संयोजन वलय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 22: Line 22:
::<math>\frac{f_1}{f_2}\circ g=\frac{f_1\circ g}{f_2\circ g}.</math>
::<math>\frac{f_1}{f_2}\circ g=\frac{f_1\circ g}{f_2\circ g}.</math>
: हालांकि, औपचारिक घात श्रेणी के लिए, रचना को सदैव परिभाषित नहीं किया जा सकता है जब सही संकार्य g एक स्थिरांक हो: दिए गए सूत्र में भाजक <math>f_2\circ g</math> समान रूप से शून्य नहीं होना चाहिए। इसलिए एक अच्छी तरह से परिभाषित संरचना संचालन के लिए R(X) के एक सबरिंग तक सीमित होना चाहिए; एक उपयुक्त सबरिंग तर्कसंगत कार्यों द्वारा दिया जाता है जिसमें अंश के पास शून्य स्थिर शब्द होता है, लेकिन भाजक के पास शून्येतर स्थिर शब्द होता है। फिर से इस रचना वलय की कोई गुणात्मक इकाई नहीं है; यदि R एक क्षेत्र है, तो यह वास्तव में औपचारिक घात श्रेणी उदाहरण का उप-वलय है।
: हालांकि, औपचारिक घात श्रेणी के लिए, रचना को सदैव परिभाषित नहीं किया जा सकता है जब सही संकार्य g एक स्थिरांक हो: दिए गए सूत्र में भाजक <math>f_2\circ g</math> समान रूप से शून्य नहीं होना चाहिए। इसलिए एक अच्छी तरह से परिभाषित संरचना संचालन के लिए R(X) के एक सबरिंग तक सीमित होना चाहिए; एक उपयुक्त सबरिंग तर्कसंगत कार्यों द्वारा दिया जाता है जिसमें अंश के पास शून्य स्थिर शब्द होता है, लेकिन भाजक के पास शून्येतर स्थिर शब्द होता है। फिर से इस रचना वलय की कोई गुणात्मक इकाई नहीं है; यदि R एक क्षेत्र है, तो यह वास्तव में औपचारिक घात श्रेणी उदाहरण का उप-वलय है।
* बिंदुवार जोड़ और गुणा के तहत R से R तक सभी कार्यों का सेट, और साथ <math>\circ</math> कार्यों की संरचना द्वारा दिया गया, एक रचना वलय है। इस विचार की कई भिन्नताएं हैं, जैसे निरंतर, चिकनी, होलोमोर्फिक, या बहुपद कार्यों की अंगूठी एक अंगूठी से स्वयं तक, जब ये अवधारणाएं समझ में आती हैं।
* बिंदुवार जोड़ और गुणा के तहत R से R तक सभी कार्यों का सेट, और साथ <math>\circ</math> कार्यों की संरचना द्वारा दिया गया, एक रचना वलय है। इस विचार की कई भिन्नताएं हैं, जैसे निरंतर, चिकनी, होलोमोर्फिक, या बहुपद कार्यों की अंगूठी एक अंगूठी से स्वयं तक, जब ये अवधारणाएं समझ में आती हैं।  


यथार्थपूर्ण उदाहरण के लिए वलय <math>{\mathbb Z}[x]</math> को पूर्णांक से बहुपद प्रतिचित्रण का वलय माना जाता है  
यथार्थपूर्ण उदाहरण के लिए वलय <math>{\mathbb Z}[x]</math> को पूर्णांक से बहुपद प्रतिचित्रण का वलय माना जाता है एक रिंग एंडोमोर्फिज्म
 
एक रिंग एंडोमोर्फिज्म
: <math>F:{\mathbb Z}[x]\rightarrow{\mathbb Z}[x]</math>
: <math>F:{\mathbb Z}[x]\rightarrow{\mathbb Z}[x]</math>
का <math>{\mathbb Z}[x]</math> के तहत छवि द्वारा निर्धारित किया जाता है <math> F</math> चर का <math>x</math>, जिसे हम निरूपित करते हैं
का <math>{\mathbb Z}[x]</math> के तहत छवि द्वारा निर्धारित किया जाता है <math> F</math> चर का <math>x</math>, जिसे हम निरूपित करते हैं

Revision as of 23:47, 6 February 2023

गणित में, (एडलर 1962) में प्रस्तावित किया गया एक संयोजन वलय, क्रमविनिमेय वलय (R, 0, +, -, ·) है, संभवतः एक पहचान 1 के बिना (गैर-इकाई वलय देखें), एक संक्रिया के साथ

अर्थात्, किन्हीं तीन तत्वों के लिए के लिए एक है

प्रायः ऐसा नहीं होता है , और न ही सामान्यतया ऐसा होता है (या ) से कोई बीजगणितीय संबंध है और .

उदाहरण

कुछ भी नया निवेदित किए बिना एक संयोजन वलय (कंपोजिशन रिंग) में विनिमेय वलय R बनाने के कुछ पद्धतियाँ हैं।

  • संरचना द्वारा परिभाषित किया जा सकता है सभी के लिए f,g। परिणामी रचना रिंग एक बल्कि निर्बाध है।
  • संरचना द्वारा परिभाषित किया जा सकता है सभी के लिए f,g। यह स्थिर फलनों के लिए संघटन नियम है।
  • यदि R एक बूलियन रिंग है, तो गुणन रचना के रूप में दोगुना हो सकता है: सभी के लिए f,g।

R से निर्मित एक अन्य वलय पर एक रचना को परिभाषित करके और अधिक रोचक उदाहरण बनाए जा सकते हैं।

  • बहुपद वलय R [X] एक संयोजन वलय है जहाँ सभी के लिए .
  • औपचारिक घात श्रेणी अंगूठी R''X'' एक प्रतिस्थापन ऑपरेशन भी है, लेकिन यह केवल तभी परिभाषित किया जाता है जब श्रेणी g को प्रतिस्थापित किया जा रहा है जिसमें शून्य स्थिर शब्द है (यदि नहीं, तो परिणाम की निरंतर अवधि मनमाना गुणांक के साथ एक अनंत श्रेणी द्वारा दी जाएगी)। इसलिए, R का उपसमुच्चय R''X'' शून्य स्थिर गुणांक के साथ घात श्रेणी द्वारा बनाई गई संरचना को बहुपद के समान प्रतिस्थापन नियम द्वारा दी गई संरचना के साथ एक संरचना रिंग में बनाया जा सकता है। चूंकि अशून्य स्थिर श्रेणी अनुपस्थित हैं, इसलिए इस रचना वलय में गुणक इकाई नहीं है।
  • यदि R एक अभिन्न डोमेन है, तो परिमेय कार्यों के क्षेत्र R(X) में भी बहुपदों से व्युत्पन्न एक प्रतिस्थापन संक्रिया होती है: अंश g को प्रतिस्थापित करना1/g2 X के लिए डिग्री n के बहुपद में भाजक के साथ एक परिमेय फलन देता है , और एक अंश में प्रतिस्थापित करके दिया जाता है
हालांकि, औपचारिक घात श्रेणी के लिए, रचना को सदैव परिभाषित नहीं किया जा सकता है जब सही संकार्य g एक स्थिरांक हो: दिए गए सूत्र में भाजक समान रूप से शून्य नहीं होना चाहिए। इसलिए एक अच्छी तरह से परिभाषित संरचना संचालन के लिए R(X) के एक सबरिंग तक सीमित होना चाहिए; एक उपयुक्त सबरिंग तर्कसंगत कार्यों द्वारा दिया जाता है जिसमें अंश के पास शून्य स्थिर शब्द होता है, लेकिन भाजक के पास शून्येतर स्थिर शब्द होता है। फिर से इस रचना वलय की कोई गुणात्मक इकाई नहीं है; यदि R एक क्षेत्र है, तो यह वास्तव में औपचारिक घात श्रेणी उदाहरण का उप-वलय है।
  • बिंदुवार जोड़ और गुणा के तहत R से R तक सभी कार्यों का सेट, और साथ कार्यों की संरचना द्वारा दिया गया, एक रचना वलय है। इस विचार की कई भिन्नताएं हैं, जैसे निरंतर, चिकनी, होलोमोर्फिक, या बहुपद कार्यों की अंगूठी एक अंगूठी से स्वयं तक, जब ये अवधारणाएं समझ में आती हैं।

यथार्थपूर्ण उदाहरण के लिए वलय को पूर्णांक से बहुपद प्रतिचित्रण का वलय माना जाता है एक रिंग एंडोमोर्फिज्म

का के तहत छवि द्वारा निर्धारित किया जाता है चर का , जिसे हम निरूपित करते हैं

और यह छवि का कोई भी तत्व हो सकता है . इसलिए, कोई तत्वों पर विचार कर सकता है एंडोमोर्फिज्म के रूप में और असाइन करें , इसलिए। कोई इसे आसानी से सत्यापित करता है उपरोक्त सिद्धांतों को संतुष्ट करता है। उदाहरण के लिए, एक है

यह उदाहरण R [एक्स] के लिए R के बराबर दिए गए उदाहरण के लिए आइसोमोर्फिक है , और सभी कार्यों के सबरिंग के लिए भी बहुपद कार्यों द्वारा गठित।

यह भी देखें

संदर्भ

  • Adler, Irving (1962), "Composition rings", Duke Mathematical Journal, 29 (4): 607–623, doi:10.1215/S0012-7094-62-02961-7, ISSN 0012-7094, MR 0142573