This is a good article. Click here for more information.

टाइप II सुपरनोवा

From Vigyanwiki
एसएन 1987ए का बढ़ता हुआ अवशेष, बड़े मैगेलैनिक बादल में एक अजीबोगरीब प्रकार II सुपरनोवा। नासा छवि।

एक टाइप II सुपरनोवा (बहुवचन: सुपरनोवा या सुपरनोवा) एक विशाल तारे के तेजी से पतन और हिंसक विस्फोट का परिणाम है। इस प्रकार के विस्फोट से गुजरने के लिए एक तारे के पास सूर्य के द्रव्यमान (M) का कम से कम 8 गुना, लेकिन 40 से 50 गुना से अधिक नहीं होना चाहिए।[1] प्रकार II सुपरनोवा को उनके स्पेक्ट्रम में हाइड्रोजन की उपस्थिति से अन्य प्रकार के सुपरनोवा से अलग किया जाता है। वे सामान्यतः आकाशगंगाओं की सर्पिल भुजाओं और H II क्षेत्रों में देखे जाते है, लेकिन अण्डाकार आकाशगंगाओं में नहीं, वे सामान्यतः पुराने, कम-द्रव्यमान वाले सितारों से बने होते है, जिनमें से कुछ नए, बहुत बड़े सितारों के साथ सुपरनोवा उत्पन्न करने के लिए आवश्यक होते है।

तारे तत्वों के नाभिकीय संलयन से ऊर्जा उत्पन्न करते है। सूर्य के विपरीत, बड़े सितारों में तत्वों को फ्यूज करने के लिए आवश्यक द्रव्यमान होता है, जिसका परमाणु द्रव्यमान हाइड्रोजन और हीलियम से अधिक होता है, यद्यपि उच्च तापमान और दबावों पर, तदनुसार कम तारकीय जीवन काल होता है। इन संलयन प्रतिक्रियाओं द्वारा उत्पन्न इलेक्ट्रॉनों का अध: पतन दबाव और ऊर्जा गुरुत्वाकर्षण बल का मुकाबला करने और तारकीय संतुलन को बनाए रखने के लिए तारे को ढहने से रोकने के लिए पर्याप्त है। तारा तेजी से उच्च द्रव्यमान वाले तत्वों को फ्यूज करता है, जो हाइड्रोजन और फिर हीलियम से प्रारंभ होता है, आवर्त सारणी के माध्यम से तब तक बढ़ता है जब तक कि लोहे और निकल का उत्पादन नहीं हो जाता। लोहे या निकल के संलयन से कोई शुद्ध ऊर्जा उत्पादन नहीं होता है, इसलिए आगे कोई संलयन नहीं हो सकता है, जिससे निकल-लौह कोर निष्क्रिय हो जाता है। बाहरी तापीय दबाव उत्पन्न करने वाले ऊर्जा उत्पादन की कमी के कारण, गुरुत्वाकर्षण के कारण मुख्य अनुबंध तब तक होता है जब तक कि तारे के अत्यधिक वजन को बड़े पैमाने पर इलेक्ट्रॉन अध: पतन दबाव द्वारा समर्थित नहीं किया जा सकता है।

जब निष्क्रिय कोर का संकुचित द्रव्यमान लगभग 1.4 M की चंद्रशेखर सीमा से अधिक हो जाता है, तो गुरुत्वाकर्षण संपीड़न का मुकाबला करने के लिए इलेक्ट्रॉन अध: पतन पर्याप्त नहीं रह जाता है। सेकंड के भीतर कोर का एक प्रलयकारी अंतःस्फोट होता है। अब फटे आंतरिक कोर के समर्थन के बिना, बाहरी कोर गुरुत्वाकर्षण के अनुसार अंदर की ओर ढह जाता है और प्रकाश की गति के 23% तक के वेग तक पहुँच जाता है, और अचानक संपीड़न से आंतरिक कोर का तापमान 100 बिलियन केल्विन तक बढ़ जाता है। उल्टे बीटा-क्षय के माध्यम से न्यूट्रॉन और न्युट्रीनो बनते है, जो दस सेकंड के फटने में लगभग 1046 जूल (100 फ़ो) छोड़ते है। आंतरिक कोर के पतन को न्यूट्रॉन अध: पतन द्वारा रोक दिया जाता है, जिससे अंतःस्फोट प्रतिक्षेपित होता है और बाहर की ओर उछलता है। इस विस्तारित सदमे की लहर की ऊर्जा अतिव्यापी तारकीय सामग्री को बाधित करने और वेग से बचने के लिए इसे तेज करने के लिए पर्याप्त है, जिससे सुपरनोवा विस्फोट होता है। शॉक वेव और अत्यधिक उच्च तापमान और दबाव तेजी से समाप्त हो जाते है लेकिन लंबे समय तक उपस्तिथ रहते है जिससे एक संक्षिप्त अवधि के लिए अनुमति मिलती है जिसके दौरान लोहे से भारी तत्वों का उत्पादन होता है।[2] तारे के प्रारंभिक द्रव्यमान के आधार पर, कोर के अवशेष न्यूट्रॉन स्टार या ब्लैक होल बनाते है। अंतर्निहित तंत्र के कारण, परिणामी सुपरनोवा को कोर-पतन सुपरनोवा के रूप में भी वर्णित किया जाता है।

प्रकार II सुपरनोवा विस्फोटों की कई श्रेणियां उपस्तिथ है, जिन्हें परिणामी प्रकाश वक्र के आधार पर वर्गीकृत किया गया है - विस्फोट के बाद चमकदारता बनाम समय का एक ग्राफ। प्रकार II-एल सुपरनोवा विस्फोट के बाद प्रकाश वक्र की एक स्थिर (रैखिक) गिरावट दिखाते है, जबकि प्रकार II-पी सामान्य क्षय के बाद उनके प्रकाश वक्र में धीमी गिरावट (एक पठार) की अवधि प्रदर्शित करते है। प्रकार आईबी और आईसी सुपरनोवा एक विशाल तारे के लिए एक प्रकार का कोर-पतन सुपरनोवा है जिसने हाइड्रोजन के अपने बाहरी लिफाफे और (प्रकार आईसी के लिए) हीलियम को बहाया है। परिणाम स्वरुप, उनमें इन तत्वों की कमी दिखाई देती है।

गठन

कोर के ढहने से ठीक पहले एक विशाल, विकसित तारे की प्याज जैसी परतें। (बड़े पैमाने पर नहीं।)

सूर्य से कहीं अधिक विशाल तारे जटिल तरीकों से विकसित होते है। तारे के केंद्र में, हाइड्रोजन को हीलियम में जोड़ा जाता है, जो तापीय ऊर्जा को मुक्त करता है जो तारे के कोर को गर्म करता है और बाहरी दबाव प्रदान करता है जो तारे की परतों को ढहने से रोकता है - ऐसी स्थिति जिसे तारकीय या हाइड्रोस्टेटिक संतुलन के रूप में जाना जाता है। कोर में निर्मित हीलियम वहां जमा हो जाती है। कोर में तापमान अभी इतना अधिक नहीं है कि यह फ्यूज हो जाए। आखिरकार, जैसे ही कोर में हाइड्रोजन समाप्त हो जाती है, संलयन धीमा होने लगता है, और गुरुत्वाकर्षण के कारण कोर सिकुड़ जाता है। यह संकुचन हीलियम संलयन के एक छोटे चरण की अनुमति देने के लिए तापमान को अधिक अधिक बढ़ा देता है, जो कार्बन और ऑक्सीजन का उत्पादन करता है, और स्टार के कुल जीवनकाल के 10% से कम के लिए खाता है।

आठ से कम सौर द्रव्यमान वाले सितारों में, हीलियम संलयन द्वारा उत्पादित कार्बन फ्यूज नहीं होता है, और तारा धीरे-धीरे ठंडा होकर सफेद बौना बन जाता है।[3][4] यदि वे किसी अन्य तारे या किसी अन्य स्रोत से अधिक द्रव्यमान जमा करते है, तो वे प्रकार Ia सुपरनोवा बन सकते है। लेकिन इस बिंदु से परे संलयन जारी रखने के लिए एक बहुत बड़ा तारा अधिक बड़ा है।


इन बड़े सितारों के कोर सीधे तापमान और दबाव उत्पन्न करते है, जिससे कोर में कार्बन फ्यूज होना प्रारंभ हो जाता है, जब स्टार हीलियम-बर्निंग स्टेज के अंत में सिकुड़ता है। कोर धीरे-धीरे एक प्याज की तरह स्तरित हो जाता है, क्योंकि केंद्र में उत्तरोत्तर भारी परमाणु नाभिक का निर्माण होता है, हाइड्रोजन गैस की सबसे बाहरी परत के साथ, हाइड्रोजन की एक परत के चारों ओर हीलियम में फ्यूज़िंग, हीलियम की एक परत के आसपास ट्रिपल-अल्फा प्रक्रिया के माध्यम से कार्बन में फ़्यूज़िंग होती है। प्रक्रिया, आसपास की परतें जो उत्तरोत्तर भारी तत्वों को फ्यूज करती है। एक तारे के रूप में यह द्रव्यमान विकसित होता है, यह बार-बार चरणों से गुजरता है जहां कोर में संलयन बंद हो जाता है, और कोर तब तक ढह जाता है जब तक कि दबाव और तापमान संलयन के अगले चरण को प्रारंभ करने के लिए पर्याप्त नहीं हो जाते है, पतन को रोकने के लिए शासन करते है।[3][4]

25-सौर द्रव्यमान वाले तारे के लिए कोर-बर्निंग परमाणु संलयन चरण
प्रक्रिया मुख्य ईंधन मुख्य उत्पाद 25 M तारा[5]
तापमान
(K)
घनत्व
(g/cm3)
अवधि
हाइड्रोजन जलना हाइड्रोजन हीलियम 7×107 10 107 years
ट्रिपल-अल्फा प्रक्रिया हीलियम कार्बन, ऑक्सीजन 2×108 2000 106 years
कार्बन जलाने की प्रक्रिया कार्बन Ne, Na, Mg, Al 8×108 106 1000 years
नियॉन जलने की प्रक्रिया नियॉन O, Mg 1.6×109 107 3 years
ऑक्सीजन जलने की प्रक्रिया ऑक्सीजन Si, S, Ar, Ca 1.8×109 107 0.3 years
सिलिकॉन जलने की प्रक्रिया सिलिकॉन निकल (लोहे में क्षय) 2.5×109 108 5 days

कोर पतन

इस प्रक्रिया को सीमित करने वाला कारक संलयन के माध्यम से जारी ऊर्जा की मात्रा है, जो इन परमाणु नाभिकों को एक साथ रखने वाली बाध्यकारी ऊर्जा पर निर्भर है। प्रत्येक अतिरिक्त कदम उत्तरोत्तर भारी नाभिक उत्पन्न करता है, जो फ्यूज़ होने पर उत्तरोत्तर कम ऊर्जा छोड़ता है। इसके अतिरिक्त, कार्बन-बर्निंग के बाद से, न्यूट्रिनो उत्पादन के माध्यम से ऊर्जा की हानि महत्वपूर्ण हो जाती है, जिससे प्रतिक्रिया की उच्च दर हो जाती है, जो अन्यथा नहीं होती।[6] यह तब तक जारी रहता है जब तक निकल-56 का उत्पादन नहीं हो जाता, जो कुछ महीनों के दौरान रेडियोधर्मी रूप से कोबाल्ट-56 और फिर लौह-56 में विघटित हो जाता है। चूंकि लोहे और निकल में सभी तत्वों के प्रति न्यूक्लिऑन में सबसे अधिक बाध्यकारी ऊर्जा होती है,[7] संलयन द्वारा कोर में ऊर्जा का उत्पादन नहीं किया जा सकता है, और एक निकल-लौह कोर बढ़ता है।[4][8] यह कोर भारी गुरुत्वाकर्षण दबाव में है। चूंकि तारे के पतन के विरुद्ध समर्थन करने के लिए तारे के तापमान को और बढ़ाने के लिए कोई संलयन नहीं है, यह केवल इलेक्ट्रॉनों के अध: पतन दबाव द्वारा समर्थित है। इस अवस्था में, पदार्थ इतना घना होता है कि आगे संघनन के लिए इलेक्ट्रॉनों को समान ऊर्जा अवस्थाओं में रहने की आवश्यकता होगी। चूंकि, यह समान फर्मियन कणों के लिए वर्जित है, जैसे कि इलेक्ट्रॉन - एक घटना जिसे पाउली अपवर्जन सिद्धांत कहा जाता है।

जब कोर का द्रव्यमान लगभग 1.4 M की चंद्रशेखर सीमा से अधिक हो जाता है, अध: पतन दबाव अब इसका समर्थन नहीं कर सकता है, और विपत्तिपूर्ण पतन होता है।[9] कोर का बाहरी हिस्सा 70000 किमी/सेकेंड (प्रकाश की गति का 23%) तक के वेग तक पहुंच जाता है क्योंकि यह तारे के केंद्र की ओर ढह जाता है।[10] तेजी से सिकुड़ने वाला कोर गर्म हो जाता है, उच्च-ऊर्जा गामा किरणों का उत्पादन करता है जो लोहे के नाभिक को हीलियम नाभिक और मुक्त न्यूट्रॉन में फोटोडिसइंटीग्रेशन के माध्यम से विघटित करता है। जैसे-जैसे कोर का घनत्व बढ़ता है, यह इलेक्ट्रॉनों और प्रोटॉन के लिए व्युत्क्रम बीटा क्षय के माध्यम से विलय करने के लिए ऊर्जावान रूप से अनुकूल हो जाता है, न्यूट्रॉन और न्यूट्रिनो नामक प्राथमिक कणों का उत्पादन करता है। क्योंकि न्यूट्रिनो संभवतः ही कभी सामान्य पदार्थ के साथ बातचीत करते है, वे कोर से बच सकते है, ऊर्जा को दूर कर सकते है और पतन को और तेज कर सकते है, जो कि मिलीसेकंड के समय से आगे बढ़ता है। जैसे ही कोर तारे की बाहरी परतों से अलग होता है, इनमें से कुछ न्यूट्रिनो तारे की बाहरी परतों द्वारा अवशोषित हो जाते है, सुपरनोवा विस्फोट प्रारंभ हो जाता है।[11]

प्रकार II सुपरनोवा के लिए, पतन को अंततः कम दूरी के प्रतिकारक न्यूट्रॉन-न्यूट्रॉन इंटरैक्शन द्वारा रोका जाता है, जो कि मजबूत बल द्वारा मध्यस्थता के साथ-साथ न्यूट्रॉन के अध: पतन दबाव द्वारा, एक परमाणु नाभिक की तुलना में घनत्व पर होता है। जब ढहना बंद हो जाता है, तो गिरने वाला पदार्थ उछलता है, जिससे शॉक वेव उत्पन्न होती है जो बाहर की ओर फैलती है। इस झटके की ऊर्जा कोर के भीतर भारी तत्वों को अलग कर देती है। यह झटके की ऊर्जा को कम करता है, जो बाहरी कोर के भीतर विस्फोट को रोक सकता है।[12]

कोर पतन चरण इतना घना और ऊर्जावान होता है कि केवल न्यूट्रिनो ही बच पाते है। जैसा कि प्रोटॉन और इलेक्ट्रॉन इलेक्ट्रॉन कैप्चर के माध्यम से न्यूट्रॉन बनाने के लिए गठबंधन करते है, एक इलेक्ट्रॉन न्यूट्रिनो का उत्पादन होता है। एक विशिष्ट प्रकार II सुपरनोवा में, नवगठित न्यूट्रॉन कोर का प्रारंभिक तापमान लगभग 100 बिलियन केल्विन होता है, जो सूर्य के कोर के तापमान का 104 गुना होता है। एक स्थिर न्यूट्रॉन तारे के निर्माण के लिए इस तापीय ऊर्जा का अधिकांश भाग बहाया जाना चाहिए, अन्यथा न्यूट्रॉन "उबाल" जाएंगे। यह न्यूट्रिनो के एक और रिलीज द्वारा पूरा किया जाता है।[11] ये 'थर्मल' न्यूट्रिनो सभी स्वादों के न्यूट्रिनो-एंटीन्यूट्रिनो जोड़े के रूप में बनते है, और इलेक्ट्रॉन-कैप्चर न्यूट्रिनो की संख्या से कई गुना अधिक होते है।[12] दो न्यूट्रिनो उत्पादन तंत्र पतन की गुरुत्वाकर्षण संभावित ऊर्जा को दस सेकंड के न्यूट्रिनो विस्फोट में परिवर्तित करते है, जिससे लगभग 1046 जूल (100 फ़ो) निकलते है।[13]

एक ऐसी प्रक्रिया के माध्यम से जिसे स्पष्ट रूप से समझा नहीं गया है, लगभग 1%, या 1044 जूल (1 एफओई), जारी ऊर्जा (न्यूट्रिनो के रूप में) रुके हुए झटके से पुन: अवशोषित हो जाती है, जिससे सुपरनोवा विस्फोट होता है।[13] सुपरनोवा द्वारा उत्पन्न न्यूट्रिनो को सुपरनोवा 1987A के स्थिति में देखा गया, प्रमुख खगोल भौतिकीविदों ने निष्कर्ष निकाला कि कोर पतन की तस्वीर मूल रूप से सही है। जल-आधारित कामिओकांडे II और IMB उपकरणों ने तापीय मूल के एंटीन्यूट्रिनो का पता लगाया,[14] जबकि गैलियम-71-आधारित बाकसन उपकरण ने थर्मल या इलेक्ट्रॉन-कैप्चर मूल के न्यूट्रिनो (लेप्टन नंबर = 1) का पता लगाया।

जब पूर्वज तारा लगभग 20 M से नीचे होता है - विस्फोट की शक्ति और वापस गिरने वाली सामग्री की मात्रा पर निर्भर करता है - एक कोर पतन का पतित अवशेष एक न्यूट्रॉन तारा है। इस द्रव्यमान के ऊपर, अवशेष ब्लैक होल बनाने के लिए ढह जाते है।[13] इस प्रकार के कोर पतन परिदृश्य के लिए सैद्धांतिक सीमित द्रव्यमान लगभग 40-50 M है। माना जाता है कि उस द्रव्यमान के ऊपर, एक तारा सुपरनोवा विस्फोट किए बिना सीधे एक ब्लैक होल में गिर जाता है,[14] चूंकि सुपरनोवा पतन के मॉडल में अनिश्चितता इन सीमाओं की गणना को अनिश्चित बनाती है।

सैद्धांतिक मॉडल

कण भौतिकी का मानक मॉडल एक सिद्धांत है जो सभी पदार्थों को बनाने वाले प्राथमिक कणों के बीच चार ज्ञात मूलभूत अंतःक्रियाओं में से तीन का वर्णन करता है। यह सिद्धांत भविष्यवाणी करने की अनुमति देता है कि कण कई परिस्थितियों में कैसे बातचीत करेंगे। एक सुपरनोवा में प्रति कण ऊर्जा सामान्यतः 1-150 पिकोजूल (दसियों से सैकड़ों MeV) होती है।[15] एक सुपरनोवा में सम्मलित प्रति-कण ऊर्जा इतनी कम होती है कि कण के मानक मॉडल से प्राप्त भविष्यवाणियां भौतिकी मूल रूप से सही होने की संभावना है। लेकिन उच्च घनत्व के लिए मानक मॉडल में सुधार की आवश्यकता हो सकती है।[16] विशेष रूप से, पृथ्वी-आधारित कण त्वरक सुपरनोवा में पाए जाने वाले कणों की तुलना में बहुत अधिक ऊर्जा वाले कण इंटरैक्शन उत्पन्न कर सकते है, लेकिन इन प्रयोगों में अलग-अलग कणों के साथ अलग-अलग कण सम्मलित होते है, और यह संभावना है कि सुपरनोवा के भीतर उच्च घनत्व होगा उपन्यास प्रभाव उत्पन्न करें। सुपरनोवा में न्यूट्रिनो और अन्य कणों के बीच परस्पर क्रिया कमजोर परमाणु बल के साथ होती है, जिसे अच्छी तरह से समझा जाता है। चूंकि, प्रोटॉन और न्यूट्रॉन के बीच की बातचीत में मजबूत परमाणु शक्ति सम्मलित होती है, जिसे बहुत कम समझा जाता है।

प्रकार II सुपरनोवा के साथ प्रमुख अनसुलझी समस्या यह है कि यह समझ में नहीं आता है कि न्यूट्रिनो के फटने से शॉक वेव उत्पन्न करने वाले बाकी तारे में अपनी ऊर्जा कैसे स्थानांतरित होती है जिससे तारे में विस्फोट होता है। उपरोक्त चर्चा से, विस्फोट उत्पन्न करने के लिए केवल एक प्रतिशत ऊर्जा को स्थानांतरित करने की आवश्यकता होती है, लेकिन यह समझाना कि एक प्रतिशत स्थानांतरण कैसे होता है, अत्यंत कठिन सिद्ध हुआ है, यदि इसमें सम्मलित कणों की बातचीत को अच्छी तरह से समझा जाता है। 1990 के दशक में, ऐसा करने के लिए एक मॉडल में संवहन पलटना सम्मलित था, जो बताता है कि संवहन, या तो नीचे से न्यूट्रिनो से, या ऊपर से गिरने वाले पदार्थ से, पूर्वज तारे को नष्ट करने की प्रक्रिया को पूरा करता है। इस विस्फोट के दौरान न्यूट्रॉन कैप्चर द्वारा लोहे की तुलना में भारी तत्व बनते है, और न्यूट्रिनो के दबाव से "न्यूट्रिनोस्फीयर" की सीमा में दबाव पड़ता है, जो आसपास के स्थान को गैस और धूल के बादल से भर देता है जो सामग्री की तुलना में भारी तत्वों में समृद्ध होता है। जिससे मूल रूप से तारे का निर्माण हुआ था।[16]

न्यूट्रिनो भौतिकी, जिसे मानक मॉडल द्वारा प्रतिरूपित किया गया है, इस प्रक्रिया को समझने के लिए महत्वपूर्ण है। जांच का अन्य महत्वपूर्ण क्षेत्र प्लाज्मा का हाइड्रोडायनामिक्स है जो मरने वाले सितारे को बनाता है; कोर पतन के दौरान यह कैसे व्यवहार करता है यह निर्धारित करता है कि शॉकवेव कब और कैसे बनती है और यह कब और कैसे रुकती है और पुन: सक्रिय होती है।[17]

वास्तव में, कुछ सैद्धांतिक मॉडलों में स्टेल्ड शॉक में एक हाइड्रोडायनेमिकल अस्थिरता सम्मलित है जिसे स्थायी अभिवृद्धि शॉक अस्थिरता (एसएएसआई) के रूप में जाना जाता है। यह अस्थिरता गैर-गोलाकार गड़बड़ी के परिणाम के रूप में आती है, जिससे रुके हुए झटके को विकृत किया जाता है। रुके हुए झटके को फिर से सक्रिय करने के लिए कंप्यूटर सिमुलेशन में एसएएसआई का उपयोग अधिकांशतः न्यूट्रिनो सिद्धांतों के साथ मिलकर किया जाता है।[18] वास्तव में, कुछ सैद्धांतिक मॉडल "स्थायी अभिवृद्धि शॉक अस्थिरता" (एसएएसआई) के रूप में जाने जाने वाले रुके हुए झटके में एक हाइड्रोडायनामिकल अस्थिरता को सम्मलित करते है। यह अस्थिरता गैर-गोलाकार गड़बड़ी के परिणाम के रूप में आती है, जिससे रुके हुए झटके को विकृत किया जाता है। रुके हुए झटके को फिर से सक्रिय करने के लिए कंप्यूटर सिमुलेशन में एसएएसआई का उपयोग अधिकांशतः न्यूट्रिनो सिद्धांतों के साथ मिलकर किया जाता है।[18]

झटके बनने पर प्रकार II सुपरनोवा के व्यवहार की गणना करने में कंप्यूटर मॉडल बहुत सफल रहे है। विस्फोट के पहले सेकंड को अनदेखा करके, और यह मानते हुए कि एक विस्फोट प्रारंभ हो गया है, खगोल वैज्ञानिक सुपरनोवा द्वारा उत्पादित तत्वों और सुपरनोवा से अपेक्षित प्रकाश वक्र के बारे में विस्तृत भविष्यवाणी करने में सक्षम है।[19][20][21]

प्रकार II-एल और प्रकार II-पी सुपरनोवा के लिए प्रकाश वक्र

समय के फलन के रूप में चमक का यह ग्राफ प्रकार II-एल और II-पी सुपरनोवा के लिए प्रकाश वक्रों की विशिष्ट आकृतियों को दर्शाता है।[clarification needed]

जब प्रकार II सुपरनोवा के तारकीय स्पेक्ट्रम की जांच की जाती है, तो यह सामान्य रूप से बामर श्रृंखला प्रदर्शित करता है - विशिष्ट आवृत्तियों पर कम प्रवाह जहां हाइड्रोजन परमाणु ऊर्जा को अवशोषित करते है। इन पंक्तियों की उपस्थिति का उपयोग सुपरनोवा की इस श्रेणी को प्रकार I सुपरनोवा से अलग करने के लिए किया जाता है।

जब प्रकार II सुपरनोवा की चमक समय की अवधि में प्लॉट की जाती है, तो यह गिरावट के बाद चोटी की चमक में एक विशेषता वृद्धि दिखाती है। इन प्रकाश वक्रों की औसत क्षय दर 0.008 पूर्ण परिमाण प्रति दिन है, प्रकार Ia सुपरनोवा की क्षय दर से बहुत कम। प्रकाश वक्र के आकार के आधार पर प्रकार II को दो वर्गों में विभाजित किया गया है। प्रकार II-एल सुपरनोवा के लिए प्रकाश वक्र चरम चमक के बाद एक स्थिर (रैखिक) गिरावट दिखाता है। इसके विपरीत, प्रकार II-पी सुपरनोवा के प्रकाश वक्र में गिरावट के दौरान एक विशिष्ट सपाट खिंचाव (जिसे पठार कहा जाता है) होता है; एक ऐसी अवधि का प्रतिनिधित्व करना जहां चमक धीमी गति से कम हो जाती है। प्रकार II-पी के लिए प्रति दिन 0.0075 परिमाण पर शुद्ध चमक क्षय दर कम है, जबकि प्रकार II-एल के लिए प्रति दिन 0.012 परिमाण है।[22]

माना जाता है कि प्रकार II-L सुपरनोवा के स्थिति में प्रकाश वक्रों के आकार में अंतर पूर्वज तारे के अधिकांश हाइड्रोजन आवरण के निष्कासन के कारण होता है। प्रकार II-P सुपरनोवा में पठार चरण बाहरी परत की अपारदर्शिता में बदलाव के कारण होता है। शॉक वेव बाहरी लिफाफे में हाइड्रोजन को आयनित करती है - हाइड्रोजन परमाणु से इलेक्ट्रॉन को अलग करती है - जिसके परिणामस्वरूप अपारदर्शिता में उल्लेखनीय वृद्धि होती है। यह फोटॉन को विस्फोट के अंदरूनी हिस्सों से निकलने से रोकता है। जब हाइड्रोजन पुनर्संयोजन के लिए पर्याप्त रूप से ठंडा हो जाता है, तो बाहरी परत पारदर्शी हो जाती है।

प्रकार IIn सुपरनोवा में

"एन" संकीर्ण को दर्शाता है, जो स्पेक्ट्रा में संकीर्ण या मध्यवर्ती चौड़ाई हाइड्रोजन उत्सर्जन लाइनों की उपस्थिति को इंगित करता है। मध्यवर्ती चौड़ाई के स्थिति में, विस्फोट से निकलने वाला इजेका तारे के चारों ओर गैस के साथ जोरदार तरीके से परस्पर क्रिया कर सकता है - परिस्थिति-तारकीय माध्यम।[23][24] प्रेक्षण संबंधी गुणों की व्याख्या करने के लिए अपेक्षित अनुमानित परिस्थितितारकीय घनत्व मानक तारकीय विकास सिद्धांत की अपेक्षा से कहीं अधिक है।[25] सामान्यतः यह माना जाता है कि उच्च परिस्थिति-घनत्व प्रकार IIn पूर्वजों की उच्च जन-हानि दर के कारण होता है। अनुमानित द्रव्यमान-हानि दर सामान्यतः प्रति वर्ष 10−3 M से अधिक होती है। ऐसे संकेत है कि वे विस्फोट से पहले बड़े पैमाने पर नुकसान के साथ चमकदार नीले चर के समान सितारों के रूप में उत्पन्न होते है।[26] एसएन 1998एस और एसएन 2005जीएल सुपरनोवा में प्रकार II के उदाहरण है, एसएन 2006gy, एक अत्यंत ऊर्जावान सुपरनोवा, एक और उदाहरण हो सकता है।[27]

प्रकार IIb सुपरनोवा में

एक प्रकार IIb सुपरनोवा के प्रारंभिक स्पेक्ट्रम में एक कमजोर हाइड्रोजन रेखा होती है, यही वजह है कि इसे प्रकार II के रूप में वर्गीकृत किया जाता है। चूंकि, बाद में एच उत्सर्जन का पता नहीं लगाया जा सकता था, और प्रकाश वक्र में एक दूसरा शिखर भी होता है जिसमें एक स्पेक्ट्रम होता है जो प्रकार इब सुपरनोवा के अधिक निकट होता है। पूर्वज एक विशाल तारा हो सकता था जिसने अपनी अधिकांश बाहरी परतों को निष्कासित कर दिया था, या एक जिसने बाइनरी प्रणाली में एक साथी के साथ बातचीत के कारण अपने अधिकांश हाइड्रोजन लिफाफे को खो दिया था, जो लगभग पूरी तरह से हीलियम से युक्त कोर को पीछे छोड़ गया था।[28] जैसे-जैसे प्रकार IIb का इजेक्टा फैलता है, हाइड्रोजन परत तेजी से अधिक पारदर्शी हो जाती है और गहरी परतों को प्रकट करती है।[28] प्रकार IIb सुपरनोवा का उत्कृष्ट उदाहरण एसएन 1993जे है,[29][30] जबकि दूसरा उदाहरण कैसिओपिया ए है।[31] IIb क्लास को पहली बार (सैद्धांतिक अवधारणा के रूप में) वूस्ली एट अल द्वारा प्रस्तुत किया गया था। 1987 में,[32] और कक्षा को जल्द ही एसएन 1987 के[33] और एसएन 1993 जे पर लागू किया गया था।[34]

यह भी देखें


संदर्भ

  1. Gilmore, Gerry (2004). "The Short Spectacular Life of a Superstar". Science. 304 (5697): 1915–1916. doi:10.1126/science.1100370. PMID 15218132. S2CID 116987470.
  2. "Introduction to Supernova Remnants". NASA Goddard/SAO. 2006-09-07. Archived from the original on 2020-05-28. Retrieved 2007-05-01.
  3. Jump up to: 3.0 3.1 Richmond, Michael. "Late stages of evolution for low-mass stars". Rochester Institute of Technology. Archived from the original on 2020-06-11. Retrieved 2006-08-04.
  4. Jump up to: 4.0 4.1 4.2 Hinshaw, Gary (2006-08-23). "The Life and Death of Stars". NASA Wilkinson Microwave Anisotropy Probe (WMAP) Mission. Archived from the original on 2013-06-03. Retrieved 2006-09-01.
  5. Woosley, S.; Janka, H.-T. (December 2005). "The Physics of Core-Collapse Supernovae". Nature Physics. 1 (3): 147–154. arXiv:astro-ph/0601261. Bibcode:2005NatPh...1..147W. doi:10.1038/nphys172. S2CID 118974639.
  6. Clayton, Donald (1983). Principles of Stellar Evolution and Nucleosynthesis. University of Chicago Press. ISBN 978-0-226-10953-4.
  7. Fewell, M. P. (1995). "The atomic nuclide with the highest mean binding energy". American Journal of Physics. 63 (7): 653–658. Bibcode:1995AmJPh..63..653F. doi:10.1119/1.17828.
  8. Fleurot, Fabrice. "Evolution of Massive Stars". Laurentian University. Archived from the original on 2017-05-21. Retrieved 2007-08-13.
  9. Lieb, E. H.; Yau, H.-T. (1987). "A rigorous examination of the Chandrasekhar theory of stellar collapse". Astrophysical Journal. 323 (1): 140–144. Bibcode:1987ApJ...323..140L. doi:10.1086/165813. Archived from the original on 2022-01-25. Retrieved 2020-03-18.
  10. Fryer, C. L.; New, K. C. B. (2006-01-24). "Gravitational Waves from Gravitational Collapse". Max Planck Institute for Gravitational Physics. Archived from the original on 2006-12-13. Retrieved 2006-12-14. </ रेफ> तेजी से सिकुड़ने वाला कोर गर्म होता है, उच्च-ऊर्जा गामा किरणों का उत्पादन करता है जो लोहे के परमाणु नाभिक को हीलियम नाभिक और मुक्त न्यूट्रॉन में photodisintegration के माध्यम से विघटित करता है। जैसे-जैसे कोर का घनत्व बढ़ता है, यह इलेक्ट्रॉनों और प्रोटॉन के लिए व्युत्क्रम बीटा क्षय के माध्यम से विलय करने के लिए ऊर्जावान रूप से अनुकूल हो जाता है, न्यूट्रॉन और न्यूट्रिनो नामक प्राथमिक कणों का उत्पादन करता है। क्योंकि न्यूट्रिनो शायद ही कभी सामान्य पदार्थ के साथ बातचीत करते हैं, वे कोर से बच सकते हैं, ऊर्जा को दूर कर सकते हैं और पतन को और तेज कर सकते हैं, जो कि मिलीसेकंड के समय से आगे बढ़ता है। जैसे ही कोर तारे की बाहरी परतों से अलग होता है, इनमें से कुछ न्यूट्रिनो तारे की बाहरी परतों द्वारा अवशोषित हो जाते हैं, जिससे सुपरनोवा विस्फोट शुरू हो जाता है। Re f चाटना = हयाकावा> Hayakawa, T.; Iwamoto, N.; Kajino, T.; Shizuma, T.; Umeda, H.; Nomoto, K. (2006). "कोर-पतन सुपरनोवा विस्फोट में गामा-प्रक्रिया न्यूक्लियोसिंथेसिस की सार्वभौमिकता का सिद्धांत". The Astrophysical Journal. 648 (1): L47–L50. Bibcode:2006ApJ...648L..47H. doi:10.1086/507703.</रेफरी> टाइप II सुपरनोवा के लिए, पतन अंततः कम दूरी के प्रतिकारक न्यूट्रॉन-न्यूट्रॉन इंटरैक्शन, मजबूत बल द्वारा मध्यस्थता के साथ-साथ परमाणु नाभिक के बराबर घनत्व पर न्यूट्रॉन के अध: पतन दबाव द्वारा रोका जाता है। जब ढहना बंद हो जाता है, तो गिरने वाला पदार्थ उछलता है, जिससे शॉक वेव पैदा होती है जो बाहर की ओर फैलती है। इस झटके की ऊर्जा कोर के भीतर भारी तत्वों को अलग कर देती है। यह झटके की ऊर्जा को कम करता है, जो बाहरी कोर के भीतर विस्फोट को रोक सकता है।<ref name="collapse scenario"> Fryer, C.L.; New, K.B.C. (2006-01-24). "Gravitational Waves from Gravitational Collapse, section 3.1". Los Alamos National Laboratory. Archived from the original on 2006-10-13. Retrieved 2006-12-09.
  11. Jump up to: 11.0 11.1 Mann, Alfred K. (1997). Shadow of a star: The neutrino story of Supernova 1987A. New York: W. H. Freeman. p. 122. ISBN 978-0-7167-3097-2. Archived from the original on 2008-05-05. Retrieved 2007-11-19.
  12. Jump up to: 12.0 12.1 Gribbin, John R.; Gribbin, Mary (2000). Stardust: Supernovae and Life – The Cosmic Connection. New Haven: Yale University Press. p. 173. ISBN 978-0-300-09097-0. Archived from the original on 2014-12-10. Retrieved 2007-11-19.
  13. Jump up to: 13.0 13.1 13.2 Barwick, S.; Beacom, J.; et al. (2004-10-29). "APS Neutrino Study: Report of the Neutrino Astrophysics and Cosmology Working Group" (PDF). American Physical Society. Archived (PDF) from the original on 2018-12-16. Retrieved 2006-12-12.
  14. Jump up to: 14.0 14.1 Fryer, Chris L. (1999). "Mass Limits For Black Hole Formation". The Astrophysical Journal. 522 (1): 413–418. arXiv:astro-ph/9902315. Bibcode:1999ApJ...522..413F. doi:10.1086/307647. S2CID 14227409.
  15. Izzard, R. G.; Ramírez Ruiz, E.; Tout, C. A. (2004). "Formation rates of core-collapse supernovae and gamma-ray bursts". Monthly Notices of the Royal Astronomical Society. 348 (4): 1215. arXiv:astro-ph/0311463. Bibcode:2004MNRAS.348.1215I. doi:10.1111/j.1365-2966.2004.07436.x. S2CID 119447717.
  16. Jump up to: 16.0 16.1 Rampp, M.; Buras, R.; Janka, H.-T.; Raffelt, G. (February 11–16, 2002). "कोर-पतन सुपरनोवा सिमुलेशन: इनपुट भौतिकी की विविधताएं". Proceedings of the 11th Workshop on "Nuclear Astrophysics". Ringberg Castle, Tegernsee, Germany. pp. 119–125. arXiv:astro-ph/0203493. Bibcode:2002nuas.conf..119R.
  17. Janka, H.-T.; Langanke, K.; Marek, A.; Martínez Pinedo, G.; Mueller, B. (2007). "Theory of Core-Collapse Supernovae". Bethe Centennial Volume of Physics Reports. 142 (1–4): 38–74. arXiv:astro-ph/0612072. Bibcode:1993JHyd..142..229H. doi:10.1016/0022-1694(93)90012-X.
  18. Jump up to: 18.0 18.1 Iwakami, Wakana; Kotake, Kei; Ohnishi, Naofumi; Yamada, Shoichi; Sawada, Keisuke (March 10–15, 2008). "3D Simulations of Standing Accretion Shock Instability in Core-Collapse Supernovae" (PDF). 14th Workshop on Nuclear Astrophysics. Archived from the original (PDF) on 15 March 2011. Retrieved 30 January 2013.
  19. Blinnikov, S.I.; Röpke, F. K.; Sorokina, E. I.; Gieseler, M.; Reinecke, M.; Travaglio, C.; Hillebrandt, W.; Stritzinger, M. (2006). "Theoretical light curves for deflagration models of type Ia supernova". Astronomy and Astrophysics. 453 (1): 229–240. arXiv:astro-ph/0603036. Bibcode:2006A&A...453..229B. doi:10.1051/0004-6361:20054594. S2CID 15493284.
  20. Young, Timothy R. (2004). "A Parameter Study of Type II Supernova Light Curves Using 6 M He Cores". The Astrophysical Journal. 617 (2): 1233–1250. arXiv:astro-ph/0409284. Bibcode:2004ApJ...617.1233Y. doi:10.1086/425675. S2CID 16722121.
  21. Rauscher, T.; Heger, A.; Hoffman, R. D.; Woosley, S. E. (2002). "Nucleosynthesis in Massive Stars With Improved Nuclear and Stellar Physics". The Astrophysical Journal. 576 (1): 323–348. arXiv:astro-ph/0112478. Bibcode:2002ApJ...576..323R. doi:10.1086/341728. S2CID 59039933.
  22. Doggett, J. B.; Branch, D. (1985). "सुपरनोवा प्रकाश वक्रों का एक तुलनात्मक अध्ययन". Astronomical Journal. 90: 2303–2311. Bibcode:1985AJ.....90.2303D. doi:10.1086/113934. </रेफरी> माना जाता है कि टाइप II-एल सुपरनोवा के मामले में, प्रकाश वक्रों के आकार में अंतर पूर्वज तारे के अधिकांश हाइड्रोजन आवरण के निष्कासन के कारण होता है।टाइप II-पी सुपरनोवा में पठार चरण बाहरी परत की अपारदर्शिता (ऑप्टिक्स) में बदलाव के कारण होता है। शॉक वेव बाहरी लिफाफे में हाइड्रोजन को आयनित करती है - हाइड्रोजन परमाणु से इलेक्ट्रॉन को अलग करती है - जिसके परिणामस्वरूप अपारदर्शिता (ऑप्टिक्स) में उल्लेखनीय वृद्धि होती है। यह फोटॉन को विस्फोट के अंदरूनी हिस्सों से निकलने से रोकता है। जब हाइड्रोजन पुनर्संयोजन के लिए पर्याप्त रूप से ठंडा हो जाता है, तो बाहरी परत पारदर्शी हो जाती है।<ref>"Type II Supernova Light Curves". Swinburne University of Technology. Archived from the original on 2019-10-17. Retrieved 2007-03-17.
  23. Filippenko, A. V. (1997). "Optical Spectra of Supernovae". Annual Review of Astronomy and Astrophysics. 35: 309–330. Bibcode:1997ARA&A..35..309F. doi:10.1146/annurev.astro.35.1.309. S2CID 25194088. Archived from the original on 2022-01-25. Retrieved 2019-11-29.
  24. Pastorello, A.; Turatto, M.; Benetti, S.; Cappellaro, E.; Danziger, I. J.; Mazzali, P. A.; Patat, F.; Filippenko, A. V.; Schlegel, D. J.; Matheson, T. (2002). "The type IIn supernova 1995G: interaction with the circumstellar medium". Monthly Notices of the Royal Astronomical Society. 333 (1): 27–38. arXiv:astro-ph/0201483. Bibcode:2002MNRAS.333...27P. doi:10.1046/j.1365-8711.2002.05366.x. S2CID 119347211.
  25. Langer, N. (22 September 2012). "Presupernova Evolution of Massive Single and Binary Stars". Annual Review of Astronomy and Astrophysics. 50 (1): 107–164. arXiv:1206.5443. Bibcode:2012ARA&A..50..107L. doi:10.1146/annurev-astro-081811-125534. S2CID 119288581.
  26. Kiewe, Michael; Gal-Yam, Avishay; Arcavi, Iair; Leonard, Douglas C.; Enríquez, J. Emilio; Cenko, S. Bradley; Fox4, Derek B.; Moon, Dae-Sik; Sand, David J.; Soderberg, Alicia M. (2011). "Caltech Core-Collapse Project (CCCP) observations of type IIn supernovae: typical properties and implications for their progenitor stars". The Astrophysical Journal. 744 (10): 10. arXiv:1010.2689. Bibcode:2012ApJ...744...10K. doi:10.1088/0004-637X/744/1/10. S2CID 119267259.
  27. Smith, N.; Chornock, R.; Silverman, J. M.; Filippenko, A. V.; Foley, R. J. (2010). "Spectral Evolution of the Extraordinary Type IIn Supernova 2006gy". The Astrophysical Journal. 709 (2): 856–883. arXiv:0906.2200. Bibcode:2010ApJ...709..856S. doi:10.1088/0004-637X/709/2/856. S2CID 16959330.
  28. Jump up to: 28.0 28.1 Utrobin, V. P. (1996). "Nonthermal ionization and excitation in Type IIb supernova 1993J". Astronomy and Astrophysics. 306 (5940): 219–231. Bibcode:1996A&A...306..219U.
  29. Nomoto, K.; Suzuki, T.; Shigeyama, T.; Kumagai, S.; Yamaoka, H.; Saio, H. (1993). "A type IIb model for supernova 1993J". Nature. 364 (6437): 507. Bibcode:1993Natur.364..507N. doi:10.1038/364507a0. S2CID 4363061.
  30. Chevalier, R. A.; Soderberg, A. M. (2010). "Type IIb Supernovae with Compact and Extended Progenitors". The Astrophysical Journal. 711 (1): L40–L43. arXiv:0911.3408. Bibcode:2010ApJ...711L..40C. doi:10.1088/2041-8205/711/1/L40. S2CID 118321359.
  31. Krause, O.; Birkmann, S.; Usuda, T.; Hattori, T.; Goto, M.; Rieke, G.; Misselt, K. (2008). "The Cassiopeia A supernova was of type IIb". Science. 320 (5880): 1195–1197. arXiv:0805.4557. Bibcode:2008Sci...320.1195K. doi:10.1126/science.1155788. PMID 18511684. S2CID 40884513.
  32. Woosley, S. E.; Pinto, P. A.; Martin, P. G.; Weaver, Thomas A. (1987). "Supernova 1987A in the Large Magellanic Cloud - the explosion of an approximately 20 solar mass star which has experienced mass loss?". The Astrophysical Journal. 318: 664. Bibcode:1987ApJ...318..664W. doi:10.1086/165402.
  33. Filippenko, Alexei V. (1988). "Supernova 1987K - Type II in youth, type Ib in old age". Astronomical Journal. 96: 1941. Bibcode:1988AJ.....96.1941F. doi:10.1086/114940.
  34. Filippenko, Alexei V.; Matheson, Thomas; Ho, Luis C. (1993). "The Type IIb Supernova 1993J in M81: A Close Relative of Type Ib Supernovae". Astrophysical Journal Letters. 415: L103. Bibcode:1993ApJ...415L.103F. doi:10.1086/187043.


बाहरी संबंध