प्रतिचित्रण (मैपिंग गणित): Difference between revisions

From Vigyanwiki
mNo edit summary
Line 1: Line 1:
{{Short description|Function, homomorphism, or morphism}}
{{Short description|Function, homomorphism, or morphism}}
{{Other uses|map (disambiguation)}}
{{Other uses|map (disambiguation)}}
[[File:Function_color_example_3.svg|thumb|एक प्रकार का मानचित्र एक फ़ंक्शन है, जैसा कि X में चार रंगीन आकृतियों में से किसी के वाई में उसके रंग के सहयोग से होता है]][[गणित]] में, मानचित्र या मानचित्रण अपने सामान्य अर्थों में एक फलन (गणित) है।<ref>The words ''map'', ''mapping'', ''correspondence'', and ''operator'' are often used synonymously. {{harvnb|Halmos|1970|p=30}}. Some authors use the term ''function'' with a more restricted meaning, namely as a map that is restricted to apply to numbers only.</ref> ये शब्द मानचित्र बनाने की प्रक्रिया से उत्पन्न हो सकते हैं: पृथ्वी की सतह को कागज की शीट पर [[नक्शा]] करना।<ref name=":1">{{Cite web|url=https://www.britannica.com/science/mapping|title=Mapping {{!}} mathematics|website=Encyclopedia Britannica|language=en|access-date=2019-12-06}}</ref>
[[File:Function_color_example_3.svg|thumb|एक प्रकार का मानचित्र एक फ़ंक्शन है, जैसा कि X में चार रंगीन आकृतियों में से किसी के वाई में उसके रंग के सहयोग से होता है]][[गणित]] में, मानचित्र या मानचित्रण अपने सामान्य अर्थों में एक फलन गणित है। ये शब्द मानचित्र बनाने की प्रक्रिया से उत्पन्न हो सकते हैं: पृथ्वी की सतह को कागज की शीट पर [[नक्शा]] करना।
शब्द मानचित्र का उपयोग कुछ विशेष प्रकार के कार्यों, जैसे होमोमोर्फिज्म को अलग करने के लिए किया जा सकता है। उदाहरण के लिए, एक रेखीय मानचित्र सदिश समष्टियों का [[समरूपता]] है, जबकि रेखीय फलन शब्द का यह अर्थ हो सकता है या इसका अर्थ रेखीय बहुपद हो सकता है।<ref>{{cite book |first=T. M. |last=Apostol |author-link=Tom M. Apostol |title=Mathematical Analysis |year=1981 |publisher=Addison-Wesley |isbn=0-201-00288-4 |page=35 }}</ref><ref>{{Cite web|url=http://www.cs.toronto.edu/~stacho/macm101-2.pdf|title=Function, one-to-one, onto|last=Stacho|first=Juraj|date=October 31, 2007|website=cs.toronto.edu|access-date=2019-12-06}}</ref> [[श्रेणी सिद्धांत]] में, एक मानचित्र एक रूपवाद का उल्लेख कर सकता है।<ref name=":1" />परिवर्तन शब्द का परस्पर उपयोग किया जा सकता है,<ref name=":1" />लेकिन [[परिवर्तन (फ़ंक्शन)]] अक्सर एक फ़ंक्शन को एक सेट से ही संदर्भित करता है। [[तर्क]] और ग्राफ़ सिद्धांत में कुछ कम सामान्य उपयोग भी हैं।
शब्द मानचित्र का उपयोग कुछ विशेष प्रकार के कार्यों, जैसे होमोमोर्फिज्म को अलग करने के लिए किया जा सकता है। उदाहरण के लिए, एक रेखीय मानचित्र सदिश समष्टियों का [[समरूपता]] है, जबकि रेखीय फलन शब्द का यह अर्थ हो सकता है या इसका अर्थ रेखीय बहुपद हो सकता है। [[श्रेणी सिद्धांत]] में, एक मानचित्र एक रूपवाद का उल्लेख कर सकता है। परिवर्तन शब्द का परस्पर उपयोग किया जा सकता है,लेकिन [[परिवर्तन (फ़ंक्शन)]] अक्सर एक फ़ंक्शन को एक सेट से ही संदर्भित करता है। [[तर्क]] और ग्राफ़ सिद्धांत में कुछ कम सामान्य उपयोग भी हैं।


== कार्य के रूप में मानचित्र ==
== कार्य के रूप में मानचित्र ==
{{Main article|Function (mathematics)}}
{{Main article|Function (mathematics)}}
गणित की कई शाखाओं में, मानचित्र शब्द का प्रयोग फलन (गणित) के अर्थ में किया जाता है,<ref>{{Cite web|url=https://www.math-only-math.com/functions-or-mapping.html|title=Functions or Mapping {{!}} Learning Mapping {{!}} Function as a Special Kind of Relation|website=Math Only Math|access-date=2019-12-06}}</ref><ref name=":0">{{Cite web|url=http://mathworld.wolfram.com/नक्शा.html|title=नक्शा|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-12-06}}</ref><ref>{{Cite web|url=https://www.encyclopedia.com/education/news-wires-white-papers-and-books/mapping-mathematical|title=Mapping, Mathematical {{!}} Encyclopedia.com|website=www.encyclopedia.com|access-date=2019-12-06}}</ref> कभी-कभी उस शाखा के लिए विशेष महत्व की विशिष्ट संपत्ति के साथ। उदाहरण के लिए, मानचित्र [[टोपोलॉजी]] में एक सतत कार्य है, रैखिक बीजगणित में एक रैखिक मानचित्र आदि।
गणित की कई शाखाओं में, मानचित्र शब्द का प्रयोग फलन गणित के अर्थ में किया जाता है, कभी-कभी उस शाखा के लिए विशेष महत्व की विशिष्ट संपत्ति के साथ। उदाहरण के लिए, मानचित्र [[टोपोलॉजी]] में एक सतत कार्य है, रैखिक बीजगणित में एक रैखिक मानचित्र आदि।


कुछ लेखक, जैसे [[सर्ज लैंग]],<ref>{{cite book |first=Serge |last=Lang |title=Linear Algebra |edition=2nd |year=1971 |page=83 |publisher=Addison-Wesley |isbn=0-201-04211-8 }}</ref> फ़ंक्शन का उपयोग केवल उन मानचित्रों को संदर्भित करने के लिए करें जिनमें [[कोडोमेन]] संख्याओं का एक समूह है (अर्थात वास्तविक संख्याओं या जटिल संख्याओं का एक उपसमूह), और अधिक सामान्य कार्यों के लिए 'मैपिंग' शब्द आरक्षित करें।
कुछ लेखक, जैसे [[सर्ज लैंग]], फ़ंक्शन का उपयोग केवल उन मानचित्रों को संदर्भित करने के लिए करें जिनमें [[कोडोमेन]] संख्याओं का एक समूह है अर्थात वास्तविक संख्याओं या जटिल संख्याओं का एक उपसमूह, और अधिक सामान्य कार्यों के लिए 'मैपिंग' शब्द आरक्षित करें।


कुछ प्रकार के मानचित्र कई महत्वपूर्ण सिद्धांतों के विषय हैं। इनमें [[सार बीजगणित]] में होमोमोर्फिज्म, [[ज्यामिति]] में [[आइसोमेट्री]], [[गणितीय विश्लेषण]] में [[ऑपरेशन (गणित)]] और [[समूह सिद्धांत]] में [[समूह प्रतिनिधित्व]] शामिल हैं।<ref name=":1" />  गतिशील प्रणालियों के सिद्धांत में, एक मानचित्र एक असतत-समय [[गतिशील प्रणाली]] को दर्शाता है जिसका उपयोग गतिशील प्रणाली#मानचित्र बनाने के लिए किया जाता है।
कुछ प्रकार के मानचित्र कई महत्वपूर्ण सिद्धांतों के विषय हैं। इनमें [[सार बीजगणित]] में होमोमोर्फिज्म, [[ज्यामिति]] में [[आइसोमेट्री]], [[गणितीय विश्लेषण]] में [[ऑपरेशन (गणित)]] और [[समूह सिद्धांत]] में [[समूह प्रतिनिधित्व]] शामिल हैं। गतिशील प्रणालियों के सिद्धांत में, एक मानचित्र एक असतत-समय [[गतिशील प्रणाली]] को दर्शाता है जिसका उपयोग गतिशील प्रणाली मानचित्र बनाने के लिए किया जाता है।


एक आंशिक नक्शा एक आंशिक कार्य है। संबंधित शब्द जैसे [[किसी फ़ंक्शन का डोमेन]], कोडोमेन, [[इंजेक्शन समारोह]] और सतत फ़ंक्शन समान अर्थ के साथ मैप और फ़ंक्शन पर समान रूप से लागू किए जा सकते हैं। इन सभी उपयोगों को मानचित्रों पर सामान्य कार्यों के रूप में या विशेष गुणों वाले कार्यों के रूप में लागू किया जा सकता है।
एक आंशिक नक्शा एक आंशिक कार्य है। संबंधित शब्द जैसे [[किसी फ़ंक्शन का डोमेन]], कोडोमेन, [[इंजेक्शन समारोह]] और सतत फ़ंक्शन समान अर्थ के साथ मैप और फ़ंक्शन पर समान रूप से लागू किए जा सकते हैं। इन सभी उपयोगों को मानचित्रों पर सामान्य कार्यों के रूप में या विशेष गुणों वाले कार्यों के रूप में लागू किया जा सकता है।

Revision as of 14:11, 7 February 2023

एक प्रकार का मानचित्र एक फ़ंक्शन है, जैसा कि X में चार रंगीन आकृतियों में से किसी के वाई में उसके रंग के सहयोग से होता है

गणित में, मानचित्र या मानचित्रण अपने सामान्य अर्थों में एक फलन गणित है। ये शब्द मानचित्र बनाने की प्रक्रिया से उत्पन्न हो सकते हैं: पृथ्वी की सतह को कागज की शीट पर नक्शा करना।

शब्द मानचित्र का उपयोग कुछ विशेष प्रकार के कार्यों, जैसे होमोमोर्फिज्म को अलग करने के लिए किया जा सकता है। उदाहरण के लिए, एक रेखीय मानचित्र सदिश समष्टियों का समरूपता है, जबकि रेखीय फलन शब्द का यह अर्थ हो सकता है या इसका अर्थ रेखीय बहुपद हो सकता है। श्रेणी सिद्धांत में, एक मानचित्र एक रूपवाद का उल्लेख कर सकता है। परिवर्तन शब्द का परस्पर उपयोग किया जा सकता है,लेकिन परिवर्तन (फ़ंक्शन) अक्सर एक फ़ंक्शन को एक सेट से ही संदर्भित करता है। तर्क और ग्राफ़ सिद्धांत में कुछ कम सामान्य उपयोग भी हैं।

कार्य के रूप में मानचित्र

गणित की कई शाखाओं में, मानचित्र शब्द का प्रयोग फलन गणित के अर्थ में किया जाता है, कभी-कभी उस शाखा के लिए विशेष महत्व की विशिष्ट संपत्ति के साथ। उदाहरण के लिए, मानचित्र टोपोलॉजी में एक सतत कार्य है, रैखिक बीजगणित में एक रैखिक मानचित्र आदि।

कुछ लेखक, जैसे सर्ज लैंग, फ़ंक्शन का उपयोग केवल उन मानचित्रों को संदर्भित करने के लिए करें जिनमें कोडोमेन संख्याओं का एक समूह है अर्थात वास्तविक संख्याओं या जटिल संख्याओं का एक उपसमूह, और अधिक सामान्य कार्यों के लिए 'मैपिंग' शब्द आरक्षित करें।

कुछ प्रकार के मानचित्र कई महत्वपूर्ण सिद्धांतों के विषय हैं। इनमें सार बीजगणित में होमोमोर्फिज्म, ज्यामिति में आइसोमेट्री, गणितीय विश्लेषण में ऑपरेशन (गणित) और समूह सिद्धांत में समूह प्रतिनिधित्व शामिल हैं। गतिशील प्रणालियों के सिद्धांत में, एक मानचित्र एक असतत-समय गतिशील प्रणाली को दर्शाता है जिसका उपयोग गतिशील प्रणाली मानचित्र बनाने के लिए किया जाता है।

एक आंशिक नक्शा एक आंशिक कार्य है। संबंधित शब्द जैसे किसी फ़ंक्शन का डोमेन, कोडोमेन, इंजेक्शन समारोह और सतत फ़ंक्शन समान अर्थ के साथ मैप और फ़ंक्शन पर समान रूप से लागू किए जा सकते हैं। इन सभी उपयोगों को मानचित्रों पर सामान्य कार्यों के रूप में या विशेष गुणों वाले कार्यों के रूप में लागू किया जा सकता है।

आकारिकी के रूप में

श्रेणी सिद्धांत में, मानचित्र को अक्सर रूपवाद या तीर के समानार्थी के रूप में प्रयोग किया जाता है, जो एक संरचना-सम्मान कार्य है और इस प्रकार कार्य की तुलना में अधिक संरचना का अर्थ हो सकता है।[1] उदाहरण के लिए, एक रूपवाद एक ठोस श्रेणी में (अर्थात एक आकृतिवाद जिसे एक कार्य के रूप में देखा जा सकता है) इसके साथ अपने डोमेन (स्रोत) की जानकारी रखता है आकृतिवाद का) और इसका कोडोमेन (लक्ष्य ). किसी फ़ंक्शन की व्यापक रूप से उपयोग की जाने वाली परिभाषा में , का उपसमुच्चय है सभी जोड़ों से मिलकर के लिए . इस अर्थ में, फ़ंक्शन सेट पर कब्जा नहीं करता है जो कोडोमेन के रूप में प्रयोग किया जाता है; केवल सीमा समारोह द्वारा निर्धारित किया जाता है।

यह भी देखें


संदर्भ

  1. Simmons, H. (2011). An Introduction to Category Theory. Cambridge University Press. p. 2. ISBN 978-1-139-50332-7.


बाहरी संबंध