द्विपद (बहुपद): Difference between revisions
From Vigyanwiki
(Created page with "{{Short description|In mathematics, a polynomial with two terms}} {{other uses|Binomial (disambiguation)}} बीजगणित में, एक द्विपद ए...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|In mathematics, a polynomial with two terms}} | {{Short description|In mathematics, a polynomial with two terms}} | ||
{{other uses| | {{other uses|द्विपद (बहुविकल्पी)}} | ||
[[बीजगणित]] में, एक द्विपद एक [[बहुपद]] है जो दो शब्दों का योग है, जिनमें से प्रत्येक एक [[एकपद]]ी है।<ref>{{Cite web | [[बीजगणित]] में, एक द्विपद एक [[बहुपद]] है जो दो शब्दों का योग है, जिनमें से प्रत्येक एक [[एकपद]]ी है।<ref>{{Cite web | ||
| last = Weisstein | | last = Weisstein |
Revision as of 17:20, 8 February 2023
बीजगणित में, एक द्विपद एक बहुपद है जो दो शब्दों का योग है, जिनमें से प्रत्येक एक एकपदी है।[1] यह एकपदी के बाद विरल बहुपद का सबसे सरल प्रकार है।
परिभाषा
एक द्विपद एक बहुपद है जो दो एकपदी का योग है। एक एकल अनिश्चित (चर) में एक द्विपद (जिसे एक अविभाज्य द्विपद के रूप में भी जाना जाता है) के रूप में लिखा जा सकता है
कहाँ पे a और b संख्याएँ हैं, और m और n विशिष्ट गैर-ऋणात्मक पूर्णांक हैं और x एक प्रतीक है जिसे अनिश्चित (चर) या, ऐतिहासिक कारणों से, एक चर (गणित) कहा जाता है। लॉरेंट बहुपदों के संदर्भ में, एक लॉरेंट द्विपद, जिसे अक्सर द्विपद कहा जाता है, समान रूप से परिभाषित किया जाता है, लेकिन प्रतिपादक m और n नकारात्मक हो सकता है।
अधिक सामान्यतः, एक द्विपद लिखा जा सकता है[2] जैसा:
उदाहरण
सरल द्विपदों पर संक्रियाएं
- द्विपद x2 − y2 दो अन्य द्विपदों के उत्पाद के रूप में सकारात्मक असर किया जा सकता है:
- यह अधिक सामान्य सूत्र का एक विशेष मामला है:
- सम्मिश्र संख्याओं पर कार्य करते समय, इसे निम्न तक भी बढ़ाया जा सकता है:
- रैखिक द्विपदों की एक जोड़ी का उत्पाद (ax + b) और (cx + d ) एक त्रिनाम है:
- ::
- एक द्विपद को उठाया गया nवें घातांक, के रूप में प्रतिनिधित्व किया (x + y)n पास्कल के त्रिकोण का उपयोग करके, द्विपद प्रमेय के माध्यम से या समकक्ष रूप से विस्तारित किया जा सकता है। उदाहरण के लिए, वर्ग (बीजगणित) (x + y)2 द्विपद का (x + y) दो शब्दों के वर्गों के योग के बराबर है और शब्दों के उत्पाद का दोगुना है, जो है:
- इस विस्तार में पदों के लिए गुणक के रूप में दिखाई देने वाली संख्याएं (1, 2, 1) द्विपद गुणांक हैं जो पास्कल के त्रिकोण के ऊपर से दो पंक्तियां नीचे हैं। का विस्तार n</super> शक्ति संख्याओं का उपयोग करती है n त्रिभुज के शीर्ष से नीचे पंक्तियाँ।
- एक द्विपद के वर्ग के लिए उपरोक्त सूत्र का एक अनुप्रयोग है(m, n)-पायथागॉरियन त्रिक उत्पन्न करने के लिए सूत्र:
- के लिए m < n, होने देना a = n2 − m2, b = 2mn, और c = n2 + m2; तब a2 + b2 = c2.
- द्विपद जो योग या घन (बीजगणित) के अंतर हैं, उन्हें बहुपद बहुपदों की छोटी-छोटी डिग्री में विभाजित किया जा सकता है:
यह भी देखें
- वर्ग पूरा करना
- द्विपद वितरण
- तथ्यात्मक और द्विपद विषयों की सूची (जिसमें बड़ी संख्या में संबंधित लिंक शामिल हैं)
टिप्पणियाँ
- ↑ Weisstein, Eric. "Binomial". Wolfram MathWorld. Retrieved 29 March 2011.
- ↑ Sturmfels, Bernd (2002). Solving Systems of Polynomial Equations. p. 62. ISBN 9780821889411.
{{cite book}}
:|journal=
ignored (help)
संदर्भ
- Bostock, L.; Chandler, S. (1978). Pure Mathematics 1. Oxford University Press. p. 36. ISBN 0-85950-092-6.