधक (एमओवी) ===
पावर [[MOSFET|धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव  प्रतिरोधान्तरित्र]] सामान्य रूप से तापमान के साथ अपने प्रतिरोध को बढ़ाते हैं।कुछ परिस्थितियों में, इस प्रतिरोध में विघटित विद्युत जंक्शन के अधिक ताप का कारण बनती है, जो  सकारात्मक प्रतिक्रिया लूप में [[जंक्शन तापमान]] को और बढ़ाती है। परिणामस्वरूप, पावर धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव  प्रतिरोधान्तरित्र में ऑपरेशन के स्थिर और अस्थिर क्षेत्र हैं।<ref name="powerMOSFETstability">{{cite journal|last1=Ferrara|first1=A.|last2=Steeneken|first2=P. G.|last3=Boksteen|first3=B. K.|last4=Heringa|first4=A.|last5=Scholten|first5=A. J.|last6=Schmitz|first6= J.|last7=Hueting|first7=R. J. E.|title=Physics-based stability analysis of MOS transistors|journal=Solid-State Electronics|volume=113|date=November 2015|pages=28–34|doi=10.1016/j.sse.2015.05.010|bibcode=2015SSEle.113...28F}}</ref> हालांकि, तापमान के साथ ऑन-प्रतिरोध की वृद्धि समानांतर में जुड़े कई धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव  प्रतिरोधान्तरित्र में वर्तमान को संतुलित करने में मदद करती है, इसलिए वर्तमान हॉगिंग नहीं होती है।यदि  धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव  प्रतिरोधान्तरित्र  [[ताप सिंक]] की तुलना में अधिक गर्मी पैदा करता है, तो तापीय स्खलन अभी भी  प्रतिरोधान्तरित्र को नष्ट कर सकता है। प्रतिरोधान्तरित्र डाई और हीटसिंक के बीच [[थर्मल प्रतिरोध|तापीय प्रतिरोध]] को कम करके इस समस्या को  हद तक कम किया जा सकता है।[[थर्मल डिज़ाइन पावर|तापीय डिज़ाइन पावर]] भी देखें।
धातु ऑक्साइड चररोधक सामान्य रूप से कम प्रतिरोध विकसित करते हैं क्योंकि वे गर्म करते हैं। यदि एसी या डीसी शक्ति बस ([[वोल्टेज स्पाइक|विद्युत-दाब स्पाइक]] के विपरीत सुरक्षा के लिए सामान्य उपयोग) से प्रत्यक्ष रूप से जुड़ा हुआ है, तो धातु ऑक्साइड चररोधक जिसने कम प्रवर्तित विद्युत-दाब विकसित किया है, वह आपत्तिजनक ऊष्मीय स्खलन सकता है, संभवतः छोटे से विस्फोट या आग में समाप्त होता है।<ref name="Brown2004">{{cite journal|last=Brown|first=Kenneth|title=Metal Oxide Varistor Degradation|journal=IAEI Magazine|date=March 2004|url=http://www.iaei.org/magazine/2004/03/metal-oxide-varistor-degradation/|access-date=2011-03-30|url-status=dead|archive-url=https://web.archive.org/web/20110719023317/http://www.iaei.org/magazine/2004/03/metal-oxide-varistor-degradation/|archive-date=2011-07-19}}</ref> इस संभावना को रोकने के लिए, दोष धारा सामान्य रूप से ऊष्मीय फ्यूज, परिपथ वियोजक या अन्य धारा सीमित उपकरण द्वारा सीमित होता है।


=== मेटल ऑक्साइड [[वर्कर]]्स (MOVS) ===
=== टैंटलम संधारित्र ===
धातु ऑक्साइड वैरिस्टर्स सामान्य रूप से कम प्रतिरोध विकसित करते हैं क्योंकि वे गर्म करते हैं।यदि  एसी या डीसी पावर बस ([[वोल्टेज स्पाइक|विद्युत-दाब स्पाइक]]्स के खिलाफ सुरक्षा के लिए  सामान्य उपयोग) से सीधे जुड़ा हुआ है, तो  मूव जिसने  कम  प्रवर्तित विद्युत-दाब विकसित किया है, वह भयावह तापीय स्खलन में स्लाइड कर सकता है, संभवतः  छोटे से विस्फोट या आग में समाप्त होता है।<ref name=Brown2004>{{cite journal|last=Brown|first=Kenneth|title=Metal Oxide Varistor Degradation|journal=IAEI Magazine|date=March 2004|url=http://www.iaei.org/magazine/2004/03/metal-oxide-varistor-degradation/|access-date=2011-03-30|url-status=dead|archive-url=https://web.archive.org/web/20110719023317/http://www.iaei.org/magazine/2004/03/metal-oxide-varistor-degradation/|archive-date=2011-07-19}}</ref> इस संभावना को रोकने के लिए, दोष वर्तमान सामान्य रूप से तापीय फ्यूज, परिपथ ब्रेकर या अन्य वर्तमान सीमित डिवाइस द्वारा सीमित होता है।
टैंटलम संधारित्र, कुछ अवस्थाओ के अंतर्गत, ऊष्मीय स्खलन द्वारा स्व-विनाश के लिए प्रवण हैं। संधारित्र में सामान्य रूप से [[एनोड]] के रूप में कार्य करने वाले निसादित टैंटलम स्पंज होते हैं, [[मैंगनीज डाइऑक्साइड]] [[कैथोड]], और [[टैंटलम पेंटोक्साइड]] की [[ढांकता हुआ|परावैद्युत सामर्थ्य]] परत टैंटलम स्पंज की सतह पर ऐनोडीकरण द्वारा बनाई जाती है। ऐसा हो सकता है कि टैंटलम ऑक्साइड परत में दुर्बल धब्बे होते हैं जो विद्युत-दाब प्रवाह में क्षणिक परिवर्तन के समय परावैद्युत विघटन से गुजरते हो। टैंटलम स्पंज तब मैंगनीज डाइऑक्साइड के साथ सीधे संपर्क में आता है, और क्षणन धारा में वृद्धि स्थानीयकृत ऊष्मा का कारण बनती है; सामान्य रूप से, यह ऊष्माशोषी रासायनिक प्रतिक्रिया को बढ़ी करता है जो मैंगनीज (III) ऑक्साइड का उत्पादन करता है और टैंटलम ऑक्साइड अचालक परत को पुन: उत्पन्न (स्व-ऊष्मा) करता है।


=== [[[[टैंटलम]] कैपेसिटर]] ===
हालांकि, यदि विफलता बिंदु पर ऊर्जा का क्षय काफी अधिक है तो थर्माइट प्रतिक्रिया के समान स्वसंपोषी ऊष्माक्षैपी प्रतिक्रिया प्रारंभ हो सकती है, जिसमें धातु टैंटलम ईंधन के रूप में और मैंगनीज डाइऑक्साइड ऑक्सीकारक के रूप में होता है। यह अवांछित प्रतिक्रिया संधारित्र को नष्ट कर देगी, जिससे धुआं और संभवतः लौ उत्पन्न होगी।<ref name="Vasina2002">{{cite journal|last1= Vasina|first1= P.|last2= Zednicek|first2= T.|last3= Sikula|first3= J.|last4= Pavelka|first4= J.|title= Failure modes of tantalum capacitors made by different technologies|journal= Microelectronics Reliability|volume= 42|issue= 6|year= 2002|pages= 849–854|doi= 10.1016/S0026-2714(02)00034-3|url= http://avx.com/docs/techinfo/failure.pdf|archive-url= https://web.archive.org/web/20100923075150/http://avx.com/docs/techinfo/failure.pdf|url-status= dead|archive-date= 2010-09-23}}</ref>
टैंटलम कैपेसिटर, कुछ शर्तों के तहत, तापीय स्खलन द्वारा आत्म-विनाश के लिए प्रवण हैं। संधारित्र में सामान्य रूप से [[एनोड]] के रूप में अभिनय करने वाले  [[सिन्टिंग]] टैंटलम स्पंज होते हैं,  [[मैंगनीज डाइऑक्साइड]] [[कैथोड]], और [[टैंटलम पेंटोक्साइड]] की  [[ढांकता हुआ]] परत टैंटलम स्पंज की सतह पर बनाई जाती है। ऐसा हो सकता है कि टैंटलम ऑक्साइड परत में कमजोर धब्बे होते हैं जो विद्युत-दाब स्पाइक के समय ढांकता हुआ टूटने से गुजरते हैं। टैंटलम स्पंज तब मैंगनीज डाइऑक्साइड के साथ सीधे संपर्क में आता है, और लीकेज करंट में वृद्धि स्थानीयकृत हीटिंग का कारण बनती है;सामान्य रूप से, यह [[एन्दोठेर्मिक]] रासायनिक प्रतिक्रिया को चलाता है जो मैंगनीज (III) ऑक्साइड का उत्पादन करता है और पुनर्जीवित करता है ([[आत्म-चिकित्सा सामग्री]] | स्व-हील्स) टैंटलम ऑक्साइड ढांकता हुआ परत।


हालांकि, यदि विफलता बिंदु पर विघटित ऊर्जा पर्याप्त है, तो  आत्मनिर्भर  ऊष्माक्षैपी प्रतिक्रिया प्रारंभ हो सकती है, [[दीमक]] प्रतिक्रिया के समान, ईंधन के रूप में धातु टैंटालम और ऑक्सीडाइज़र के रूप में मैंगनीज डाइऑक्साइड के साथ। यह अवांछनीय प्रतिक्रिया संधारित्र को नष्ट कर देगी, धुआं पैदा करेगी और संभवतः लौगी।<ref name= "Vasina2002">{{cite journal|last1= Vasina|first1= P.|last2= Zednicek|first2= T.|last3= Sikula|first3= J.|last4= Pavelka|first4= J.|title= Failure modes of tantalum capacitors made by different technologies|journal= Microelectronics Reliability|volume= 42|issue= 6|year= 2002|pages= 849–854|doi= 10.1016/S0026-2714(02)00034-3|url= http://avx.com/docs/techinfo/failure.pdf|archive-url= https://web.archive.org/web/20100923075150/http://avx.com/docs/techinfo/failure.pdf|url-status= dead|archive-date= 2010-09-23}}</ref>
इसलिए, टैंटलम संधारित्र को स्वतंत्र रूप से छोटे-सिग्नल परिपथ में परिनियोजित किया जा सकता है, लेकिन ऊष्मीय स्खलन विफलताओं से बचने के लिए उच्च-शक्ति वाले परिपथ में संप्रयोग को सावधानीपूर्वक डिज़ाइन किया जाना चाहिए।
इसलिए, टैंटलम कैपेसिटर को स्वतंत्र रूप से छोटे-सिग्नल परिपथ में परिनियोजित किया जा सकता है, लेकिन तापीय स्खलन विफलताओं से बचने के लिए उच्च-शक्ति वाले परिपथ में आवेदन को सावधानीपूर्वक डिज़ाइन किया जाना चाहिए।


=== डिजिटल लॉजिक ===
=== डिजिटल (अंकीय) तर्क ===
लॉजिक स्विचिंग  प्रतिरोधान्तरित्र का रिसाव (अर्धचालक) तापमान के साथ बढ़ता है। दुर्लभ उदाहरणों में, इससे डिजिटल परिपथ में तापीय स्खलन हो सकता है।यह  सामान्य समस्या नहीं है, क्योंकि रिसाव धाराएं सामान्य रूप से समग्र विद्युत की खपत का छोटा हिस्सा बनाती हैं, इसलिए सत्ता में वृद्धि अधिकतम मामूली होती है - [[एथलॉन 64]] के लिए, प्रत्येक 30 डिग्री सेल्सियस के लिए विद्युत का विघटन लगभग 10% बढ़ जाता है।<ref>{{cite web|url=http://www.lostcircuits.com/cpu/amd_venice/|website=LostCircuits|title=AMD Athlon64 "Venice"|date=May 2, 2005|archive-url=https://web.archive.org/web/20070502141110/http://www.lostcircuits.com/cpu/amd_venice/|archive-date=2007-04-16|access-date=2007-06-03}}</ref> तापीय स्खलन के तापीय डिज़ाइन पावर वाले डिवाइस के लिए, तापीय स्खलन होने के लिए, हीट सिंक में 3 के/डब्ल्यू (केल्विन्स प्रति वाट) से अधिक तापीय चालकता#संबंधित शर्तें होंगी, जो कि लगभग 6 गुना खराब है। स्टॉक एथलॉन 64 हीट सिंक। ( स्टॉक एथलॉन 64 हीट सिंक को 0.34 K/W पर मूल्यांकित किया गया है, हालांकि पर्यावरण के लिए वास्तविक तापीय प्रतिरोध कुछ हद तक अधिक है, प्रोसेसर और हीटसिंक के बीच तापीय सीमा, स्थिति में बढ़ते तापमान और अन्य तापीय प्रतिरोधों के कारण।{{Citation needed|date=December 2008}}) भले ही, 0.5 से 1 k/w के तापीय प्रतिरोध के साथ अपर्याप्त गर्मी सिंक के परिणामस्वरूप तापीय स्खलन प्रभाव के बिना भी 100 डब्ल्यू डिवाइस के विनाश का परिणाम होगा।
तार्किक स्विचण प्रतिरोधान्तरित्र का रिसाव (अर्धचालक) तापमान के साथ बढ़ता है। दुर्लभ उदाहरणों में, इससे डिजिटल परिपथ में ऊष्मीय स्खलन हो सकता है। यह सामान्य समस्या नहीं है, क्योंकि रिसाव धाराएं सामान्य रूप से समग्र विद्युत की क्षय का छोटा भाग बनाती हैं, इसलिए शक्ति में वृद्धि अधिकतम सामान्य है -[[एथलॉन 64]] के लिए, प्रत्येक 30 डिग्री सेल्सियस के लिए बिजली विसरण लगभग 10% बढ़ जाता है।<ref>{{cite web|url=http://www.lostcircuits.com/cpu/amd_venice/|website=LostCircuits|title=AMD Athlon64 "Venice"|date=May 2, 2005|archive-url=https://web.archive.org/web/20070502141110/http://www.lostcircuits.com/cpu/amd_venice/|archive-date=2007-04-16|access-date=2007-06-03}}</ref> 100 वाट के तापीय डिजाइन शक्ति वाले उपकरण के लिए ऊष्मीय स्खलन होने के लिए ऊष्मा अभिगम में 3 K/W (केल्विन प्रति वाट) से अधिक की थर्मल प्रतिरोधकता होनी चाहिए जो स्टॉक एथलॉन 64 ऊष्मा अभिगम से लगभग 6 गुना खराब है। ( स्टॉक एथलॉन 64 ऊष्मा अभिगम को 0.34 केल्विन प्रति वाट पर मूल्यांकित किया गया है, हालांकि पर्यावरण के लिए वास्तविक ऊष्मीय प्रतिरोध अधिकतम सीमा तक अधिक है, प्रकमक और ऊष्माशोषी के बीच ऊष्मीय सीमा, स्थिति में बढ़ते तापमान और अन्य ऊष्मीय प्रतिरोधों के कारण है।{{Citation needed|date=December 2008}}) यद्यपि, 0.5 से 1 केल्विन प्रति वाट के ऊष्मीय प्रतिरोध के साथ अपर्याप्त ऊष्मा अभिगम के परिणामस्वरूप ऊष्मीय स्खलन प्रभाव के बिना भी 100 वाट उपकरण के विनाश का परिणाम होगा।


=== बैटरी ===
=== बैटरी ===
जब अनुचित तरीके से संभाला जाता है, या यदि दोषपूर्ण रूप से निर्मित किया जाता है, तो कुछ [[रिचार्जेबल बैटरीज़]] तापीय स्खलन का अनुभव कर सकती हैं, जिसके परिणामस्वरूप ओवरहीटिंग होती है।सील कोशिकाएं कभी -कभी हिंसक रूप से विस्फोट कर देंगी यदि सुरक्षा वेंट अभिभूत या नॉनफंक्शनल हैं।<ref name= "Finegan:2015">{{Cite journal | doi = 10.1038/ncomms7924| title = In-operando high-speed tomography of lithium-ion batteries during thermal runaway| journal = Nature Communications| volume = 6| pages = 6924| year = 2015| last1 = Finegan | first1 = D. P. | last2 = Scheel | first2 = M. | last3 = Robinson | first3 = J. B. | last4 = Tjaden | first4 = B. | last5 = Hunt | first5 = I. | last6 = Mason | first6 = T. J. | last7 = Millichamp | first7 = J. | last8 = Di Michiel | first8 = M. | last9 = Offer | first9 = G. J. | last10 = Hinds | first10 = G. | last11 = Brett | first11 = D. J. L. | last12 = Shearing | first12 = P. R. | pmid=25919582 | pmc=4423228| bibcode = 2015NatCo...6.6924F }}</ref> विशेष रूप से तापीय स्खलन के लिए प्रवण [[लिथियम आयन बैटरी]] हैं। लिथियम-आयन बैटरी, सबसे स्पष्ट रूप से [[लिथियम बहुलक बैटरी]] के रूप में।{{citation needed|date=August 2016}} सेलफोन को विस्फोट करने की रिपोर्ट कभी -कभी समाचार पत्रों में दिखाई देती है। 2006 में, Apple, HP, Toshiba, Lenovo, Dell और अन्य नोटबुक निर्माताओं की बैटरी को आग और विस्फोटों के कारण याद किया गया था।<ref>{{cite news|url=https://money.cnn.com/2006/08/24/technology/apple_recall/index.htm|title=Apple to recall 1.8 million notebook batteries|work=[[CNN Money]]|first=Rob|last=Kelley|date=August 24, 2006}}</ref><ref>{{cite press release|url=http://www.cpsc.gov/cpscpub/prerel/prhtml09/09035.html|title=PC Notebook Computer Batteries Recalled Due to Fire and Burn Hazard|archive-url=https://web.archive.org/web/20130108181246/https://www.cpsc.gov/cpscpub/prerel/prhtml09/09035.html|archive-date=2013-01-08|publisher=[[U.S. Consumer Product Safety Commission]]}}</ref><ref name="LenovoRecall2006">{{cite press release
जब अनुचित तरीके से संभाला जाता है, या यदि दोषपूर्ण रूप से निर्मित किया जाता है, तो कुछ [[रिचार्जेबल बैटरीज़|पुनःआवेशनीय बैटरी]] ऊष्मीय स्खलन का अनुभव कर सकती हैं, जिसके परिणामस्वरूप अतितापन होती है। यदि सुरक्षा छिद्र दब गए हैं या काम नहीं कर रहे हैं तो मुद्रांकित कोशिकाएं कभी-कभी तीव्र रूप से विस्फोट हो जाती हैं।<ref name= "Finegan:2015">{{Cite journal | doi = 10.1038/ncomms7924| title = In-operando high-speed tomography of lithium-ion batteries during thermal runaway| journal = Nature Communications| volume = 6| pages = 6924| year = 2015| last1 = Finegan | first1 = D. P. | last2 = Scheel | first2 = M. | last3 = Robinson | first3 = J. B. | last4 = Tjaden | first4 = B. | last5 = Hunt | first5 = I. | last6 = Mason | first6 = T. J. | last7 = Millichamp | first7 = J. | last8 = Di Michiel | first8 = M. | last9 = Offer | first9 = G. J. | last10 = Hinds | first10 = G. | last11 = Brett | first11 = D. J. L. | last12 = Shearing | first12 = P. R. | pmid=25919582 | pmc=4423228| bibcode = 2015NatCo...6.6924F }}</ref> विशेष रूप से ऊष्मीय स्खलन के लिए प्रवण [[लिथियम आयन बैटरी]] हैं, जो कि लिथियम बहुलक बैटरी के रूप में सबसे अधिक स्पष्ट है।{{citation needed|date=August 2016}} समाचार पत्रों में कभी-कभी सेलफोन में विस्फोट की सूचना आती हैं। 2006 में, एप्पल, एचपी, तोशिबा, लेनोवो, डेल और अन्य नोटबुक निर्माताओं को आग और विस्फोटों के कारण वापस बुला लिया गया।<ref>{{cite news|url=https://money.cnn.com/2006/08/24/technology/apple_recall/index.htm|title=Apple to recall 1.8 million notebook batteries|work=[[CNN Money]]|first=Rob|last=Kelley|date=August 24, 2006}}</ref><ref>{{cite press release|url=http://www.cpsc.gov/cpscpub/prerel/prhtml09/09035.html|title=PC Notebook Computer Batteries Recalled Due to Fire and Burn Hazard|archive-url=https://web.archive.org/web/20130108181246/https://www.cpsc.gov/cpscpub/prerel/prhtml09/09035.html|archive-date=2013-01-08|publisher=[[U.S. Consumer Product Safety Commission]]}}</ref><ref name="LenovoRecall2006">{{cite press release
  |url= http://www.cpsc.gov/cpscpub/prerel/prhtml06/06270.html |url-status=dead|archive-url= https://web.archive.org/web/20130108183508/https://www.cpsc.gov/cpscpub/prerel/prhtml06/06270.html |title= Lenovo and IBM Announce Recall of ThinkPad Notebook Computer Batteries Due to Fire Hazard |date= 2006-09-28 |archive-date= 2013-01-08 |publisher= [[U.S. Consumer Product Safety Commission]] |access-date= 2018-06-27}}</ref><ref>{{cite web|url=http://www.theinquirer.net/default.aspx?article=32550|title=Dell laptop explodes at Japanese conference|date=21 June 2006|work=[[The Inquirer]]|archive-url=https://web.archive.org/web/20060815175610/http://www.theinquirer.net/default.aspx?article=32550|archive-date=2006-08-15|url-status=unfit|access-date=2006-08-15}}</ref> अमेरिकी परिवहन विभाग की [[पाइपलाइन और खतरनाक सामग्री सुरक्षा प्रशासन]] (PHMSA) ने कुछ स्थितियों में अस्थिरता के कारण हवाई जहाज पर कुछ प्रकार की बैटरी ले जाने के बारे में नियमों की स्थापना की है। यह कार्रवाई आंशिक रूप से [[संयुक्त पार्सल सेवा]] हवाई जहाज पर कार्गो बे फायर से प्रेरित थी।<ref>{{cite web|url=https://www.ntsb.gov/investigations/fulltext/hzb0501.htm|title=Hazardous Materials Accident Brief — Cargo Fire Involving Lithium-Ion Batteries, Memphis, Tennessee, August 7, 2004|date=September 26, 2005|publisher=[[National Transportation Safety Board]]|archive-url=https://web.archive.org/web/20121007081157/https://www.ntsb.gov/investigations/fulltext/hzb0501.htm|archive-date=2012-10-07|access-date=2013-01-26}}</ref>
  |url= http://www.cpsc.gov/cpscpub/prerel/prhtml06/06270.html |url-status=dead|archive-url= https://web.archive.org/web/20130108183508/https://www.cpsc.gov/cpscpub/prerel/prhtml06/06270.html |title= Lenovo and IBM Announce Recall of ThinkPad Notebook Computer Batteries Due to Fire Hazard |date= 2006-09-28 |archive-date= 2013-01-08 |publisher= [[U.S. Consumer Product Safety Commission]] |access-date= 2018-06-27}}</ref><ref>{{cite web|url=http://www.theinquirer.net/default.aspx?article=32550|title=Dell laptop explodes at Japanese conference|date=21 June 2006|work=[[The Inquirer]]|archive-url=https://web.archive.org/web/20060815175610/http://www.theinquirer.net/default.aspx?article=32550|archive-date=2006-08-15|url-status=unfit|access-date=2006-08-15}}</ref> अमेरिकी परिवहन विभाग के पाइपलाइन और संकटग्रस्त सामग्री सुरक्षा प्रशासन (पीएचएमएसए) ने कुछ स्थितियों में उनकी अस्थिरता के कारण हवाई जहाज पर कुछ प्रकार की बैटरी ले जाने के संबंध में नियम स्थापित किए हैं। यह प्रक्रिया आंशिक रूप से [[संयुक्त पार्सल सेवा|निर्बाध विद्युत आपूर्ति]] हवाई जहाज पर कार्गो खाड़ी आग लगने से प्रेरित थी।<ref>{{cite web|url=https://www.ntsb.gov/investigations/fulltext/hzb0501.htm|title=Hazardous Materials Accident Brief — Cargo Fire Involving Lithium-Ion Batteries, Memphis, Tennessee, August 7, 2004|date=September 26, 2005|publisher=[[National Transportation Safety Board]]|archive-url=https://web.archive.org/web/20121007081157/https://www.ntsb.gov/investigations/fulltext/hzb0501.htm|archive-date=2012-10-07|access-date=2013-01-26}}</ref> संभावित समाधानों में से सुरक्षित और कम प्रतिक्रियाशील एनोड (लिथियम टिटैनियम) और कैथोड (लिथियम आयरन फॉस्फेट) सामग्री का उपयोग करना है - जिससे आयनिक तरल पदार्थों पर आधारित गैर-ज्वलनशील विद्युतअपघट्य के साथ कई लिथियम [[रिचार्जेबल बैटरीज़|पुनःआवेशनीय]] कोशिकाओं में कोबाल्ट इलेक्ट्रोड से बचा जा सकता है।
संभावित समाधानों में से सुरक्षित और कम प्रतिक्रियाशील एनोड (लिथियम टाइटनेट्स) और कैथोड ([[लोहे का फॉस्फेट]]) सामग्री का उपयोग करने में है-जिससे कई लिथियम रिचार्जेबल कोशिकाओं में कोबाल्ट#बैटरी इलेक्ट्रोड से परहेज होता है- साथ गैर-फ्लैमबल इलेक्ट्रोलाइट्स के साथ आयोनिक तरल पदार्थों के आधार पर।


== खगोल भौतिकी ==
== खगोल भौतिकी ==
स्खलन थर्मोन्यूक्लियर प्रतिक्रियाएं सितारों में हो सकती हैं जब परमाणु संलयन को उन परिस्थितियों में प्रज्वलित किया जाता है, जिनके तहत तारे की परतों को खत्म करने से गुरुत्वाकर्षण दबाव गैसों के गतिज सिद्धांत से अधिक होता है, ऐसी स्थिति जो [[गुरुत्वाकर्षण संपीड़न]] के माध्यम से तापमान में तेजी से बढ़ती है। इस तरह के परिदृश्य में [[पतित पदार्थ|अपभ्रष्‍ट पदार्थ]] वाले सितारों में उत्पन्न हो सकता है, जिसमें सामान्य तापीय दबाव के अतिरिक्त [[इलेक्ट्रॉन अध: पतन दबाव]] गुरुत्वाकर्षण के खिलाफ तारे का समर्थन करने के अधिकांश काम करता है, और तारों से गुजरने वाले सितारों में।सभी स्थितियो में, असंतुलन संलयन इग्निशन से पहले उत्पन्न होता है;अन्यथा, संलयन प्रतिक्रियाओं को स्वाभाविक रूप से तापमान परिवर्तन का मुकाबला करने और स्टार को स्थिर करने के लिए विनियमित किया जाएगा। जब तापीय दबाव अत्यधिक दबाव के साथ संतुलन में होता है, तो  तारा तापमान में वृद्धि और तापीय दबाव में वृद्धि का जवाब देगा, जो विस्तार और शीतलन के द्वारा  नई  ऊष्माक्षैपी प्रतिक्रिया की दीक्षा के कारण होता है।  स्खलन प्रतिक्रिया केवल तभी संभव है जब यह प्रतिक्रिया बाधित हो।
स्खलन ताप-नाभिकीय प्रतिक्रियाएं तारों में हो सकती हैं जब परमाणु संलयन को उन परिस्थितियों में प्रज्वलित किया जाता है, जिनके अंतर्गत तारे की परतों को खत्म करने से गुरुत्वाकर्षण दबाव गैसों के गतिज सिद्धांत से अधिक होता है, ऐसी ऐसी स्थितियों में प्रज्वलित होता है जिसके तहत तारे की ऊपरी परतों द्वारा लगाया गया गुरुत्वाकर्षण दबाव थर्मल दबाव से बहुत अधिक हो जाता है, ऐसी स्थिति जो गुरुत्वाकर्षण संपीड़न के माध्यम से तापमान में तेजी से वृद्धि को संभव बनाती है। ऐसा परिदृश्य पतित पदार्थ वाले सितारों में उत्पन्न हो सकता है, जिसमें सामान्य तापीय दबाव के अतिरिक्त इलेक्ट्रॉन अध: पतन दबाव गुरुत्वाकर्षण के विपरीत और अंतःस्फोट से गुजर रहे तारों में समर्थन करने का अधिकांश काम करता है।सभी स्थितियों में, संलयन प्रज्वलन से पहले असंतुलन उत्पन्न होता है; अन्यथा, तापमान परिवर्तन को रोकने और तारे को स्थिर करने के लिए संलयन प्रतिक्रियाओं को स्वाभाविक रूप से नियंत्रित किया जाएगा। जब ऊष्मीय दबाव अत्यधिक दबाव के साथ संतुलन में होता है, तब तारा तापमान में वृद्धि और ऊष्मीय दबाव में वृद्धि की प्रतिक्रिया देगा। स्खलन प्रतिक्रिया केवल तभी संभव है जब यह प्रतिक्रिया बाधित हो।


=== हीलियम [[लाल विशाल]] सितारों में चमकता है ===
=== लाल तारे में चमक रही हीलियम ===
जब 0.8-2.0 [[सौर द्रव्यमान]] रेंज में तारे अपने अंतर्भाग में हाइड्रोजन को समाप्त करते हैं और लाल दिग्गज बन जाते हैं, तो उनके अंतर्भाग में संचित होने वाला हीलियम प्रज्वलित होने से पहले निपात तक पहुंच जाता है। जब अपभ्रष्‍ट अंतर्भाग लगभग 0.45 सौर द्रव्यमान के महत्वपूर्ण द्रव्यमान तक पहुंचता है, तो [[हीलियम संलयन]] को प्रज्वलित किया जाता है और स्खलन फैशन में बंद कर देता है, जिसे हीलियम फ्लैश कहा जाता है, संक्षेप में स्टार की ऊर्जा उत्पादन को 100 अरब गुना सामान्य दर तक बढ़ाता है। अंतर्भाग का लगभग 6% शीघ्रता से कार्बन में परिवर्तित हो जाता है।<ref>{{cite web|url=http://faculty.wcas.northwestern.edu/~infocom/The%20Website/end.html|title=The End Of The Sun|work=The Life And Death Of Stars|first=David|last=Taylor}}</ref> जबकि रिलीज कुछ सेकंड के बाद अंतर्भाग को सामान्य [[प्लाज्मा]] (भौतिकी) में वापस बदलने के लिए पर्याप्त है, यह स्टार को बाधित नहीं करता है,<ref>{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|chapter=Chapter 9: Post-main sequence evolution through helium burning|access-date=2015-05-24|archive-date=2019-05-20|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|url-status=dead}}</ref><ref name="DearbornLattanzio2006">{{cite journal|last1=Dearborn|first1=D. S. P.|last2=Lattanzio|first2=J. C.|last3=Eggleton|first3=P. P.|title=Three‐dimensional Numerical Experimentation on the Core Helium Flash of Low‐Mass Red Giants|journal=The Astrophysical Journal|volume=639|issue=1|date=2006-03-01|pages=405–415|issn=0004-637X|doi=10.1086/499263|arxiv = astro-ph/0512049 |bibcode = 2006ApJ...639..405D |s2cid=118526354|url=https://zenodo.org/record/895396}}</ref> न ही तुरंत इसकी चमक बदलें। स्टार तब अनुबंध करता है, लाल विशालकाय चरण को छोड़ देता है और तारकीय विकास#मध्य आकार के सितारों में अपना विकास जारी रखता है। स्थिर हीलियम-बर्निंग चरण।
जब 0.8-2.0 [[सौर द्रव्यमान]] सीमा में तारे अपने अंतर्भाग में हाइड्रोजन को समाप्त करते हैं और लाल तारा बन जाते हैं, तो उनके अंतर्भाग में संचित होने वाला हीलियम प्रज्वलित होने से पहले अध: पतन तक पहुंच जाता है। जब अपभ्रष्‍ट अंतर्भाग लगभग 0.45 सौर द्रव्यमान के महत्वपूर्ण द्रव्यमान तक पहुंचता है, तो [[हीलियम संलयन]] को प्रज्वलित किया जाता है और स्खलन आकृति में कमी या जाती है, जिसे हीलियम फ्लैश कहा जाता है, संक्षेप में तारे की ऊर्जा उत्पादन को 100 अरब गुना सामान्य दर तक बढ़ाता है। अंतर्भाग का लगभग 6% शीघ्रता से कार्बन में परिवर्तित हो जाता है।<ref>{{cite web|url=http://faculty.wcas.northwestern.edu/~infocom/The%20Website/end.html|title=The End Of The Sun|work=The Life And Death Of Stars|first=David|last=Taylor}}</ref> जबकि निर्गमन कुछ सेकंड के बाद अंतर्भाग को सामान्य [[प्लाज्मा]] (भौतिकी) में वापस बदलने के लिए पर्याप्त है, यह तारे को बाधित नहीं करता है,<ref>{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|chapter=Chapter 9: Post-main sequence evolution through helium burning|access-date=2015-05-24|archive-date=2019-05-20|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|url-status=dead}}</ref><ref name="DearbornLattanzio2006">{{cite journal|last1=Dearborn|first1=D. S. P.|last2=Lattanzio|first2=J. C.|last3=Eggleton|first3=P. P.|title=Three‐dimensional Numerical Experimentation on the Core Helium Flash of Low‐Mass Red Giants|journal=The Astrophysical Journal|volume=639|issue=1|date=2006-03-01|pages=405–415|issn=0004-637X|doi=10.1086/499263|arxiv = astro-ph/0512049 |bibcode = 2006ApJ...639..405D |s2cid=118526354|url=https://zenodo.org/record/895396}}</ref> और न ही तुरंत इसकी चमक को बदलता है। तारा पुनः संकुचित होता है, लाल तारे के चरण को छोड़ देता है और स्थिर हीलियम-जलने वाले चरण में अपना विकास सतत रखता है।


=== नवतारा EDIT ===
=== नवतारा ===
नवतारा कार्बन-ऑक्सीजन सफेद वामन तारे की बाहरी परत में स्खलन न्यूक्लियर संलयन#एस्ट्रोफिजिकल रिएक्शन चेन (सीएनओ चक्र#हॉट सीएनओ साइकिल के माध्यम से) से उत्पन्न होता है। यदि सफेद वामन में   अभिसार तारा होता है, जिसमें से यह चक्रिका को अभिवृद्धि कर सकता है, तो सामग्री वामन के तीव्र गुरुत्व द्वारा अपभ्रष्‍ट सतह की परत में संचित हो जाएगी। सही परिस्थितियों में, हाइड्रोजन की पर्याप्त मोटी परत को अंततः 20 मिलियन K के तापमान तक गर्म किया जाता है, जो स्खलन संलयन को प्रज्वलित करता है।सतह की परत को सफेद वामन से विस्फोट किया जाता है, 50,000 के क्रम पर कारक द्वारा चमक बढ़ा दिया जाता है। सफेद वामन और अभिसार बरकरार रहते हैं, हालांकि, प्रक्रिया दोहरा सकती है।<ref name = "Fermi_2010">{{cite web
नवतारा कार्बन-ऑक्सीजन सफेद वामन तारे की बाहरी परत में स्खलन न्यूक्लियर संलयन (कार्बन-नाइट्रोजन-ऑक्सीजन चक्र के माध्यम से) से नवतारा का परिणाम होता है। यदि सफेद वामन में अभिसार तारा होता है, जिसमें से यह चक्रिका को अभिवृद्धि कर सकता है, तो सामग्री वामन के तीव्र गुरुत्व द्वारा अपभ्रष्‍ट सतह की परत में संचित हो जाएगी। सही परिस्थितियों में, हाइड्रोजन की पर्याप्त मोटी परत को अंततः 20 मिलियन K के तापमान तक गर्म किया जाता है, जो स्खलन संलयन को प्रज्वलित करता है। सतह की परत को सफेद वामन से विस्फोट किया जाता है, 50,000 के क्रम पर कारक द्वारा चमक बढ़ा दिया जाता है। सफेद वामन और अभिसार अक्षुण्ण रहते हैं, हालांकि, प्रक्रिया दोहराई जा सकती है।<ref name = "Fermi_2010">{{cite web
  |author=[[JPL]]/[[NASA]] |date=12 August 2010
  |author=[[JPL]]/[[NASA]] |date=12 August 2010
  |title=फर्मी सुपरनोवा के छोटे चचेरे भाई से 'चौंकाने वाला' आश्चर्यचकित करता है|url=http://www.physorg.com/news200849593.html
  |title=फर्मी सुपरनोवा के छोटे चचेरे भाई से 'चौंकाने वाला' आश्चर्यचकित करता है|url=http://www.physorg.com/news200849593.html
  |work=[[PhysOrg]] |access-date=15 August 2010}}</ref> बहुत नवतारा#हीलियम नवतारा तब हो सकता है जब बाहरी परत जो प्रज्वलित हो जाती है वह हीलियम से बना होता है।<ref name = "Kato_2003">{{cite journal
  |work=[[PhysOrg]] |access-date=15 August 2010}}</ref> बहुत दुर्लभ प्रकार का नवतारा तब हो सकता है जब प्रज्वलित होने वाली बाहरी परत हीलियम से बनी हो<ref name = "Kato_2003">{{cite journal
  | author=Kato, M.
  | author=Kato, M.
  | author2=Hachisu, I.
  | author2=Hachisu, I.
Line 96: Line 95:


=== एक्स-रे प्रस्फोट ===
=== एक्स-रे प्रस्फोट ===
नवतारा की ओर जाने वाली प्रक्रिया के अनुरूप, अपभ्रष्‍ट पदार्थ भी न्यूट्रॉन तारे की सतह पर भी संचित हो सकता है जो आस-पास के अभिसार से गैस को प्राप्त कर रहा है। यदि हाइड्रोजन की पर्याप्त रूप से मोटी परत संचित हो जाती है, तब स्खलन हाइड्रोजन संलयन का प्रज्वलन तब [[एक्स-रे बर्स्ट|एक्स-रे प्रस्फोट]] हो सकता है। जैसा कि नवतारा के साथ होता है, इस तरह के प्रस्फोट के लिए दोहराया जाता है और उन्हें हीलियम या यहां तक कि कार्बन संलयन द्वारा भी प्रवर्तित किया जा सकता है।<ref name = "Cumming">{{cite journal
नवतारा की ओर जाने वाली प्रक्रिया के अनुरूप, अपभ्रष्‍ट पदार्थ भी न्यूट्रॉन तारे की सतह पर भी संचित हो सकता है जो आस-पास के अभिसार से गैस को प्राप्त कर रहा है। यदि हाइड्रोजन की पर्याप्त रूप से मोटी परत संचित हो जाती है, तब स्खलन हाइड्रोजन संलयन का प्रज्वलन तब [[एक्स-रे बर्स्ट|एक्स-रे प्रस्फोट]] हो सकता है। जैसा कि नवतारा के साथ होता है, इस तरह के प्रस्फोट के लिए दोहराया जाता है और उन्हें हीलियम या यहां तक कि कार्बन संलयन द्वारा भी प्रवर्तित किया जा सकता है।<ref name = "Cumming">{{cite journal
  | last = Cumming | first = A. | author2=Bildsten, L.
  | last = Cumming | first = A. | author2=Bildsten, L.
   | title = Carbon flashes in the heavy-element ocean on accreting neutron stars
   | title = Carbon flashes in the heavy-element ocean on accreting neutron stars
Line 107: Line 106:
  | journal = [[The Astrophysical Journal Letters]]
  | journal = [[The Astrophysical Journal Letters]]
  | volume = 583 | issue = 2 | pages = L87–L90 | date = 2003-01-03 | doi = 10.1086/368107
  | volume = 583 | issue = 2 | pages = L87–L90 | date = 2003-01-03 | doi = 10.1086/368107
  |bibcode = 2003ApJ...583L..87S | s2cid = 121603976 }}</ref> यह प्रस्तावित किया गया है कि अधिक विस्फोट के स्थिति में, परमाणु संलयन के अतिरिक्त प्रकाशिक वियोजन के माध्यम से लौह समूह के नाभिकों में संचित अधिक नाभिकों का स्खलन विखंडन प्रस्फोटन की अधिकांश ऊर्जा का योगदान कर सकता है।<ref name = "Schatz"/>
  |bibcode = 2003ApJ...583L..87S | s2cid = 121603976 }}</ref> यह प्रस्तावित किया गया है कि अधिक विस्फोट के स्थिति में, परमाणु संलयन के अतिरिक्त प्रकाशिक वियोजन के माध्यम से लौह समूह के नाभिकों में संचित अधिक नाभिकों का स्खलन विखंडन प्रस्फोटन की अधिकांश ऊर्जा का योगदान कर सकता है।<ref name = "Schatz"/>




=== [[टाइप इया सुपरनोवा|टाइप आईए अधिनव तारा]] ===
=== [[टाइप इया सुपरनोवा|टाइप आईए अधिनव तारा]] ===
कार्बन-ऑक्सीजन सफेद वामन तारा के अंतर्भाग में स्खलन [[कार्बन विस्फोट|कार्बन]] संलयन से एक [[टाइप इया सुपरनोवा|टाइप आईए]] अधिनव तारा का परिणाम होता हैं। यदि सफेद वामन तारा, जो लगभग पूरी तरह से अपभ्रष्‍ट पदार्थ से बना है, तो   अभिसार से द्रव्यमान प्राप्त कर सकता है, इसके अंतर्भाग में सामग्री का बढ़ता तापमान और घनत्व कार्बन संलयन प्रक्रिया को प्रज्वलित करेगा यदि तारे का द्रव्यमान चंद्रशेखर सीमा तक पहुंचता है। इससे विस्फोट होता है जो तारे को पूरी तरह से बाधित कर देता है। अतः चमक 5 अरब से अधिक के कारक से बढ़ जाती है। अतिरिक्त द्रव्यमान प्राप्त करने का एक तरीका विशाल तारे (या यहां तक कि मुख्य अनुक्रम) के अभिसार से गैस प्राप्त करना होगा।<ref name="DildayHowell2012">{{cite journal|last1=Dilday|first1=B.|last2=Howell|first2=D. A.|last3=Cenko|first3=S. B.|last4= Silverman|first4=J. M.|last5=Nugent|first5=P. E.|last6=Sullivan|first6=M.|last7=Ben-Ami|first7= S.|last8=Bildsten|first8= L.|last9=Bolte|first9=M.|last10= Endl|first10=M.|last11= Filippenko|first11= A. V.|last12= Gnat|first12= O.|last13=Horesh|first13= A.|last14=Hsiao|first14= E.|last15= Kasliwal|first15=M. M.|last16=Kirkman|first16= D.|last17=Maguire|first17= K.|last18=Marcy|first18=G. W.|last19=Moore|first19= K.|last20=Pan|first20= Y.|last21=Parrent|first21= J. T.|last22= Podsiadlowski|first22=P.|last23=Quimby|first23=R. M.|last24=Sternberg|first24= A.|last25= Suzuki|first25= N.|last26=Tytler|first26=D. R.|last27=Xu|first27=D.|last28=Bloom|first28=J. S.|last29= Gal-Yam|first29=A.|last30= Hook|first30=I. M.|last31=Kulkarni|first31=S. R.|last32= Law|first32= N. M.|last33=Ofek|first33=E. O.|last34=Polishook|first34= D.|last35= Poznanski|first35= D.|title=PTF 11kx: A Type Ia Supernova with a Symbiotic Nova Progenitor|journal= Science|volume= 337|issue= 6097|date= 2012-08-24|pages= 942–945|issn= 0036-8075|doi= 10.1126/science.1219164|arxiv= 1207.1306|bibcode = 2012Sci...337..942D|pmid=22923575|s2cid=38997016}}</ref> एक ही प्रकार के विस्फोट को उत्पन्न करने के लिए अन्य और स्पष्ट रूप से अधिक सामान्य क्रियाविधि दो सफेद वामन तारा का समन्वय है।<ref name="DildayHowell2012"/><ref name = "Chandra_2010">
कार्बन-ऑक्सीजन सफेद वामन तारा के अंतर्भाग में स्खलन [[कार्बन विस्फोट|कार्बन]] संलयन से एक [[टाइप इया सुपरनोवा|टाइप आईए]] अधिनव तारा का परिणाम होता हैं। यदि सफेद वामन तारा, जो लगभग पूरी तरह से अपभ्रष्‍ट पदार्थ से बना है, तो अभिसार से द्रव्यमान प्राप्त कर सकता है, इसके अंतर्भाग में सामग्री का बढ़ता तापमान और घनत्व कार्बन संलयन प्रक्रिया को प्रज्वलित करेगा यदि तारे का द्रव्यमान चंद्रशेखर सीमा तक पहुंचता है। इससे विस्फोट होता है जो तारे को पूरी तरह से बाधित कर देता है। अतः चमक 5 अरब से अधिक के कारक से बढ़ जाती है। अतिरिक्त द्रव्यमान प्राप्त करने का एक तरीका विशाल तारे (या यहां तक कि मुख्य अनुक्रम) के अभिसार से गैस प्राप्त करना होगा।<ref name="DildayHowell2012">{{cite journal|last1=Dilday|first1=B.|last2=Howell|first2=D. A.|last3=Cenko|first3=S. B.|last4= Silverman|first4=J. M.|last5=Nugent|first5=P. E.|last6=Sullivan|first6=M.|last7=Ben-Ami|first7= S.|last8=Bildsten|first8= L.|last9=Bolte|first9=M.|last10= Endl|first10=M.|last11= Filippenko|first11= A. V.|last12= Gnat|first12= O.|last13=Horesh|first13= A.|last14=Hsiao|first14= E.|last15= Kasliwal|first15=M. M.|last16=Kirkman|first16= D.|last17=Maguire|first17= K.|last18=Marcy|first18=G. W.|last19=Moore|first19= K.|last20=Pan|first20= Y.|last21=Parrent|first21= J. T.|last22= Podsiadlowski|first22=P.|last23=Quimby|first23=R. M.|last24=Sternberg|first24= A.|last25= Suzuki|first25= N.|last26=Tytler|first26=D. R.|last27=Xu|first27=D.|last28=Bloom|first28=J. S.|last29= Gal-Yam|first29=A.|last30= Hook|first30=I. M.|last31=Kulkarni|first31=S. R.|last32= Law|first32= N. M.|last33=Ofek|first33=E. O.|last34=Polishook|first34= D.|last35= Poznanski|first35= D.|title=PTF 11kx: A Type Ia Supernova with a Symbiotic Nova Progenitor|journal= Science|volume= 337|issue= 6097|date= 2012-08-24|pages= 942–945|issn= 0036-8075|doi= 10.1126/science.1219164|arxiv= 1207.1306|bibcode = 2012Sci...337..942D|pmid=22923575|s2cid=38997016}}</ref> एक ही प्रकार के विस्फोट को उत्पन्न करने के लिए अन्य और स्पष्ट रूप से अधिक सामान्य क्रियाविधि दो सफेद वामन तारा का समन्वय है।<ref name="DildayHowell2012"/><ref name = "Chandra_2010">
{{cite web|title=नासा के चंद्र ने प्रमुख ब्रह्मांडीय विस्फोटों की उत्पत्ति का खुलासा किया|url=http://chandra.harvard.edu/photo/2010/type1a/| website = Chandra X-ray Observatory web site|publisher= Harvard-Smithsonian Center for Astrophysics| date = 17 February 2010|access-date=28 March 2012}}</ref>
{{cite web|title=नासा के चंद्र ने प्रमुख ब्रह्मांडीय विस्फोटों की उत्पत्ति का खुलासा किया|url=http://chandra.harvard.edu/photo/2010/type1a/| website = Chandra X-ray Observatory web site|publisher= Harvard-Smithsonian Center for Astrophysics| date = 17 February 2010|access-date=28 March 2012}}</ref>


=== [[युग्म-परतें सुपरनोवा|युग्म-अस्थिरता अधिनव तारा]] ===
=== [[युग्म-परतें सुपरनोवा|युग्म-अस्थिरता अधिनव तारा]] ===
माना जाता है कि एक युग्म-अस्थिरता [[युग्म-परतें सुपरनोवा|अधिनव तारा]] एक बड़े पैमाने पर, 130-250 सौर द्रव्यमान, निम्न से मध्यम धात्विकता वाले तारे के अंतर्भाग में स्खलन हुए ऑक्सीजन संलयन का परिणाम है।<ref name="Gal-YamMazzali2009">{{cite journal|last1=Gal-Yam|first1=A.|last2= Mazzali|first2= P.|last3=Ofek|first3=E. O.|last4=Nugent|first4=P. E.|last5=Kulkarni|first5=S. R.|last6= Kasliwal|first6=M. M.|last7=Quimby|first7=R. M.|last8=Filippenko|first8=A. V.|last9= Cenko|first9=S. B.|last10= Chornock|first10= R.|last11=Waldman|first11= R.|last12= Kasen|first12= D.|last13= Sullivan|first13=M.|last14=Beshore|first14=E. C.|last15=Drake|first15=A. J.|last16= Thomas|first16=R. C.|last17= Bloom|first17=J. S.|last18= Poznanski|first18= D.|last19= Miller|first19= A. A.|last20= Foley|first20=R. J.|last21=Silverman|first21=J. M.|last22=Arcavi|first22= I.|last23= Ellis|first23=R. S.|last24=Deng|first24=J.|title=Supernova 2007bi as a pair-instability explosion| journal= Nature| volume=462|issue= 7273|date=2009-12-03|pages= 624–627|issn= 0028-0836|doi= 10.1038/nature08579|arxiv = 1001.1156 |bibcode = 2009Natur.462..624G|pmid=19956255|s2cid=4336232}}</ref> सिद्धांत के अनुसार, इस तरह के तारे में, गैर- संलयी ऑक्सीजन का बड़ा लेकिन अपेक्षाकृत कम घनत्व वाला सब से महत्वपूर्ण भाग बनता है, जिसके वजन को अत्यधिक तापमान द्वारा उत्पन्न गामा किरणों के दबाव द्वारा समर्थित किया जाता है। जैसे-जैसे कोर और अधिक गर्म होता है, गामा किरणें अंततः इलेक्ट्रॉन-पॉज़िट्रॉन युग्म में संघट्टन-प्रेरित क्षय के लिए आवश्यक ऊर्जा सीमा को स्वीकृत करना प्रारंभ कर देती हैं, यह सब से महत्वपूर्ण भाग के अंदर दबाव में कमी का कारण बनता है, जिससे यह सिकुड़ता है और गर्म होता है जिससे अधिक युग्म उत्पादन होता है और दबाव में अधिक कमी आती है। अंतर्भाग गुरुत्वाकर्षण निपात से गुजरना प्रारंभ कर देता है। कुछ बिंदु पर यह स्खलन हुए ऑक्सीजन संलयन को प्रज्वलित करता है, जिससे तारे को नष्ट करने के लिए पर्याप्त ऊर्जा निकलती है। ये विस्फोट संभव्यता ही कभी प्रति 100,000 [[युग्म-परतें सुपरनोवा|अधिनव तारा]] में से एक के बारे में होते हैं।
माना जाता है कि एक युग्म-अस्थिरता [[युग्म-परतें सुपरनोवा|अधिनव तारा]] एक बड़े पैमाने पर, 130-250 सौर द्रव्यमान, निम्न से मध्यम धात्विकता वाले तारे के अंतर्भाग में स्खलन हुए ऑक्सीजन संलयन का परिणाम है।<ref name="Gal-YamMazzali2009">{{cite journal|last1=Gal-Yam|first1=A.|last2= Mazzali|first2= P.|last3=Ofek|first3=E. O.|last4=Nugent|first4=P. E.|last5=Kulkarni|first5=S. R.|last6= Kasliwal|first6=M. M.|last7=Quimby|first7=R. M.|last8=Filippenko|first8=A. V.|last9= Cenko|first9=S. B.|last10= Chornock|first10= R.|last11=Waldman|first11= R.|last12= Kasen|first12= D.|last13= Sullivan|first13=M.|last14=Beshore|first14=E. C.|last15=Drake|first15=A. J.|last16= Thomas|first16=R. C.|last17= Bloom|first17=J. S.|last18= Poznanski|first18= D.|last19= Miller|first19= A. A.|last20= Foley|first20=R. J.|last21=Silverman|first21=J. M.|last22=Arcavi|first22= I.|last23= Ellis|first23=R. S.|last24=Deng|first24=J.|title=Supernova 2007bi as a pair-instability explosion| journal= Nature| volume=462|issue= 7273|date=2009-12-03|pages= 624–627|issn= 0028-0836|doi= 10.1038/nature08579|arxiv = 1001.1156 |bibcode = 2009Natur.462..624G|pmid=19956255|s2cid=4336232}}</ref> सिद्धांत के अनुसार, इस तरह के तारे में, गैर- संलयी ऑक्सीजन का बड़ा लेकिन अपेक्षाकृत कम घनत्व वाला सब से महत्वपूर्ण भाग बनता है, जिसके वजन को अत्यधिक तापमान द्वारा उत्पन्न गामा किरणों के दबाव द्वारा समर्थित किया जाता है। जैसे-जैसे कोर और अधिक गर्म होता है, गामा किरणें अंततः इलेक्ट्रॉन-पॉज़िट्रॉन युग्म में संघट्टन-प्रेरित क्षय के लिए आवश्यक ऊर्जा सीमा को स्वीकृत करना प्रारंभ कर देती हैं, यह सब से महत्वपूर्ण भाग के अंदर दबाव में कमी का कारण बनता है, जिससे यह सिकुड़ता है और गर्म होता है जिससे अधिक युग्म उत्पादन होता है और दबाव में अधिक कमी आती है। अंतर्भाग गुरुत्वाकर्षण निपात से गुजरना प्रारंभ कर देता है। कुछ बिंदु पर यह स्खलन हुए ऑक्सीजन संलयन को प्रज्वलित करता है, जिससे तारे को नष्ट करने के लिए पर्याप्त ऊर्जा निकलती है। ये विस्फोट संभव्यता ही कभी प्रति 100,000 [[युग्म-परतें सुपरनोवा|अधिनव तारा]] में से एक के बारे में होते हैं।


=== गैर-स्खलन अधिनव तारा की तुलना ===
=== गैर-स्खलन अधिनव तारा की तुलना ===
सभी अधिनव तारा को स्खलन परमाणु संलयन द्वारा प्रवर्तित नहीं किया जाता है। टाइप आईबी और आईसी अधिनव तारा टाइप आईबी, आईसी और [[टाइप II सुपरनोवा|टाइप II अधिनव तारा]] भी अंतर्भाग विफलता से गुजरते हैं, क्योंकि उन्होंने ऊष्माक्षैपी संलयन प्रतिक्रियाओं से गुजरने में सक्षम परमाणु नाभिक की अपनी आपूर्ति को समाप्त कर दिया है, वे सभी तरह से न्यूट्रॉन सितारों में, या उच्च-द्रव्यमान वाले अवस्थाओ में, [[तारकीय ब्लैक होल]], [[गुरुत्वीय स्थितिज ऊर्जा]] (व्यापक रूप से न्यूट्रिनो की निर्गमन के माध्यम से) के निर्गमन द्वारा विस्फोटों को शक्ति प्रदान करते हैं। यह स्खलन संलयन प्रतिक्रियाओं की अनुपस्थिति है जो इस तरह के अधिनव तारा को [[कॉम्पैक्ट स्टार|सुसम्बद्ध तारकीय अवशेषों]] को पीछे छोड़ने की स्वीकृति देता है।
सभी अधिनव तारा को स्खलन परमाणु संलयन द्वारा प्रवर्तित नहीं किया जाता है। टाइप आईबी और आईसी अधिनव तारा टाइप आईबी, आईसी और [[टाइप II सुपरनोवा|टाइप II अधिनव तारा]] भी अंतर्भाग विफलता से गुजरते हैं, क्योंकि उन्होंने ऊष्माक्षैपी संलयन प्रतिक्रियाओं से गुजरने में सक्षम परमाणु नाभिक की अपनी आपूर्ति को समाप्त कर दिया है, वे सभी तरह से न्यूट्रॉन सितारों में, या उच्च-द्रव्यमान वाले अवस्थाओ में, [[तारकीय ब्लैक होल]], [[गुरुत्वीय स्थितिज ऊर्जा]] (व्यापक रूप से न्यूट्रिनो की निर्गमन के माध्यम से) के निर्गमन द्वारा विस्फोटों को शक्ति प्रदान करते हैं। यह स्खलन संलयन प्रतिक्रियाओं की अनुपस्थिति है जो इस तरह के अधिनव तारा को [[कॉम्पैक्ट स्टार|सुसम्बद्ध तारकीय अवशेषों]] को पीछे छोड़ने की स्वीकृति देता है।


== यह भी देखें ==
== यह भी देखें ==


* [[कैस्केडिंग विफलता|सोपानी अवसर्पण विफलता]]
* [[कैस्केडिंग विफलता|सोपानी अवसर्पण विफलता]]
* फ्रैंक-कामेनेत्स्की सिद्धांत
* फ्रैंक-कामेनेत्स्की सिद्धांत
* लिथियम आयन बैटरियों की सुरक्षा
* लिथियम आयन बैटरियों की सुरक्षा

Revision as of 13:10, 6 February 2023

ऊष्मीय स्खलन का आरेख

ऊष्मीय स्खलन ऐसी प्रक्रिया का वर्णन करता है जो बढ़े हुए तापमान से त्वरित होती है, बदले में ऊष्मीय ऊर्जा को निर्मुक्त करती है जो तापमान को अधिक बढ़ाती है। ऊष्मीय स्खलन उन स्थितियों में होता है जहां तापमान में वृद्धि परिस्थितियों को इस तरह से परिवर्तित करती है जिससे तापमान में अधिक वृद्धि होती है, जो प्रायः विनाशकारी परिणाम की ओर ले जाती है। यह का एक प्रकार की अनियंत्रित सकारात्मक प्रतिक्रिया है।

रसायन विज्ञान (और रासायनिक अभियांत्रिकी) में, ऊष्मीय स्खलन दृढ़ता से ऊष्माक्षैपी अभिक्रियाओं के साथ जुड़ा हुआ है जो तापमान में वृद्धि से त्वरित होते हैं। विद्युत अभियन्त्रण में, ऊष्मीय स्खलन सामान्य रूप से बढ़े हुए विद्युत प्रवाह और विद्युत विसरण से जुड़ा होता है। सिविल अभियांत्रिकी में ऊष्मीय स्खलन हो सकता है, विशेष रूप से जब बड़ी मात्रा में संसाधन स्थूल द्वारा निर्गमन को नियंत्रित नहीं किया जाता है।[citation needed] खगोल भौतिकी में, तारों में स्खलन परमाणु संलयन प्रतिक्रियाओं से नवतारा और कई प्रकार के अधिनव तारा (सुपरनोवा) विस्फोट हो सकते हैं, और सौर-द्रव्यमान सितारों के सामान्य विकास में "हीलियम फ्लैश" के रूप में कम प्रभावशाली घटना भी हो सकती है।

कुछ जलवायु शोधकर्ताओं ने अनुमान लगाया है कि पूर्व-औद्योगिक आधार रेखा से ऊपर 3-4 डिग्री सेल्सियस की वैश्विक औसत तापमान वृद्धि से सतह के तापमान में अधिक अधिक अनियंत्रित वृद्धि हो सकती है। उदाहरण के लिए, वायुमंडलीय मीथेन का निर्गमन, ग्रीनहाउस गैस जो कार्बन डाइऑक्साइड (CO2) की तुलना में अधिक शक्तिशाली है, आर्द्रभूमि से, पिघलने वाले स्थायी तुषार भूमि और महाद्वीपीय सीमांत समुद्र सतह जालक निक्षेप सकारात्मक प्रतिक्रिया के अधीन हो सकते हैं।[1][2]


रासायनिक अभियांत्रिकी

ऊष्मीय स्खलन से जुड़ी रासायनिक प्रतिक्रियाओं को रासायनिक अभियांत्रिकी में ऊष्मीय विस्फोट, या कार्बनिक रसायन विज्ञान में स्खलन प्रतिक्रियाएं भी कहा जाता है। यह ऐसी प्रक्रिया है जिसके द्वारा उष्माक्षेपी प्रतिक्रिया नियंत्रण से बाहर हो जाती है: तापमान में वृद्धि के कारण प्रतिक्रिया दर बढ़ जाती है, जिससे तापमान में अधिक वृद्धि होती है और इसलिए प्रतिक्रिया दर में अधिक तेजी से वृद्धि होती है। इसने औद्योगिक रासायनिक दुर्घटनाओं में योगदान दिया है, विशेष रूप से 1947 टेक्सास शहर आपदा से जहाज के नियन्त्रण में अमोनियम नाइट्रेट से अधिक गरम होने से, और 1976 में किंग्स लिन में शोषित्र में ज़ोलेन का विस्फोट हुआ।[3] फ्रैंक-कामेनेत्स्की सिद्धांत ऊष्मीय विस्फोट के लिए एक सरलीकृत विश्लेषणात्मक मॉडल प्रदान करता है। श्रृंखला अभिक्रिया अतिरिक्त सकारात्मक प्रतिक्रिया तंत्र है जिससे तेजी से बढ़ती प्रतिक्रिया दर के कारण तापमान भी वृद्धि हो सकता है।

रासायनिक प्रतिक्रियाएं या तो ऊष्माशोषी या ऊष्माक्षैपी होती हैं, जैसा कि एन्थैल्पी में उनके परिवर्तन से व्यक्त किया गया है। कई प्रतिक्रियाएं अत्यधिक ऊष्माक्षैपी हैं, इसलिए कई औद्योगिक-पैमाने और तेल शोधशाला प्रक्रियाओं में ऊष्मीय स्खलन के जोखिम के कुछ स्तर होते हैं।इनमें हाइड्रोकार्बन, हाइड्रोजनीकरण, ऐल्किलन (SN2), ऑक्सीकरण, धातुकरण और न्यूक्लियोफिलिक एरोमेटिक प्रतिस्थापन सम्मिलित हैं। उदाहरण के लिए, साइक्लोहेक्सेन के साइक्लोहेक्सेनोल में ऑक्सीकरण और साइक्लोहेक्सानोन और ऑर्थो-ज़ाइलीन को फ्थेलिक एनहाइड्राइड में ऑक्सीकरण ने प्रतिक्रिया नियंत्रण विफल होने पर विपाती विस्फोट किया है।

ऊष्मीय स्खलन के परिणामस्वरूप अवांछित ऊष्माक्षैपी पार्श्व अभिक्रिया (एस) से हो सकता है जो प्रतिक्रिया मिश्रण के प्रारंभिक आकस्मिक अधितापन के बाद उच्च तापमान पर प्रारंभ होता है। यह परिदृश्य सेवेसो आपदा के पीछे था, जहां ऊष्मीय स्खलन ने तापमान पर प्रतिक्रिया को गर्म किया, जैसे कि 2,4,5-ट्राइक्लोरोफेनोल के अतिरिक्त, विषाक्त 2,3,7,8-टेट्राक्लोरोडिबेन्जो-पी-डाइऑक्सिन का भी उत्पादन किया गया था, और प्रतिघातित्र के संविदारण की चक्रिका प्रस्फोट के बाद पर्यावरण में विलग किया गया था।[4]

ऊष्मीय स्खलन सबसे अधिक बार रासायनिक प्रतिघातित्र पोत की शीतलक प्रणाली की विफलता के कारण होता है। मिश्रण-यन्त्र की विफलता के परिणामस्वरूप स्थानीयकृत ताप हो सकती है, जो ऊष्मीय स्खलन की प्रारंभ करती है। इसी तरह, प्रवाह रिएक्टरों में, स्थानीयकृत अपर्याप्त मिश्रण के कारण अतिक्षेत्र का कारण बनता है, जिसमें ऊष्मीय स्खलन स्थिति उत्पन्न होती है, जो प्रतिघातित्र सामग्री और उत्प्रेरक के तीव्र विस्फोट का कारण बनती है। गलत उपकरण घटकों की स्थापना भी एक सामान्य कारण है I कई रासायनिक उत्पादन सुविधाओं को उच्च मात्रा वाले आपातकालीन निकास के साथ डिज़ाइन किया गया है, जब ऐसी दुर्घटनाएँ होती हैं तो चोट और संपत्ति के नुकसान की सीमा को सीमित करने का एक उपाय है।

बड़े पैमाने पर, "सभी अभिकर्मकों को आवेशित करना और मिश्रण करना" असुरक्षित है,, जैसा कि प्रयोगशाला पैमाने में किया जाता है। ऐसा इसलिए है क्योंकि प्रतिक्रिया की मात्रा बर्तन के आकार के घन (v ∝ rγ), के साथ मापी जाती है लेकिन उष्मा का स्थानांतरण क्षेत्र आकार के वर्ग (A ∝ r²) के साथ बढ़ता है, ताकि ऊष्मा उत्पादन-से-क्षेत्र अनुपात का पैमाना हो आकार (v/a ∝ r)के साथ है। परिणामस्वरूप, प्रतिक्रियाएं जो आसानी से प्रयोगशाला में पर्याप्त तीव्रता से ठंडा हो जाती हैं, टन पैमाने पर असुरक्षित रूप से स्व-ऊष्मा कर सकती हैं। 2007 में, इस तरह की गलत प्रक्रिया के कारण 2,400 यू.एस. गैलन (9,100 एल) -रिएक्टर का विस्फोट हुआ, जिसका उपयोग धातु सोडियम के साथ मिथाइलसाइक्लोपेंटाडाइन को धातुकृत करने के लिए किया गया, जिससे चार लोगों की जान चली गई और रिएक्टर के कुछ हिस्से 400 फीट (120 मीटर) दूर बह गए।[5][6] इस प्रकार, ऊष्मीय स्खलन से ग्रस्त औद्योगिक पैमाने पर प्रतिक्रियाएं उपलब्ध शीतलन क्षमता के अनुरूप दर पर एक अभिकर्मक के अतिरिक्त द्वारा नियंत्रित होती हैं।

कुछ प्रयोगशाला प्रतिक्रियाओं को अत्यधिक शीतलन के अंतर्गत चलाया जाना चाहिए, क्योंकि वे परिसंकटग्रस्त ऊष्मीय स्खलन के लिए बहुत प्रवण हैं। उदाहरण के लिए, स्वर्न ऑक्सीकरण में, सल्फोनियम क्लोराइड का निर्माण एक ठंडी प्रणाली (-30 डिग्री सेल्सियस) में किया जाना चाहिए, क्योंकि कमरे के तापमान पर प्रतिक्रिया विस्फोटक ऊष्मीय स्खलन से होकर गुजरती है।[6]

माइक्रोवेव ताप

माइक्रोवेव का उपयोग खाना पकाने और विभिन्न औद्योगिक प्रक्रियाओं में विभिन्न सामग्रियों को गर्म करने के लिए किया जाता है। सामग्री के ताप की दर ऊर्जा अवशोषण पर निर्भर करती है, जो सामग्री के पारद्युतिक स्थिरांक पर निर्भर करती है। तापमान पर पारद्युतिक स्थिरांक की निर्भरता विभिन्न सामग्रियों के लिए भिन्न होती है; कुछ सामग्री बढ़ते तापमान के साथ महत्वपूर्ण वृद्धि प्रदर्शित करती है। यह व्यवहार, जब सामग्री माइक्रोवेव के संपर्क में आती है, तो चयनात्मक स्थानीय अतितापन की ओर जाता है, क्योंकि गर्म क्षेत्र ठंडे क्षेत्रों की तुलना में आगे की ऊर्जा को स्वीकार करने में सक्षम होते हैं - विशेष रूप से ऊष्मीय विद्युतरोधक के लिए संभावित रूप से असुरक्षित, जहां गर्म स्थानों और अन्य सामग्री के बीच ताप विनिमय मंद होता है। इन सामग्रियों को ऊष्मीय स्खलन सामग्री कहा जाता है। यह घटना कुछ सिरेमिक सामग्रियों में होती है।

इलेक्ट्रिकल इंजीनियरिंग

कुछ इलेक्ट्रॉनिक घटक कम प्रतिरोध या कम प्रवर्तन विद्युत-दाब (गैर रेखीय प्रतिरोधों के लिए) विकसित करते हैं क्योंकि उनका आंतरिक तापमान बढ़ता है। यदि परिपथ की स्थिति इन स्थितियों में स्पष्ट रूप से धारा प्रवाह में वृद्धि का कारण बनती है, तब बढ़ी हुई शक्ति का विसरण जूल ताप द्वारा तापमान को अधिक बढ़ा सकता है। ऊष्मीय स्खलन का दुष्चक्र या सकारात्मक प्रतिक्रिया प्रभाव कभी-कभी प्रभावशाली विधि, (जैसे विद्युत विस्फोट या आग) में विफलता का कारण बन सकता है। इन खतरों को रोकने के लिए, अच्छी तरह से डिज़ाइन किए गए इलेक्ट्रॉनिक प्रणाली में सामान्य रूप से धारा सीमित सुरक्षा जैसे कि ऊष्मीय फ्यूज, परिपथ वियोजक, या तापमान गुणांक सकारात्मक तापमान गुणांक धारा सीमाएँ सम्मिलित होती है।

बड़ी धाराओं को नियंत्रण करने के लिए, परिपथ अभिकल्पक समानांतर परिपथ में कई कम-क्षमता वाले उपकरणों (जैसे प्रतिरोधान्तरित्र, डायोड, या धातु-ऑक्साइड चररोधक) को जोड़ सकते हैं। यह तकनीक अच्छी तरह से काम कर सकती है, लेकिन धारा उत्रलन नामक घटना के लिए अतिसंवेदनशील है, जिसमें धारा को सभी उपकरणों में समान रूप से साझा नहीं किया जाता है। सामान्य रूप से, उपकरण में थोड़ा कम प्रतिरोध हो सकता है, और इस प्रकार अधिक धारा अवशोषित करता है, इसे अपने सहोदर उपकरणों की तुलना में अधिक गर्म करता है, जिससे इसका प्रतिरोध और कम हो जाता है। विद्युत भार ही उपकरण में फनलन (धुआँ निकलने का छिद्र ) को समाप्त करता है, जिससे तेजी से विफल हो जाता है। इस प्रकार, उपकरणों की सरणी अपने सबसे कमजोर घटक से अधिक मजबूत नहीं हो सकती है।

धारा-उत्रलन प्रभाव को प्रत्येक समान उपकरण की विशेषताओं से संयोजन करके, या विद्युत भार को संतुलित करने के लिए अन्य डिज़ाइन तकनीकों का उपयोग करके सावधानी से कम किया जा सकता है। हालांकि, अधिकतम परिस्थितियों में भार संतुलन बनाए रखना सरल नहीं हो सकता है। विद्युत प्रतिरोध के आंतरिक सकारात्मक तापमान गुणांक (पीटीसी) वाले उपकरण धारा उत्रलन के लिए कम प्रवण होते हैं, लेकिन ऊष्मीय स्खलन अभी भी अपशिष्ट ऊष्मा के गर्तन या अन्य समस्याओं के कारण हो सकते हैं।

कई इलेक्ट्रॉनिक परिपथ में ऊष्मीय स्खलन को रोकने के लिए विशेष प्रावधान होते हैं। यह प्रायः उच्च-शक्ति निर्गमित चरणों के लिए प्रतिरोधान्तरित्र झुकाव व्यवस्था में देखा जाता है। हालांकि, जब उपकरण को इसके डिज़ाइन किए गए परिवेश तापमान के ऊपर उपयोग किया जाता है, तो ऊष्मीय स्खलन अभी भी कुछ स्थितियो में हो सकता है। यह कभी -कभी गर्म वातावरण में उपकरण विफलताओं का कारण बनता है, या जब वायु शीतन निर्गम अवरुद्ध हो जाते हैं।

अर्द्धचालक

सिलिकॉन विशिष्ट रूपरेखा दिखाता है, जिसमें इसका विद्युत प्रतिरोध तापमान के साथ लगभग 160 डिग्री सेल्सियस तक बढ़ जाता है, फिर कम होने लगता है, और गलनांक तक पहुंचने पर आगे गिरता है। यह अर्धचालक संयोजन के आंतरिक क्षेत्रों के अंदर ऊष्मीय स्खलन घटना को उत्पन्न कर सकता है; उन क्षेत्रों में प्रतिरोध कम हो जाता है जो इस सीमा से ऊपर गर्म हो जाते हैं, जिससे अधिक धारा को गर्म क्षेत्रों के माध्यम से प्रवाहित करने की स्वीकृति मिलती है, बदले में आसपास के क्षेत्रों की तुलना में अभी तक अधिक ताप का कारण बनता है, जिससे आगे तापमान में वृद्धि होती है और प्रतिरोध में कमी आती है। यह धारा संकुलन और धारा संवाहक तार (धारा उत्रलन के समान, लेकिन उपकरण के अंदर) की घटना की ओर जाता है,और कई अर्धचालक संयोजन विफलताओं के अंतर्निहित कारणों में से एक है।

द्विध्रुवी संयोजन प्रतिरोधान्तरित्र (बीजेटी)

तापमान में वृद्धि के साथ द्विध्रुवी प्रतिरोधान्तरित्र (विशेष रूप से जर्मेनियम-आधारित द्विध्रुवी प्रतिरोधान्तरित्र) में क्षरण की धारा अधिकतम बढ़ जाती है। परिपथ के डिजाइन के आधार पर, रिसाव धारा में यह वृद्धि प्रतिरोधान्तरित्र के माध्यम से प्रवाह को बढ़ा सकती है और इस प्रकार विद्युत विसरण, संग्राहक-से-उत्सर्जक रिसाव धारा में अधिक वृद्धि का कारण बनता है। यह प्रायः कक्षा एबी प्रवर्धक के कर्षापकर्ष चरण में देखा जाता है; यदि विपटलन और अधोकर्षण प्रतिरोधान्तरित्र कमरे के तापमान पर न्यूनतम विनिमय के विरूपण के लिए अभिनत होता है, और अभिनति तापमान- प्रतिकारित नहीं है, तो जैसे ही तापमान बढ़ता है दोनों प्रतिरोधान्तरित्र तेजी से पक्षपाती होंगे, जिससे धारा और शक्ति में और वृद्धि होगी, और अंततः एक या दोनों उपकरणों को नष्ट कर देता है।

ऊष्मीय स्खलन से बचने के लिए अधीन का नियम द्विध्रुवी संयोजन प्रतिरोधान्तरित्र के संचालन बिंदु को रखना है ताकिvce ≤ 1/2Vcc हो।

अन्य पद्धति विनिमय अभिनति विद्युत-दाब को नियंत्रित करने के लिए ऊष्मा अभिगम पर ऊष्मीय पुनर्निवेशन संवेदन प्रतिरोधान्तरित्र या अन्य उपकरण को स्थापित करना है। जैसे -जैसे निर्गमित प्रतिरोधान्तरित्र गर्म हो जाता है, वैसे ही ऊष्मीय फीडबैक प्रतिरोधान्तरित्र होता है। यह बदले में ऊष्मीय फीडबैक प्रतिरोधान्तरित्र को थोड़ा कम विद्युत-दाब पर चालू करने का कारण बनता है, विनिमय अभिनति विद्युत-दाब को कम करता है, और इसलिए निर्गमित प्रतिरोधान्तरित्र द्वारा विघटित ऊष्मा को कम करता है।

यदि कई द्विध्रुवी संयोजन प्रतिरोधान्तरित्र समानांतर में जुड़े हुए हैं (जो उच्च धारा अनुप्रयोगों में विशिष्ट है), तो धारा उत्रलन समस्या हो सकती है। द्विध्रुवी संयोजन प्रतिरोधान्तरित्र की इस विशेषता भेद्यता को नियंत्रित करने के लिए विशेष उपाय किए जाने चाहिए।

शक्ति प्रतिरोधान्तरित्र में (जिसमें प्रभावी रूप से समानांतर में कई छोटे प्रतिरोधान्तरित्र सम्मिलित होते हैं), धारा उत्रलन प्रतिरोधान्तरित्र के विभिन्न भागों के बीच हो सकती है, प्रतिरोधान्तरित्र का भाग दूसरों की तुलना में अधिक गर्म हो जाता है। इसे दूसरा विघटन कहा जाता है, और इसके परिणामस्वरूप प्रतिरोधान्तरित्र का विनाश हो सकता है, यद्यपि जब औसत संयोजन तापमान सुरक्षित स्तर पर लगता है।

शक्ति धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव ट्रांजिस्टर

शक्ति धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव प्रतिरोधान्तरित्र सामान्य रूप से तापमान के साथ अपने प्रतिरोध को बढ़ाते हैं। कुछ परिस्थितियों में, इस प्रतिरोध में विघटित विद्युत संयोजन के अधिक ताप का कारण बनती है, जो सकारात्मक प्रतिक्रिया कुंडली में संयोजन तापमान को अधिक बढ़ाती है। परिणामस्वरूप, शक्ति धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव प्रतिरोधान्तरित्र में संचालन के स्थिर और अस्थिर क्षेत्र हैं।[7] हालांकि, तापमान के साथ प्रति-प्रतिरोध की वृद्धि समानांतर में जुड़े कई धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव प्रतिरोधान्तरित्र में धारा को संतुलित करने में सहायता करती है, इसलिए धारा उत्रलन नहीं होती है। यदि धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव प्रतिरोधान्तरित्र ऊष्मा अभिगम की तुलना में अधिक ऊष्मा उत्पन्न करता है, तो ऊष्मीय स्खलन अभी भी प्रतिरोधान्तरित्र को नष्ट कर सकता है। प्रतिरोधान्तरित्र क्षय और ऊष्माशोषी के बीच ऊष्मीय प्रतिरोध को कम करके इस समस्या को अधिकतम सीमा तक कम किया जा सकता है। ऊष्मीय डिज़ाइन शक्ति भी देखें।

धातु ऑक्साइड चररोधक (एमओवी)

धातु ऑक्साइड चररोधक सामान्य रूप से कम प्रतिरोध विकसित करते हैं क्योंकि वे गर्म करते हैं। यदि एसी या डीसी शक्ति बस (विद्युत-दाब स्पाइक के विपरीत सुरक्षा के लिए सामान्य उपयोग) से प्रत्यक्ष रूप से जुड़ा हुआ है, तो धातु ऑक्साइड चररोधक जिसने कम प्रवर्तित विद्युत-दाब विकसित किया है, वह आपत्तिजनक ऊष्मीय स्खलन सकता है, संभवतः छोटे से विस्फोट या आग में समाप्त होता है।[8] इस संभावना को रोकने के लिए, दोष धारा सामान्य रूप से ऊष्मीय फ्यूज, परिपथ वियोजक या अन्य धारा सीमित उपकरण द्वारा सीमित होता है।

टैंटलम संधारित्र

टैंटलम संधारित्र, कुछ अवस्थाओ के अंतर्गत, ऊष्मीय स्खलन द्वारा स्व-विनाश के लिए प्रवण हैं। संधारित्र में सामान्य रूप से एनोड के रूप में कार्य करने वाले निसादित टैंटलम स्पंज होते हैं, मैंगनीज डाइऑक्साइड कैथोड, और टैंटलम पेंटोक्साइड की परावैद्युत सामर्थ्य परत टैंटलम स्पंज की सतह पर ऐनोडीकरण द्वारा बनाई जाती है। ऐसा हो सकता है कि टैंटलम ऑक्साइड परत में दुर्बल धब्बे होते हैं जो विद्युत-दाब प्रवाह में क्षणिक परिवर्तन के समय परावैद्युत विघटन से गुजरते हो। टैंटलम स्पंज तब मैंगनीज डाइऑक्साइड के साथ सीधे संपर्क में आता है, और क्षणन धारा में वृद्धि स्थानीयकृत ऊष्मा का कारण बनती है; सामान्य रूप से, यह ऊष्माशोषी रासायनिक प्रतिक्रिया को बढ़ी करता है जो मैंगनीज (III) ऑक्साइड का उत्पादन करता है और टैंटलम ऑक्साइड अचालक परत को पुन: उत्पन्न (स्व-ऊष्मा) करता है।

हालांकि, यदि विफलता बिंदु पर ऊर्जा का क्षय काफी अधिक है तो थर्माइट प्रतिक्रिया के समान स्वसंपोषी ऊष्माक्षैपी प्रतिक्रिया प्रारंभ हो सकती है, जिसमें धातु टैंटलम ईंधन के रूप में और मैंगनीज डाइऑक्साइड ऑक्सीकारक के रूप में होता है। यह अवांछित प्रतिक्रिया संधारित्र को नष्ट कर देगी, जिससे धुआं और संभवतः लौ उत्पन्न होगी।[9]

इसलिए, टैंटलम संधारित्र को स्वतंत्र रूप से छोटे-सिग्नल परिपथ में परिनियोजित किया जा सकता है, लेकिन ऊष्मीय स्खलन विफलताओं से बचने के लिए उच्च-शक्ति वाले परिपथ में संप्रयोग को सावधानीपूर्वक डिज़ाइन किया जाना चाहिए।

डिजिटल (अंकीय) तर्क

तार्किक स्विचण प्रतिरोधान्तरित्र का रिसाव (अर्धचालक) तापमान के साथ बढ़ता है। दुर्लभ उदाहरणों में, इससे डिजिटल परिपथ में ऊष्मीय स्खलन हो सकता है। यह सामान्य समस्या नहीं है, क्योंकि रिसाव धाराएं सामान्य रूप से समग्र विद्युत की क्षय का छोटा भाग बनाती हैं, इसलिए शक्ति में वृद्धि अधिकतम सामान्य है -एथलॉन 64 के लिए, प्रत्येक 30 डिग्री सेल्सियस के लिए बिजली विसरण लगभग 10% बढ़ जाता है।[10] 100 वाट के तापीय डिजाइन शक्ति वाले उपकरण के लिए ऊष्मीय स्खलन होने के लिए ऊष्मा अभिगम में 3 K/W (केल्विन प्रति वाट) से अधिक की थर्मल प्रतिरोधकता होनी चाहिए जो स्टॉक एथलॉन 64 ऊष्मा अभिगम से लगभग 6 गुना खराब है। ( स्टॉक एथलॉन 64 ऊष्मा अभिगम को 0.34 केल्विन प्रति वाट पर मूल्यांकित किया गया है, हालांकि पर्यावरण के लिए वास्तविक ऊष्मीय प्रतिरोध अधिकतम सीमा तक अधिक है, प्रकमक और ऊष्माशोषी के बीच ऊष्मीय सीमा, स्थिति में बढ़ते तापमान और अन्य ऊष्मीय प्रतिरोधों के कारण है।[citation needed]) यद्यपि, 0.5 से 1 केल्विन प्रति वाट के ऊष्मीय प्रतिरोध के साथ अपर्याप्त ऊष्मा अभिगम के परिणामस्वरूप ऊष्मीय स्खलन प्रभाव के बिना भी 100 वाट उपकरण के विनाश का परिणाम होगा।

बैटरी

जब अनुचित तरीके से संभाला जाता है, या यदि दोषपूर्ण रूप से निर्मित किया जाता है, तो कुछ पुनःआवेशनीय बैटरी ऊष्मीय स्खलन का अनुभव कर सकती हैं, जिसके परिणामस्वरूप अतितापन होती है। यदि सुरक्षा छिद्र दब गए हैं या काम नहीं कर रहे हैं तो मुद्रांकित कोशिकाएं कभी-कभी तीव्र रूप से विस्फोट हो जाती हैं।[11] विशेष रूप से ऊष्मीय स्खलन के लिए प्रवण लिथियम आयन बैटरी हैं, जो कि लिथियम बहुलक बैटरी के रूप में सबसे अधिक स्पष्ट है।[citation needed] समाचार पत्रों में कभी-कभी सेलफोन में विस्फोट की सूचना आती हैं। 2006 में, एप्पल, एचपी, तोशिबा, लेनोवो, डेल और अन्य नोटबुक निर्माताओं को आग और विस्फोटों के कारण वापस बुला लिया गया।[12][13][14][15] अमेरिकी परिवहन विभाग के पाइपलाइन और संकटग्रस्त सामग्री सुरक्षा प्रशासन (पीएचएमएसए) ने कुछ स्थितियों में उनकी अस्थिरता के कारण हवाई जहाज पर कुछ प्रकार की बैटरी ले जाने के संबंध में नियम स्थापित किए हैं। यह प्रक्रिया आंशिक रूप से निर्बाध विद्युत आपूर्ति हवाई जहाज पर कार्गो खाड़ी आग लगने से प्रेरित थी।[16] संभावित समाधानों में से सुरक्षित और कम प्रतिक्रियाशील एनोड (लिथियम टिटैनियम) और कैथोड (लिथियम आयरन फॉस्फेट) सामग्री का उपयोग करना है - जिससे आयनिक तरल पदार्थों पर आधारित गैर-ज्वलनशील विद्युतअपघट्य के साथ कई लिथियम पुनःआवेशनीय कोशिकाओं में कोबाल्ट इलेक्ट्रोड से बचा जा सकता है।

खगोल भौतिकी

स्खलन ताप-नाभिकीय प्रतिक्रियाएं तारों में हो सकती हैं जब परमाणु संलयन को उन परिस्थितियों में प्रज्वलित किया जाता है, जिनके अंतर्गत तारे की परतों को खत्म करने से गुरुत्वाकर्षण दबाव गैसों के गतिज सिद्धांत से अधिक होता है, ऐसी ऐसी स्थितियों में प्रज्वलित होता है जिसके तहत तारे की ऊपरी परतों द्वारा लगाया गया गुरुत्वाकर्षण दबाव थर्मल दबाव से बहुत अधिक हो जाता है, ऐसी स्थिति जो गुरुत्वाकर्षण संपीड़न के माध्यम से तापमान में तेजी से वृद्धि को संभव बनाती है। ऐसा परिदृश्य पतित पदार्थ वाले सितारों में उत्पन्न हो सकता है, जिसमें सामान्य तापीय दबाव के अतिरिक्त इलेक्ट्रॉन अध: पतन दबाव गुरुत्वाकर्षण के विपरीत और अंतःस्फोट से गुजर रहे तारों में समर्थन करने का अधिकांश काम करता है।सभी स्थितियों में, संलयन प्रज्वलन से पहले असंतुलन उत्पन्न होता है; अन्यथा, तापमान परिवर्तन को रोकने और तारे को स्थिर करने के लिए संलयन प्रतिक्रियाओं को स्वाभाविक रूप से नियंत्रित किया जाएगा। जब ऊष्मीय दबाव अत्यधिक दबाव के साथ संतुलन में होता है, तब तारा तापमान में वृद्धि और ऊष्मीय दबाव में वृद्धि की प्रतिक्रिया देगा। स्खलन प्रतिक्रिया केवल तभी संभव है जब यह प्रतिक्रिया बाधित हो।

लाल तारे में चमक रही हीलियम

जब 0.8-2.0 सौर द्रव्यमान सीमा में तारे अपने अंतर्भाग में हाइड्रोजन को समाप्त करते हैं और लाल तारा बन जाते हैं, तो उनके अंतर्भाग में संचित होने वाला हीलियम प्रज्वलित होने से पहले अध: पतन तक पहुंच जाता है। जब अपभ्रष्‍ट अंतर्भाग लगभग 0.45 सौर द्रव्यमान के महत्वपूर्ण द्रव्यमान तक पहुंचता है, तो हीलियम संलयन को प्रज्वलित किया जाता है और स्खलन आकृति में कमी या जाती है, जिसे हीलियम फ्लैश कहा जाता है, संक्षेप में तारे की ऊर्जा उत्पादन को 100 अरब गुना सामान्य दर तक बढ़ाता है। अंतर्भाग का लगभग 6% शीघ्रता से कार्बन में परिवर्तित हो जाता है।[17] जबकि निर्गमन कुछ सेकंड के बाद अंतर्भाग को सामान्य प्लाज्मा (भौतिकी) में वापस बदलने के लिए पर्याप्त है, यह तारे को बाधित नहीं करता है,[18][19] और न ही तुरंत इसकी चमक को बदलता है। तारा पुनः संकुचित होता है, लाल तारे के चरण को छोड़ देता है और स्थिर हीलियम-जलने वाले चरण में अपना विकास सतत रखता है।

नवतारा

नवतारा कार्बन-ऑक्सीजन सफेद वामन तारे की बाहरी परत में स्खलन न्यूक्लियर संलयन (कार्बन-नाइट्रोजन-ऑक्सीजन चक्र के माध्यम से) से नवतारा का परिणाम होता है। यदि सफेद वामन में अभिसार तारा होता है, जिसमें से यह चक्रिका को अभिवृद्धि कर सकता है, तो सामग्री वामन के तीव्र गुरुत्व द्वारा अपभ्रष्‍ट सतह की परत में संचित हो जाएगी। सही परिस्थितियों में, हाइड्रोजन की पर्याप्त मोटी परत को अंततः 20 मिलियन K के तापमान तक गर्म किया जाता है, जो स्खलन संलयन को प्रज्वलित करता है। सतह की परत को सफेद वामन से विस्फोट किया जाता है, 50,000 के क्रम पर कारक द्वारा चमक बढ़ा दिया जाता है। सफेद वामन और अभिसार अक्षुण्ण रहते हैं, हालांकि, प्रक्रिया दोहराई जा सकती है।[20] बहुत दुर्लभ प्रकार का नवतारा तब हो सकता है जब प्रज्वलित होने वाली बाहरी परत हीलियम से बनी हो[21]

एक्स-रे प्रस्फोट

नवतारा की ओर जाने वाली प्रक्रिया के अनुरूप, अपभ्रष्‍ट पदार्थ भी न्यूट्रॉन तारे की सतह पर भी संचित हो सकता है जो आस-पास के अभिसार से गैस को प्राप्त कर रहा है। यदि हाइड्रोजन की पर्याप्त रूप से मोटी परत संचित हो जाती है, तब स्खलन हाइड्रोजन संलयन का प्रज्वलन तब एक्स-रे प्रस्फोट हो सकता है। जैसा कि नवतारा के साथ होता है, इस तरह के प्रस्फोट के लिए दोहराया जाता है और उन्हें हीलियम या यहां तक कि कार्बन संलयन द्वारा भी प्रवर्तित किया जा सकता है।[22][23] यह प्रस्तावित किया गया है कि अधिक विस्फोट के स्थिति में, परमाणु संलयन के अतिरिक्त प्रकाशिक वियोजन के माध्यम से लौह समूह के नाभिकों में संचित अधिक नाभिकों का स्खलन विखंडन प्रस्फोटन की अधिकांश ऊर्जा का योगदान कर सकता है।[23]


टाइप आईए अधिनव तारा

कार्बन-ऑक्सीजन सफेद वामन तारा के अंतर्भाग में स्खलन कार्बन संलयन से एक टाइप आईए अधिनव तारा का परिणाम होता हैं। यदि सफेद वामन तारा, जो लगभग पूरी तरह से अपभ्रष्‍ट पदार्थ से बना है, तो अभिसार से द्रव्यमान प्राप्त कर सकता है, इसके अंतर्भाग में सामग्री का बढ़ता तापमान और घनत्व कार्बन संलयन प्रक्रिया को प्रज्वलित करेगा यदि तारे का द्रव्यमान चंद्रशेखर सीमा तक पहुंचता है। इससे विस्फोट होता है जो तारे को पूरी तरह से बाधित कर देता है। अतः चमक 5 अरब से अधिक के कारक से बढ़ जाती है। अतिरिक्त द्रव्यमान प्राप्त करने का एक तरीका विशाल तारे (या यहां तक कि मुख्य अनुक्रम) के अभिसार से गैस प्राप्त करना होगा।[24] एक ही प्रकार के विस्फोट को उत्पन्न करने के लिए अन्य और स्पष्ट रूप से अधिक सामान्य क्रियाविधि दो सफेद वामन तारा का समन्वय है।[24][25]

युग्म-अस्थिरता अधिनव तारा

माना जाता है कि एक युग्म-अस्थिरता अधिनव तारा एक बड़े पैमाने पर, 130-250 सौर द्रव्यमान, निम्न से मध्यम धात्विकता वाले तारे के अंतर्भाग में स्खलन हुए ऑक्सीजन संलयन का परिणाम है।[26] सिद्धांत के अनुसार, इस तरह के तारे में, गैर- संलयी ऑक्सीजन का बड़ा लेकिन अपेक्षाकृत कम घनत्व वाला सब से महत्वपूर्ण भाग बनता है, जिसके वजन को अत्यधिक तापमान द्वारा उत्पन्न गामा किरणों के दबाव द्वारा समर्थित किया जाता है। जैसे-जैसे कोर और अधिक गर्म होता है, गामा किरणें अंततः इलेक्ट्रॉन-पॉज़िट्रॉन युग्म में संघट्टन-प्रेरित क्षय के लिए आवश्यक ऊर्जा सीमा को स्वीकृत करना प्रारंभ कर देती हैं, यह सब से महत्वपूर्ण भाग के अंदर दबाव में कमी का कारण बनता है, जिससे यह सिकुड़ता है और गर्म होता है जिससे अधिक युग्म उत्पादन होता है और दबाव में अधिक कमी आती है। अंतर्भाग गुरुत्वाकर्षण निपात से गुजरना प्रारंभ कर देता है। कुछ बिंदु पर यह स्खलन हुए ऑक्सीजन संलयन को प्रज्वलित करता है, जिससे तारे को नष्ट करने के लिए पर्याप्त ऊर्जा निकलती है। ये विस्फोट संभव्यता ही कभी प्रति 100,000 अधिनव तारा में से एक के बारे में होते हैं।

गैर-स्खलन अधिनव तारा की तुलना

सभी अधिनव तारा को स्खलन परमाणु संलयन द्वारा प्रवर्तित नहीं किया जाता है। टाइप आईबी और आईसी अधिनव तारा टाइप आईबी, आईसी और टाइप II अधिनव तारा भी अंतर्भाग विफलता से गुजरते हैं, क्योंकि उन्होंने ऊष्माक्षैपी संलयन प्रतिक्रियाओं से गुजरने में सक्षम परमाणु नाभिक की अपनी आपूर्ति को समाप्त कर दिया है, वे सभी तरह से न्यूट्रॉन सितारों में, या उच्च-द्रव्यमान वाले अवस्थाओ में, तारकीय ब्लैक होल, गुरुत्वीय स्थितिज ऊर्जा (व्यापक रूप से न्यूट्रिनो की निर्गमन के माध्यम से) के निर्गमन द्वारा विस्फोटों को शक्ति प्रदान करते हैं। यह स्खलन संलयन प्रतिक्रियाओं की अनुपस्थिति है जो इस तरह के अधिनव तारा को सुसम्बद्ध तारकीय अवशेषों को पीछे छोड़ने की स्वीकृति देता है।

यह भी देखें

संदर्भ

  1. Clark, P.U.; et al. (December 2008). "Executive Summary". Abrupt Climate Change. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Reston, Virginia, USA: U.S. Geological Survey., pp. 163–201. Report website Archived 2013-05-04 at the Wayback Machine
  2. IMPACTS: On the Threshold of Abrupt Climate Changes, Lawrence Berkeley National Laboratory News Center, 17 September 2008
  3. "The explosion at the Dow chemical factory, King's Lynn 27 June 1976" (PDF). Health & Safety Executive. March 1977. Retrieved 9 January 2018.
  4. Kletz, Trevor A. (2001). Learning from Accidents (3rd ed.). Oxford U.K.: Gulf Professional. pp. 103–9. ISBN 978-0-7506-4883-7.
  5. Lowe, Derek (2009-09-18). "175 Times. And Then the Catastrophe". Corante. Archived from the original on 2015-03-20. Retrieved 16 April 2016.
  6. 6.0 6.1 Lowe, Derek (2008-04-30). "How Not To Do It: Diazomethane". Science Translational Magazine. American Association for the Advancement of Science. Retrieved 16 April 2016.
  7. Ferrara, A.; Steeneken, P. G.; Boksteen, B. K.; Heringa, A.; Scholten, A. J.; Schmitz, J.; Hueting, R. J. E. (November 2015). "Physics-based stability analysis of MOS transistors". Solid-State Electronics. 113: 28–34. Bibcode:2015SSEle.113...28F. doi:10.1016/j.sse.2015.05.010.
  8. Brown, Kenneth (March 2004). "Metal Oxide Varistor Degradation". IAEI Magazine. Archived from the original on 2011-07-19. Retrieved 2011-03-30.
  9. Vasina, P.; Zednicek, T.; Sikula, J.; Pavelka, J. (2002). "Failure modes of tantalum capacitors made by different technologies" (PDF). Microelectronics Reliability. 42 (6): 849–854. doi:10.1016/S0026-2714(02)00034-3. Archived from the original (PDF) on 2010-09-23.
  10. "AMD Athlon64 "Venice"". LostCircuits. May 2, 2005. Archived from the original on 2007-04-16. Retrieved 2007-06-03. {{cite web}}: |archive-date= / |archive-url= timestamp mismatch (help)
  11. Finegan, D. P.; Scheel, M.; Robinson, J. B.; Tjaden, B.; Hunt, I.; Mason, T. J.; Millichamp, J.; Di Michiel, M.; Offer, G. J.; Hinds, G.; Brett, D. J. L.; Shearing, P. R. (2015). "In-operando high-speed tomography of lithium-ion batteries during thermal runaway". Nature Communications. 6: 6924. Bibcode:2015NatCo...6.6924F. doi:10.1038/ncomms7924. PMC 4423228. PMID 25919582.
  12. Kelley, Rob (August 24, 2006). "Apple to recall 1.8 million notebook batteries". CNN Money.
  13. "PC Notebook Computer Batteries Recalled Due to Fire and Burn Hazard" (Press release). U.S. Consumer Product Safety Commission. Archived from the original on 2013-01-08.
  14. "Lenovo and IBM Announce Recall of ThinkPad Notebook Computer Batteries Due to Fire Hazard" (Press release). U.S. Consumer Product Safety Commission. 2006-09-28. Archived from the original on 2013-01-08. Retrieved 2018-06-27.
  15. "Dell laptop explodes at Japanese conference". The Inquirer. 21 June 2006. Archived from the original on 2006-08-15. Retrieved 2006-08-15.{{cite web}}: CS1 maint: unfit URL (link)
  16. "Hazardous Materials Accident Brief — Cargo Fire Involving Lithium-Ion Batteries, Memphis, Tennessee, August 7, 2004". National Transportation Safety Board. September 26, 2005. Archived from the original on 2012-10-07. Retrieved 2013-01-26.
  17. Taylor, David. "The End Of The Sun". The Life And Death Of Stars.
  18. Pols, Onno (September 2009). "Chapter 9: Post-main sequence evolution through helium burning" (PDF). Stellar Structure and Evolution (lecture notes). Archived from the original (PDF) on 2019-05-20. Retrieved 2015-05-24.
  19. Dearborn, D. S. P.; Lattanzio, J. C.; Eggleton, P. P. (2006-03-01). "Three‐dimensional Numerical Experimentation on the Core Helium Flash of Low‐Mass Red Giants". The Astrophysical Journal. 639 (1): 405–415. arXiv:astro-ph/0512049. Bibcode:2006ApJ...639..405D. doi:10.1086/499263. ISSN 0004-637X. S2CID 118526354.
  20. JPL/NASA (12 August 2010). "फर्मी सुपरनोवा के छोटे चचेरे भाई से 'चौंकाने वाला' आश्चर्यचकित करता है". PhysOrg. Retrieved 15 August 2010.
  21. Kato, M.; Hachisu, I. (December 2003). "V445 पपलिस: एक विशाल सफेद बौने पर हीलियम नोवा". The Astrophysical Journal. 598 (2): L107–L110. arXiv:astro-ph/0310351. Bibcode:2003ApJ...598L.107K. doi:10.1086/380597. S2CID 17055772.
  22. Cumming, A.; Bildsten, L. (2001-09-10). "Carbon flashes in the heavy-element ocean on accreting neutron stars". The Astrophysical Journal Letters. 559 (2): L127–L130. arXiv:astro-ph/0107213. Bibcode:2001ApJ...559L.127C. doi:10.1086/323937. S2CID 14089038.
  23. 23.0 23.1 Schatz, H.; Bildsten, L.; Cumming, A. (2003-01-03). "Photodisintegration-triggered Nuclear Energy Release in Superbursts". The Astrophysical Journal Letters. 583 (2): L87–L90. Bibcode:2003ApJ...583L..87S. doi:10.1086/368107. S2CID 121603976.
  24. 24.0 24.1 Dilday, B.; Howell, D. A.; Cenko, S. B.; Silverman, J. M.; Nugent, P. E.; Sullivan, M.; Ben-Ami, S.; Bildsten, L.; Bolte, M.; Endl, M.; Filippenko, A. V.; Gnat, O.; Horesh, A.; Hsiao, E.; Kasliwal, M. M.; Kirkman, D.; Maguire, K.; Marcy, G. W.; Moore, K.; Pan, Y.; Parrent, J. T.; Podsiadlowski, P.; Quimby, R. M.; Sternberg, A.; Suzuki, N.; Tytler, D. R.; Xu, D.; Bloom, J. S.; Gal-Yam, A.; Hook, I. M.; Kulkarni, S. R.; Law, N. M.; Ofek, E. O.; Polishook, D.; Poznanski, D. (2012-08-24). "PTF 11kx: A Type Ia Supernova with a Symbiotic Nova Progenitor". Science. 337 (6097): 942–945. arXiv:1207.1306. Bibcode:2012Sci...337..942D. doi:10.1126/science.1219164. ISSN 0036-8075. PMID 22923575. S2CID 38997016.
  25. "नासा के चंद्र ने प्रमुख ब्रह्मांडीय विस्फोटों की उत्पत्ति का खुलासा किया". Chandra X-ray Observatory web site. Harvard-Smithsonian Center for Astrophysics. 17 February 2010. Retrieved 28 March 2012.
  26. Gal-Yam, A.; Mazzali, P.; Ofek, E. O.; Nugent, P. E.; Kulkarni, S. R.; Kasliwal, M. M.; Quimby, R. M.; Filippenko, A. V.; Cenko, S. B.; Chornock, R.; Waldman, R.; Kasen, D.; Sullivan, M.; Beshore, E. C.; Drake, A. J.; Thomas, R. C.; Bloom, J. S.; Poznanski, D.; Miller, A. A.; Foley, R. J.; Silverman, J. M.; Arcavi, I.; Ellis, R. S.; Deng, J. (2009-12-03). "Supernova 2007bi as a pair-instability explosion". Nature. 462 (7273): 624–627. arXiv:1001.1156. Bibcode:2009Natur.462..624G. doi:10.1038/nature08579. ISSN 0028-0836. PMID 19956255. S2CID 4336232.


बाहरी कड़ियाँ