संकारक (गणित): Difference between revisions
(Edit text) |
(edit text) |
||
Line 3: | Line 3: | ||
{{About|operators in mathematics|other uses|Operator (disambiguation)}} | {{About|operators in mathematics|other uses|Operator (disambiguation)}} | ||
{{distinguish|text=the symbol denoting a [[mathematical operation]] or [[mathematical symbol]]}} | {{distinguish|text=the symbol denoting a [[mathematical operation]] or [[mathematical symbol]]}} | ||
गणित में, | गणित में, संकारक समान्यतः एक मैपिंग (गणित) या फलन (गणित) होता है जो किसी स्थान (गणित) के तत्वों पर कार्य करता है ताकि किसी अन्य स्थान के तत्वों का उत्पादन किया जा सके (संभवतः और कभी-कभी एक ही स्थान होने की आवश्यकता होती है)। संकारक की कोई सामान्य परिभाषा नहीं है, लेकिन इस शब्द का प्रयोग प्रायः फलन के स्थान पर किया जाता है, जब [[किसी फ़ंक्शन का डोमेन|किसी फलन का डोमेन]] या अन्य संरचित वस्तुओं का एक सेट होता है। इसके अलावा, एक ऑपरेटर के डोमेन को स्पष्ट रूप से चित्रित करना प्रायः मुश्किल होता है (उदाहरण के लिए एक अभिन्न संकारक के मामले में), और संबंधित वस्तुओं तक बढ़ाया जा सकता है (एक संकारक जो कार्यों पर कार्य करता है, [[अंतर समीकरण]]ों पर भी कार्य कर सकता है जिसका समाधान फलन हैं जो समीकरण को संतुष्ट करता है)। अन्य उदाहरणों के लिए [[ऑपरेटर (भौतिकी)|संकारक (भौतिकी)]] देखें। | ||
सबसे बुनियादी | सबसे बुनियादी संकारक रैखिक मानचित्र हैं, जो सदिश समष्टि पर कार्य करते हैं। रेखीय संचालिकाएँ ऐसे रेखीय मानचित्रों को संदर्भित करती हैं जिनके डोमेन और श्रेणी समान स्थान पर हैं, उदाहरण के लिए <math>\R^n</math> को <math>\R^n</math>।<ref name=RudinAnalysis>{{cite book | ||
| last1=Rudin | | last1=Rudin | ||
| first1=Walter | | first1=Walter | ||
Line 29: | Line 29: | ||
| quote=1) A linear transformation from {{mvar|V}} to {{mvar|V}} is called a <strong>linear operator</strong> on {{mvar|V}}. The set of all linear operators on {{mvar|V}} is denoted {{math|''ℒ''(''V'')}}. A linear operator on a real vector space is called a <strong>real operator</strong> and a linear operator on a complex vector space is called a <strong>complex operator</strong>. ... We should also mention that some authors use the term linear operator for any linear transformation from {{mvar|V}} to {{mvar|W}}. ... <strong>Definition</strong>The following terms are also employed: 2) <strong>endomorphism</strong> for linear operator ... 6) <strong>automorphism</strong> for bijective linear operator. | | quote=1) A linear transformation from {{mvar|V}} to {{mvar|V}} is called a <strong>linear operator</strong> on {{mvar|V}}. The set of all linear operators on {{mvar|V}} is denoted {{math|''ℒ''(''V'')}}. A linear operator on a real vector space is called a <strong>real operator</strong> and a linear operator on a complex vector space is called a <strong>complex operator</strong>. ... We should also mention that some authors use the term linear operator for any linear transformation from {{mvar|V}} to {{mvar|W}}. ... <strong>Definition</strong>The following terms are also employed: 2) <strong>endomorphism</strong> for linear operator ... 6) <strong>automorphism</strong> for bijective linear operator. | ||
}} | }} | ||
</ref>ऐसे | </ref>ऐसे संकारक अक्सर [[निरंतर कार्य|निरंतरता]] जैसे गुणों को संरक्षित करते हैं। उदाहरण के लिए, अवकलन (गणित) और अनिश्चित समाकलन रैखिक संकारक हैं, संकारक जो उनसे निर्मित होते हैं, उन्हें [[अंतर ऑपरेटर|अंतर संकारक]], समाकलन संकारक या समाकल अवकल संकारक कहा जाता है। | ||
संकारक का उपयोग गणितीय संक्रियाओं के प्रतीक को दर्शाने के लिए भी किया जाता है। यह [[कंप्यूटर प्रोग्रामिंग]] में संचालक के अर्थ से संबंधित है, [[ऑपरेटर (कंप्यूटर प्रोग्रामिंग)|संचालक (कंप्यूटर प्रोग्रामिंग)]] देखें। | |||
== रैखिक | == रैखिक संकारक == | ||
{{Main|Linear operator}} | {{Main|Linear operator}} | ||
सबसे आम प्रकार के | सबसे आम प्रकार के संकारक का सामना रैखिक संकारकों से होता है। माना U और V [[क्षेत्र (गणित)]] K पर सदिश समष्टियाँ है। मानचित्रण (गणित) A: U → V रैखिक है यदि- | ||
<math display="block">A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y}</math> | <math display="block">A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y}</math> | ||
सभी x, y के लिए ''U'' में और सभके लिए ''K'' में। इसका मतलब यह है कि एक रैखिक | सभी x, y के लिए ''U'' में और सभके लिए ''K'' में। इसका मतलब यह है कि एक रैखिक संकारक सदिश समष्टियों कि संक्रियाओं को संरक्षित करता है, इस अर्थ में कि इससे कोई फर्क नहीं पड़ता कि आप रैखिक संकारक को गुणन की संक्रिया और अदिश गुणन के पहले या बाद में लागू करते हैं या नहीं। अधिक तकनीकी शब्दों में, रैखिक संकारक सदिश समष्टि के बीच [[morphism|मॉर्फिज्म(]]आकारिता) हैं। | ||
परिमित-आयामी मामले में रैखिक | परिमित-आयामी मामले में रैखिक संकारकों को निम्नलिखित तरीके से [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] द्वारा दर्शाया जा सकता है। मान लें कि <math>K</math> एक क्षेत्र है और <math>U</math> तथा <math>V</math>, <math>K</math> पर परिमित-आयामी सदिश समष्टि हैं। आइए एक आधार चुनें <math>U</math> में <math>\mathbf{u}_1, \ldots, \mathbf{u}_n</math> तथा <math>V</math> में <math>\mathbf{v}_1, \ldots, \mathbf{v}_m</math>। तब माना <math>\mathbf{x} = x^i \mathbf{u}_i</math>, <math>U</math> में एक यादृच्छिक सदिश है [[आइंस्टीन सम्मेलन|(आइंस्टीन कान्वेंशन]] मानते हुए), और <math>A: U \to V</math> एक रैखिक संकारक है। तब- | ||
<math display="block">A\mathbf{x} = x^i A\mathbf{u}_i = x^i (A\mathbf{u}_i)^j \mathbf{v}_j .</math> | <math display="block">A\mathbf{x} = x^i A\mathbf{u}_i = x^i (A\mathbf{u}_i)^j \mathbf{v}_j .</math> | ||
तब <math>a_i^j := (A\mathbf{u}_i)^j \in K</math> निश्चित आधारों में | तब <math>a_i^j := (A\mathbf{u}_i)^j \in K</math> निश्चित आधारों में संकारक <math>A</math> का आव्यूह है । <math>a_i^j</math>, <math>x</math> की पसंद पर निर्भर नहीं करता है तथा <math>A\mathbf{x} = \mathbf{y}</math> अगर <math>a_i^j x^i = y^j</math>। इस प्रकार निश्चित आधारों में एन-बाय-एम आव्यूह <math>U</math> से <math>V</math> तक रैखिक संकारकों के लिए द्विभाजित सामंजस्य में हैं। | ||
परिमित-आयामी सदिश समष्टि के बीच | परिमित-आयामी सदिश समष्टि के बीच संकारकों से सीधे संबंधित महत्वपूर्ण अवधारणाएं [[मैट्रिक्स रैंक|आव्यूह रैंक]], निर्धारक, व्युत्क्रम संकारक और [[egenspace|अभिलक्षणिक समष्टि]] हैं। | ||
रेखीय | रेखीय संकारक भी अनंत-आयामी मामले में एक बड़ी भूमिका निभाते हैं। रैंक और निर्धारक की अवधारणाओं को अनंत-आयामी आव्यूह तक नहीं बढ़ाया जा सकता है। यही कारण है कि अनंत-आयामी मामले में रैखिक संकारकों (और सामान्य रूप से संकारकों) का अध्ययन करते समय बहुत अलग तकनीकें नियोजित होती हैं। अनंत-आयामी मामले में रैखिक संकारकों के अध्ययन को [[कार्यात्मक विश्लेषण]] के रूप में जाना जाता है (इसलिए कहा जाता है क्योंकि कार्यों के विभिन्न वर्ग अनंत-आयामी सदिश समष्टि के महत्वपूर्ण उदाहरण बनाते हैं)। | ||
वास्तविक संख्याओं के [[अनुक्रम]]ों का स्थान या अधिक सामान्यतः किसी सदिश समष्टि में सदिशों के अनुक्रम, स्वयं एक अनंत-आयामी सदिश समष्टि बनाते हैं। सबसे महत्वपूर्ण मामले वास्तविक या जटिल संख्याओं के अनुक्रम हैं और ये स्थान, रैखिक उप-स्थानों के साथ, अनुक्रम समष्टि के रूप में जाने जाते हैं। इन स्थानों पर | वास्तविक संख्याओं के [[अनुक्रम]]ों का स्थान या अधिक सामान्यतः किसी सदिश समष्टि में सदिशों के अनुक्रम, स्वयं एक अनंत-आयामी सदिश समष्टि बनाते हैं। सबसे महत्वपूर्ण मामले वास्तविक या जटिल संख्याओं के अनुक्रम हैं और ये स्थान, रैखिक उप-स्थानों के साथ, अनुक्रम समष्टि के रूप में जाने जाते हैं। इन स्थानों पर संकारकों को [[अनुक्रम परिवर्तन]] के रूप में जाना जाता है। | ||
मानक | मानक संकारक मानदंड के संबंध में बनच समष्टि पर परिबद्ध रैखिक संकारक एक बनच बीजगणित बनाते हैं। [[बनच बीजगणित]] का [[सिद्ध]]ांत [[स्पेक्ट्रम (कार्यात्मक विश्लेषण)]] की एक बहुत ही सामान्य अवधारणा विकसित करता है जो अभिलक्षणिक समष्टि के सिद्धांत को सामान्य रूप से सामान्यीकृत करता है। | ||
== परिबद्ध | == परिबद्ध संकारक == | ||
{{main|Bounded operator|Operator norm|Banach algebra}} | {{main|Bounded operator|Operator norm|Banach algebra}} | ||
माना U और V एक ही क्रमित | माना U और V एक ही क्रमित क्षेत्र पर दो सदिश समष्टि हैं (उदाहरण के लिए <math>\R</math>), और वे [[मानदंड (गणित)]] से युक्त हैं। तब U से V तक एक रैखिक संकारक को परिबद्ध कहा जाता है यदि वहाँ C > 0 ऐसा मौजूद हो | ||
<math display="block">\|A\mathbf{x}\|_V \leq C\|\mathbf{x}\|_U</math> | <math display="block">\|A\mathbf{x}\|_V \leq C\|\mathbf{x}\|_U</math> | ||
<math>U</math> में सभी '''x''' के लिए। | <math>U</math> में सभी '''x''' के लिए। | ||
Line 59: | Line 59: | ||
परिबद्ध संकारक एक सदिश समष्टि बनाते हैं। इस सदिश समष्टि पर हम एक मानदंड पेश कर सकते हैं जो <math>U</math> और <math>V</math> के मानदंडों के अनुकूल है: | परिबद्ध संकारक एक सदिश समष्टि बनाते हैं। इस सदिश समष्टि पर हम एक मानदंड पेश कर सकते हैं जो <math>U</math> और <math>V</math> के मानदंडों के अनुकूल है: | ||
<math display="block">\|A\| = \inf\{C: \|A\mathbf{x}\|_V \leq C\|\mathbf{x}\|_U\}.</math> | <math display="block">\|A\| = \inf\{C: \|A\mathbf{x}\|_V \leq C\|\mathbf{x}\|_U\}.</math> | ||
<math>U</math>से स्वयं के | <math>U</math>से स्वयं के संकारकों के मामले में यह दिखाया जा सकता है- | ||
<math display="block">\|AB\| \leq \|A\| \cdot \|B\|.</math> | <math display="block">\|AB\| \leq \|A\| \cdot \|B\|.</math> | ||
इस विशेषता के साथ किसी भी यूनिटल मानदंडों वाली बीजगणित को [[बनच बीजगणित]] कहा जाता है। इस तरह के बीजगणितों के लिए [[वर्णक्रमीय सिद्धांत]] को सामान्य बनाना संभव है। [[सी * - बीजगणित]], जो कि कुछ अतिरिक्त संरचना वाले बनच बीजगणित हैं, [[क्वांटम यांत्रिकी]] में एक महत्वपूर्ण भूमिका निभाते हैं। | इस विशेषता के साथ किसी भी यूनिटल मानदंडों वाली बीजगणित को [[बनच बीजगणित]] कहा जाता है। इस तरह के बीजगणितों के लिए [[वर्णक्रमीय सिद्धांत]] को सामान्य बनाना संभव है। [[सी * - बीजगणित]], जो कि कुछ अतिरिक्त संरचना वाले बनच बीजगणित हैं, [[क्वांटम यांत्रिकी]] में एक महत्वपूर्ण भूमिका निभाते हैं। | ||
Line 75: | Line 75: | ||
=== संभाव्यता सिद्धांत === | === संभाव्यता सिद्धांत === | ||
{{Main|Probability theory}} | {{Main|Probability theory}} | ||
संभाव्यता सिद्धांत में | संभाव्यता सिद्धांत में संकारक भी सम्मिलित हैं, जैसे [[अपेक्षित मूल्य]], भिन्नता और [[सहप्रसरण]]। दरअसल, हर सहप्रसरण मूल रूप से एक [[डॉट उत्पाद]] है; प्रत्येक विचरण स्वयं के साथ एक सदिश का एक डॉट उत्पाद है, और इस प्रकार एक द्विघात मानदंड है; प्रत्येक मानक विचलन एक मानदंड है (द्विघात मानदंड का वर्गमूल); इस डॉट उत्पाद के अनुरूप कोसाइन [[पियर्सन सहसंबंध गुणांक]] है; अपेक्षित मूल्य मूल रूप से एक अभिन्न संकारक है (अंतरिक्ष में भारित आकृतियों को मापने के लिए उपयोग किया जाता है)। | ||
=== पथरी === | === पथरी === | ||
Line 101: | Line 101: | ||
{{Main|Vector calculus|Vector field|Scalar field|Gradient|Divergence|Curl (mathematics)|l6=Curl}} | {{Main|Vector calculus|Vector field|Scalar field|Gradient|Divergence|Curl (mathematics)|l6=Curl}} | ||
[[वेक्टर पथरी]] के लिए तीन ऑपरेटर महत्वपूर्ण हैं: | [[वेक्टर पथरी]] के लिए तीन ऑपरेटर महत्वपूर्ण हैं: | ||
* ग्रेड ([[ग्रेडियेंट]]), ( | * ग्रेड ([[ग्रेडियेंट]]), (संकारक प्रतीक डेल के साथ<math>\nabla</math>) स्केलर फ़ील्ड में प्रत्येक बिंदु पर एक वेक्टर निर्दिष्ट करता है जो उस क्षेत्र की परिवर्तन की सबसे बड़ी दर की दिशा में इंगित करता है और जिसका आदर्श परिवर्तन की उस सबसे बड़ी दर के पूर्ण मूल्य को मापता है। | ||
* Div ([[विचलन]]), (संचालक प्रतीक के साथ Del#Divergence|<math>\nabla \cdot</math>) एक सदिश संचालिका है जो किसी दिए गए बिंदु से किसी सदिश क्षेत्र के विचलन या अभिसरण को मापता है। | * Div ([[विचलन]]), (संचालक प्रतीक के साथ Del#Divergence|<math>\nabla \cdot</math>) एक सदिश संचालिका है जो किसी दिए गए बिंदु से किसी सदिश क्षेत्र के विचलन या अभिसरण को मापता है। | ||
* [[कर्ल (गणित)]], (संचालक प्रतीक के साथ Del#Curl|<math>\nabla \times</math>) एक वेक्टर ऑपरेटर है जो किसी दिए गए बिंदु के बारे में वेक्टर फ़ील्ड के कर्लिंग (चारों ओर घुमावदार, चारों ओर घूमना) प्रवृत्ति को मापता है। | * [[कर्ल (गणित)]], (संचालक प्रतीक के साथ Del#Curl|<math>\nabla \times</math>) एक वेक्टर ऑपरेटर है जो किसी दिए गए बिंदु के बारे में वेक्टर फ़ील्ड के कर्लिंग (चारों ओर घुमावदार, चारों ओर घूमना) प्रवृत्ति को मापता है। |
Revision as of 23:20, 13 February 2023
गणित में, संकारक समान्यतः एक मैपिंग (गणित) या फलन (गणित) होता है जो किसी स्थान (गणित) के तत्वों पर कार्य करता है ताकि किसी अन्य स्थान के तत्वों का उत्पादन किया जा सके (संभवतः और कभी-कभी एक ही स्थान होने की आवश्यकता होती है)। संकारक की कोई सामान्य परिभाषा नहीं है, लेकिन इस शब्द का प्रयोग प्रायः फलन के स्थान पर किया जाता है, जब किसी फलन का डोमेन या अन्य संरचित वस्तुओं का एक सेट होता है। इसके अलावा, एक ऑपरेटर के डोमेन को स्पष्ट रूप से चित्रित करना प्रायः मुश्किल होता है (उदाहरण के लिए एक अभिन्न संकारक के मामले में), और संबंधित वस्तुओं तक बढ़ाया जा सकता है (एक संकारक जो कार्यों पर कार्य करता है, अंतर समीकरणों पर भी कार्य कर सकता है जिसका समाधान फलन हैं जो समीकरण को संतुष्ट करता है)। अन्य उदाहरणों के लिए संकारक (भौतिकी) देखें।
सबसे बुनियादी संकारक रैखिक मानचित्र हैं, जो सदिश समष्टि पर कार्य करते हैं। रेखीय संचालिकाएँ ऐसे रेखीय मानचित्रों को संदर्भित करती हैं जिनके डोमेन और श्रेणी समान स्थान पर हैं, उदाहरण के लिए को ।[1] [2]ऐसे संकारक अक्सर निरंतरता जैसे गुणों को संरक्षित करते हैं। उदाहरण के लिए, अवकलन (गणित) और अनिश्चित समाकलन रैखिक संकारक हैं, संकारक जो उनसे निर्मित होते हैं, उन्हें अंतर संकारक, समाकलन संकारक या समाकल अवकल संकारक कहा जाता है।
संकारक का उपयोग गणितीय संक्रियाओं के प्रतीक को दर्शाने के लिए भी किया जाता है। यह कंप्यूटर प्रोग्रामिंग में संचालक के अर्थ से संबंधित है, संचालक (कंप्यूटर प्रोग्रामिंग) देखें।
रैखिक संकारक
सबसे आम प्रकार के संकारक का सामना रैखिक संकारकों से होता है। माना U और V क्षेत्र (गणित) K पर सदिश समष्टियाँ है। मानचित्रण (गणित) A: U → V रैखिक है यदि-
परिमित-आयामी मामले में रैखिक संकारकों को निम्नलिखित तरीके से आव्यूह (गणित) द्वारा दर्शाया जा सकता है। मान लें कि एक क्षेत्र है और तथा , पर परिमित-आयामी सदिश समष्टि हैं। आइए एक आधार चुनें में तथा में । तब माना , में एक यादृच्छिक सदिश है (आइंस्टीन कान्वेंशन मानते हुए), और एक रैखिक संकारक है। तब-
परिमित-आयामी सदिश समष्टि के बीच संकारकों से सीधे संबंधित महत्वपूर्ण अवधारणाएं आव्यूह रैंक, निर्धारक, व्युत्क्रम संकारक और अभिलक्षणिक समष्टि हैं।
रेखीय संकारक भी अनंत-आयामी मामले में एक बड़ी भूमिका निभाते हैं। रैंक और निर्धारक की अवधारणाओं को अनंत-आयामी आव्यूह तक नहीं बढ़ाया जा सकता है। यही कारण है कि अनंत-आयामी मामले में रैखिक संकारकों (और सामान्य रूप से संकारकों) का अध्ययन करते समय बहुत अलग तकनीकें नियोजित होती हैं। अनंत-आयामी मामले में रैखिक संकारकों के अध्ययन को कार्यात्मक विश्लेषण के रूप में जाना जाता है (इसलिए कहा जाता है क्योंकि कार्यों के विभिन्न वर्ग अनंत-आयामी सदिश समष्टि के महत्वपूर्ण उदाहरण बनाते हैं)।
वास्तविक संख्याओं के अनुक्रमों का स्थान या अधिक सामान्यतः किसी सदिश समष्टि में सदिशों के अनुक्रम, स्वयं एक अनंत-आयामी सदिश समष्टि बनाते हैं। सबसे महत्वपूर्ण मामले वास्तविक या जटिल संख्याओं के अनुक्रम हैं और ये स्थान, रैखिक उप-स्थानों के साथ, अनुक्रम समष्टि के रूप में जाने जाते हैं। इन स्थानों पर संकारकों को अनुक्रम परिवर्तन के रूप में जाना जाता है।
मानक संकारक मानदंड के संबंध में बनच समष्टि पर परिबद्ध रैखिक संकारक एक बनच बीजगणित बनाते हैं। बनच बीजगणित का सिद्धांत स्पेक्ट्रम (कार्यात्मक विश्लेषण) की एक बहुत ही सामान्य अवधारणा विकसित करता है जो अभिलक्षणिक समष्टि के सिद्धांत को सामान्य रूप से सामान्यीकृत करता है।
परिबद्ध संकारक
माना U और V एक ही क्रमित क्षेत्र पर दो सदिश समष्टि हैं (उदाहरण के लिए ), और वे मानदंड (गणित) से युक्त हैं। तब U से V तक एक रैखिक संकारक को परिबद्ध कहा जाता है यदि वहाँ C > 0 ऐसा मौजूद हो
परिबद्ध संकारक एक सदिश समष्टि बनाते हैं। इस सदिश समष्टि पर हम एक मानदंड पेश कर सकते हैं जो और के मानदंडों के अनुकूल है:
उदाहरण
ज्यामिति
ज्यामिति में, सदिश समष्टि पर अतिरिक्त संरचनाओं का कभी-कभी अध्ययन किया जाता है। संचालक जो इस तरह के सदिश समष्टि में स्वयं को विशेष रूप से मानचित्रित करते हैं, इन अध्ययनों में बहुत उपयोगी होते हैं, वे स्वाभाविक रूप से संरचना द्वारा समूह (गणित) बनाते हैं।
उदाहरण के लिए, सदिश समष्टि की संरचना को संरक्षित करने वाले द्विभाजित संचालको का ठीक उलटा कार्य रैखिक संचालक का हैं। वे रचना के तहत सामान्य रेखीय समूह बनाते हैं। उदाहरण, वे संचालकों के योग के तहत एक सदिश समष्टि नहीं बनाते हैं। दोनों आईडी और -आईडी व्युत्क्रमणीय (द्विभाजित) हैं, लेकिन उनका योग 0 नहीं है।
ऐसे स्थान पर यूक्लिडियन मीट्रिक को संरक्षित करने वाले संचालक सममिति समूह बनाते हैं, और जो मूलभूत रूप को ठीक करते हैं वे एक उपसमूह बनाते हैं जिसे आयतीय समूह के रूप में जाना जाता है। आयतीय समूह में संचालक जो सदिश टपल के अभिविन्यास को भी संरक्षित करते हैं, विशेष आयतीय समूह या घूर्णन समूह का निर्माण करते हैं।
संभाव्यता सिद्धांत
संभाव्यता सिद्धांत में संकारक भी सम्मिलित हैं, जैसे अपेक्षित मूल्य, भिन्नता और सहप्रसरण। दरअसल, हर सहप्रसरण मूल रूप से एक डॉट उत्पाद है; प्रत्येक विचरण स्वयं के साथ एक सदिश का एक डॉट उत्पाद है, और इस प्रकार एक द्विघात मानदंड है; प्रत्येक मानक विचलन एक मानदंड है (द्विघात मानदंड का वर्गमूल); इस डॉट उत्पाद के अनुरूप कोसाइन पियर्सन सहसंबंध गुणांक है; अपेक्षित मूल्य मूल रूप से एक अभिन्न संकारक है (अंतरिक्ष में भारित आकृतियों को मापने के लिए उपयोग किया जाता है)।
पथरी
कार्यात्मक विश्लेषण के दृष्टिकोण से, कलन दो रैखिक संकारकों का अध्ययन है: अवकल संकारक , और वोल्टेरा ऑपरेटर .
फूरियर श्रृंखला और फूरियर रूपांतरण
फूरियर रूपांतरण लागू गणित, विशेष रूप से भौतिकी और सिग्नल प्रोसेसिंग में उपयोगी है। यह एक और इंटीग्रल ऑपरेटर है; यह मुख्य रूप से उपयोगी है क्योंकि यह एक (अस्थायी) डोमेन पर एक फ़ंक्शन को दूसरे (फ़्रीक्वेंसी) डोमेन पर एक फ़ंक्शन में परिवर्तित करता है, एक तरह से प्रभावी रूप से उलटा कार्य करता है। कोई सूचना खोई नहीं है, क्योंकि एक व्युत्क्रम परिवर्तन संकारक है। आवधिक कार्यों के सरल मामले में, यह परिणाम प्रमेय पर आधारित होता है कि किसी निरंतर आवधिक कार्य को साइन लहरों और कोसाइन तरंगों की श्रृंखला के योग के रूप में दर्शाया जा सकता है:
सामान्य कार्य से निपटने पर , परिवर्तन एक अभिन्न रूप लेता है:
लाप्लास रूपांतरण
लाप्लास परिवर्तन एक अन्य अभिन्न संकारक है और अंतर समीकरणों को हल करने की प्रक्रिया को सरल बनाने में शामिल है।
दिया हुआ f = f(s), इसे निम्न द्वारा परिभाषित किया गया है:
अदिश और सदिश क्षेत्रों पर मौलिक संचालक
वेक्टर पथरी के लिए तीन ऑपरेटर महत्वपूर्ण हैं:
- ग्रेड (ग्रेडियेंट), (संकारक प्रतीक डेल के साथ) स्केलर फ़ील्ड में प्रत्येक बिंदु पर एक वेक्टर निर्दिष्ट करता है जो उस क्षेत्र की परिवर्तन की सबसे बड़ी दर की दिशा में इंगित करता है और जिसका आदर्श परिवर्तन की उस सबसे बड़ी दर के पूर्ण मूल्य को मापता है।
- Div (विचलन), (संचालक प्रतीक के साथ Del#Divergence|) एक सदिश संचालिका है जो किसी दिए गए बिंदु से किसी सदिश क्षेत्र के विचलन या अभिसरण को मापता है।
- कर्ल (गणित), (संचालक प्रतीक के साथ Del#Curl|) एक वेक्टर ऑपरेटर है जो किसी दिए गए बिंदु के बारे में वेक्टर फ़ील्ड के कर्लिंग (चारों ओर घुमावदार, चारों ओर घूमना) प्रवृत्ति को मापता है।
भौतिकी, इंजीनियरिंग और टेंसर स्पेस के लिए वेक्टर कैलकुलस ऑपरेटरों के विस्तार के रूप में, ग्रेड, डिव और कर्ल ऑपरेटर भी अक्सर टेंसर कैलकुलेशन के साथ-साथ वेक्टर कैलकुलस से जुड़े होते हैं।[3]
यह भी देखें
- फलन (गणित)
- संचालिका बीजगणित
- ऑपरेटरों की सूची
संदर्भ
- ↑ Rudin, Walter (1976). "Chapter 9: Functions of Several Variables". Principles of Mathematical Analysis (3rd ed.). McGraw-Hill. p. 207. ISBN 0-07-054235-X.
Linear transformations of X into X are often called linear operators on X.
- ↑
Roman, Steven (2008). "Chapter 2: Linear Transformations". Advanced Linear Algebra (3rd ed.). Springer. p. 59. ISBN 978-0-387-72828-5.
1) A linear transformation from V to V is called a linear operator on V. The set of all linear operators on V is denoted ℒ(V). A linear operator on a real vector space is called a real operator and a linear operator on a complex vector space is called a complex operator. ... We should also mention that some authors use the term linear operator for any linear transformation from V to W. ... DefinitionThe following terms are also employed: 2) endomorphism for linear operator ... 6) automorphism for bijective linear operator.
- ↑ H.M. Schey (2005). Div Grad Curl and All that. New York: W W Norton. ISBN 0-393-92516-1.