हानि फलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Mathematical relation assigning a probability event to a cost}} | {{Short description|Mathematical relation assigning a probability event to a cost}} | ||
[[गणितीय अनुकूलन]] और [[निर्णय सिद्धांत]] में, एक हानि फलन या लागत फलन (कभी-कभी त्रुटि फलन भी कहा जाता है) <ref name="ttf2001">{{cite book|first1=Trevor |last1=Hastie |authorlink1= |first2=Robert |last2=Tibshirani |authorlink2=Robert Tibshirani|first3=Jerome H. |last3=Friedman |authorlink3=Jerome H. Friedman |title=The Elements of Statistical Learning |publisher=Springer |year=2001 |isbn=0-387-95284-5 |page=18 |url=https://web.stanford.edu/~hastie/ElemStatLearn/}}</ref> एक ऐसा कार्य है जो एक घटना (संभाव्यता सिद्धांत) या एक या एक से अधिक चर के मूल्यों को एक [[वास्तविक संख्या]] पर मानचित्रित करता है जो घटना से जुड़ी कुछ लागतों का प्रतिनिधित्व करता है। एक [[अनुकूलन समस्या]] हानि फलन को कम करने का प्रयास करती है। एक उद्देश्य फलन या तो हानि फलन है या इसका विपरीत (विशिष्ट डोमेन में, विभिन्न रूप से पुरस्कार फलन, लाभ फलन, उपयोगिता फलन, [[फिटनेस कार्य]], आदि) कहा जाता है, जिस स्थिति में इसे अधिकतम किया जाना है। | [[गणितीय अनुकूलन]] और [[निर्णय सिद्धांत]] में, एक हानि फलन या लागत फलन (कभी-कभी त्रुटि फलन भी कहा जाता है) <ref name="ttf2001">{{cite book|first1=Trevor |last1=Hastie |authorlink1= |first2=Robert |last2=Tibshirani |authorlink2=Robert Tibshirani|first3=Jerome H. |last3=Friedman |authorlink3=Jerome H. Friedman |title=The Elements of Statistical Learning |publisher=Springer |year=2001 |isbn=0-387-95284-5 |page=18 |url=https://web.stanford.edu/~hastie/ElemStatLearn/}}</ref> एक ऐसा कार्य है जो एक घटना (संभाव्यता सिद्धांत) या एक या एक से अधिक चर के मूल्यों को एक [[वास्तविक संख्या]] पर मानचित्रित करता है जो घटना से जुड़ी कुछ लागतों का प्रतिनिधित्व करता है। एक [[अनुकूलन समस्या]] हानि फलन को कम करने का प्रयास करती है। एक उद्देश्य फलन या तो हानि फलन है या इसका विपरीत (विशिष्ट डोमेन में, विभिन्न रूप से पुरस्कार फलन, लाभ फलन, उपयोगिता फलन, [[फिटनेस कार्य]], आदि) कहा जाता है, जिस स्थिति में इसे अधिकतम किया जाना है। हानिसमारोह में पदानुक्रम के कई स्तरों से शब्द सम्मिलित हो सकते हैं। | ||
आँकड़ों में,सामान्यतः [[पैरामीटर अनुमान]] के लिए एक | आँकड़ों में,सामान्यतः [[पैरामीटर अनुमान]] के लिए एक हानिसमारोह का उपयोग किया जाता है, और प्रश्न में घटना डेटा के उदाहरण के लिए अनुमानित और वास्तविक मूल्यों के बीच अंतर का कुछ कार्य है। [[पियरे-साइमन लाप्लास]] जितनी पुरानी अवधारणा को 20वीं शताब्दी के मध्य में [[अब्राहम का जन्म हुआ]] द्वारा आंकड़ों में फिर से प्रस्तुत किया गया था।<ref>{{cite book |first=A. |last=Wald |title=Statistical Decision Functions |publisher=Wiley |year=1950 |url=https://psycnet.apa.org/record/1951-01400-000}}</ref> [[अर्थशास्त्र]] के संदर्भ में, उदाहरण के लिए, यह आम तौर पर [[आर्थिक लागत]] या [[पछतावा (निर्णय सिद्धांत)]] है। [[सांख्यिकीय वर्गीकरण]] में, यह एक उदाहरण के गलत वर्गीकरण के लिए दंड है। [[जिवानांकिकी]] में, इसका उपयोग बीमा संदर्भ में प्रीमियम पर भुगतान किए गए मॉडल लाभों के लिए किया जाता है, खासकर 1920 के दशक में हेराल्ड क्रैमर के कार्यों के बाद से।<ref>{{cite book |last=Cramér |first=H. |year=1930 |title=On the mathematical theory of risk |work=Centraltryckeriet }}</ref> [[इष्टतम नियंत्रण]] में, वांछित मूल्य प्राप्त करने में विफल रहने के लिए हानिका दंड है। [[वित्तीय जोखिम प्रबंधन]] में, फलन को मौद्रिक हानि के लिए मैप किया जाता है। | ||
== उदाहरण == | == उदाहरण == | ||
Line 8: | Line 8: | ||
=== खेद === | === खेद === | ||
{{main|Regret (decision theory)}} | {{main|Regret (decision theory)}} | ||
लियोनार्ड जे। सैवेज ने तर्क दिया कि गैर-बायेसियन विधियों जैसे [[अल्पमहिष्ठ]] का उपयोग करते हुए, | लियोनार्ड जे। सैवेज ने तर्क दिया कि गैर-बायेसियन विधियों जैसे [[अल्पमहिष्ठ]] का उपयोग करते हुए, हानिका कार्य अफसोस (निर्णय सिद्धांत) के विचार पर आधारित होना चाहिए, अर्थात, किसी निर्णय से जुड़ा हानिसबसे अच्छे निर्णय के परिणामों के बीच का अंतर होना चाहिए। यह किया जा सकता था यदि अंतर्निहित परिस्थितियों की जानकारी हो और निर्णय जो वास्तव में उनके ज्ञात होने से पहले लिया गया हो। | ||
=== द्विघात हानि समारोह === | === द्विघात हानि समारोह === | ||
Line 18: | Line 18: | ||
[[t- परीक्षण]], [[प्रतिगमन विश्लेषण]] मॉडल, प्रयोगों के डिजाइन, और बहुत कुछ सहित कई सामान्य आँकड़े, रैखिक प्रतिगमन सिद्धांत का उपयोग करके कम से कम वर्ग विधियों का उपयोग करते हैं, जो द्विघात हानि फलन पर आधारित है। | [[t- परीक्षण]], [[प्रतिगमन विश्लेषण]] मॉडल, प्रयोगों के डिजाइन, और बहुत कुछ सहित कई सामान्य आँकड़े, रैखिक प्रतिगमन सिद्धांत का उपयोग करके कम से कम वर्ग विधियों का उपयोग करते हैं, जो द्विघात हानि फलन पर आधारित है। | ||
द्विघात हानि समारोह का उपयोग [[रैखिक-द्विघात नियामक]] | रैखिक-द्विघात इष्टतम नियंत्रण समस्याओं में भी किया जाता है। इन समस्याओं में, अनिश्चितता के अभाव में भी, सभी लक्ष्य चरों के वांछित मूल्यों को प्राप्त करना संभव नहीं हो सकता है। अक्सर | द्विघात हानि समारोह का उपयोग [[रैखिक-द्विघात नियामक]] | रैखिक-द्विघात इष्टतम नियंत्रण समस्याओं में भी किया जाता है। इन समस्याओं में, अनिश्चितता के अभाव में भी, सभी लक्ष्य चरों के वांछित मूल्यों को प्राप्त करना संभव नहीं हो सकता है। अक्सर हानिको उनके वांछित मूल्यों से ब्याज के चर के विचलन में [[द्विघात रूप]] में व्यक्त किया जाता है; यह दृष्टिकोण बंद-रूप अभिव्यक्ति है क्योंकि इसका परिणाम रैखिक प्रथम-क्रम स्थितियों में होता है। [[स्टोकेस्टिक नियंत्रण]] के संदर्भ में, द्विघात रूप के अपेक्षित मूल्य का उपयोग किया जाता है। | ||
=== 0-1 हानि फलन === | === 0-1 हानि फलन === | ||
Line 51: | Line 51: | ||
==== फ़्रीक्वेंटिस्ट अपेक्षित नुकसान ==== | ==== फ़्रीक्वेंटिस्ट अपेक्षित नुकसान ==== | ||
हम पहले बार-बार होने वाले संदर्भ में अपेक्षित | हम पहले बार-बार होने वाले संदर्भ में अपेक्षित हानिको परिभाषित करते हैं। इसे प्रायिकता वितरण, P के संबंध में अपेक्षित मान लेकर प्राप्त किया जाता है<sub>''θ''</sub>प्रेक्षित डेटा का, X. इसे 'जोखिम कार्य' के रूप में भी जाना जाता है<ref>{{SpringerEOM| title=Risk of a statistical procedure |id=R/r082490 |first=M.S. |last=Nikulin}}</ref><ref> | ||
{{cite book | {{cite book | ||
|title=Statistical decision theory and Bayesian Analysis | |title=Statistical decision theory and Bayesian Analysis | ||
Line 81: | Line 81: | ||
:<math>\rho(\pi^*,a) = \int_\Theta L(\theta, a) \, \mathrm{d} \pi^* (\theta).</math> | :<math>\rho(\pi^*,a) = \int_\Theta L(\theta, a) \, \mathrm{d} \pi^* (\theta).</math> | ||
एक को फिर कार्रवाई का चयन करना चाहिए<sup>*</sup> जो अपेक्षित | एक को फिर कार्रवाई का चयन करना चाहिए<sup>*</sup> जो अपेक्षित हानिको कम करता है। हालांकि इसका परिणाम उसी क्रिया को चुनने में होगा जैसा कि फ़्रीक्वेंटिस्ट जोखिम का उपयोग करके चुना जाएगा, बायेसियन दृष्टिकोण का जोर यह है कि कोई केवल वास्तविक देखे गए डेटा के तहत इष्टतम कार्रवाई को चुनने में रुचि रखता है, जबकि वास्तविक फ़्रीक्वेंटिस्ट इष्टतम निर्णय नियम का चयन करता है। जो सभी संभव प्रेक्षणों का फलन है, एक अधिक कठिन समस्या है। | ||
====सांख्यिकी में उदाहरण ==== | ====सांख्यिकी में उदाहरण ==== | ||
* एक स्केलर पैरामीटर θ के लिए, एक निर्णय फलन जिसका आउटपुट <math>\hat\theta</math> θ का एक अनुमान है, और एक द्विघात हानि फलन ([[चुकता त्रुटि हानि]]) <math display="block"> L(\theta,\hat\theta)=(\theta-\hat\theta)^2,</math> जोखिम कार्य अनुमान की औसत चुकता त्रुटि बन जाता है, <math display="block">R(\theta,\hat\theta)= \operatorname{E}_\theta(\theta-\hat\theta)^2.</math>माध्य चुकता त्रुटि को कम करके पाया गया एक अनुमानक पश्च वितरण के माध्य का अनुमान लगाता है। | * एक स्केलर पैरामीटर θ के लिए, एक निर्णय फलन जिसका आउटपुट <math>\hat\theta</math> θ का एक अनुमान है, और एक द्विघात हानि फलन ([[चुकता त्रुटि हानि]]) <math display="block"> L(\theta,\hat\theta)=(\theta-\hat\theta)^2,</math> जोखिम कार्य अनुमान की औसत चुकता त्रुटि बन जाता है, <math display="block">R(\theta,\hat\theta)= \operatorname{E}_\theta(\theta-\hat\theta)^2.</math>माध्य चुकता त्रुटि को कम करके पाया गया एक अनुमानक पश्च वितरण के माध्य का अनुमान लगाता है। | ||
* घनत्व के अनुमान में, अज्ञात पैरामीटर संभाव्यता घनत्व कार्य ही है। | * घनत्व के अनुमान में, अज्ञात पैरामीटर संभाव्यता घनत्व कार्य ही है। हानिफलन कोसामान्यतः उपयुक्त [[समारोह स्थान]] में नॉर्म (गणित) के रूप में चुना जाता है। उदाहरण के लिए, L2 मानदंड|L के लिए<sup>2</सुप> मानक, <math display="block">L(f,\hat f) = \|f-\hat f\|_2^2\,,</math> जोखिम कार्य माध्य एकीकृत चुकता त्रुटि बन जाता है <math display="block">R(f,\hat f)=\operatorname{E} \|f-\hat f\|^2.\,</math> | ||
Line 95: | Line 95: | ||
एक निर्णय नियम इष्टतमता मानदंड का उपयोग करके एक विकल्प बनाता है। कुछसामान्यतः इस्तेमाल किए जाने वाले मानदंड हैं: | एक निर्णय नियम इष्टतमता मानदंड का उपयोग करके एक विकल्प बनाता है। कुछसामान्यतः इस्तेमाल किए जाने वाले मानदंड हैं: | ||
*Minimax: सबसे खराब | *Minimax: सबसे खराब हानिके साथ निर्णय नियम चुनें - यानी, सबसे खराब स्थिति (अधिकतम संभव) हानिको कम करें: <math display="block"> \underset{\delta} {\operatorname{arg\,min}} \ \max_{\theta \in \Theta} \ R(\theta,\delta). </math> | ||
*[[अपरिवर्तनीय अनुमानक]]: निर्णय नियम चुनें जो एक अपरिवर्तनीय आवश्यकता को पूरा करता है। | *[[अपरिवर्तनीय अनुमानक]]: निर्णय नियम चुनें जो एक अपरिवर्तनीय आवश्यकता को पूरा करता है। | ||
*न्यूनतम औसत | *न्यूनतम औसत हानिके साथ निर्णय नियम चुनें (यानी हानिसमारोह के अपेक्षित मूल्य को कम करें): <math display="block"> \underset{\delta} {\operatorname{arg\,min}} \operatorname{E}_{\theta \in \Theta} [R(\theta,\delta)] = \underset{\delta} {\operatorname{arg\,min}} \ \int_{\theta \in \Theta} R(\theta,\delta) \, p(\theta) \,d\theta. </math> | ||
== हानि समारोह का चयन == | == हानि समारोह का चयन == | ||
ध्वनि सांख्यिकीय अभ्यास के लिए किसी विशेष लागू समस्या के संदर्भ में अनुभव किए गए वास्तविक स्वीकार्य भिन्नता के अनुरूप अनुमानक का चयन करने की आवश्यकता होती है। इस प्रकार, | ध्वनि सांख्यिकीय अभ्यास के लिए किसी विशेष लागू समस्या के संदर्भ में अनुभव किए गए वास्तविक स्वीकार्य भिन्नता के अनुरूप अनुमानक का चयन करने की आवश्यकता होती है। इस प्रकार, हानिकार्यों के लागू उपयोग में, एक लागू समस्या को मॉडल करने के लिए किस सांख्यिकीय पद्धति का उपयोग करना है, यह उस हानिको जानने पर निर्भर करता है जो समस्या की विशेष परिस्थितियों में गलत होने से अनुभव किया जाएगा।<ref>{{cite book |last=Pfanzagl |first=J. |year=1994 |title=Parametric Statistical Theory |location=Berlin |publisher=Walter de Gruyter |isbn=978-3-11-013863-4 }}</ref> | ||
एक सामान्य उदाहरण में [[स्थान पैरामीटर]] का अनुमान लगाना सम्मिलित है। विशिष्ट सांख्यिकीय मान्यताओं के तहत, माध्य या औसत स्थान का अनुमान लगाने के लिए आँकड़ा है जो कम से कम वर्गों के तहत अनुभवी | एक सामान्य उदाहरण में [[स्थान पैरामीटर]] का अनुमान लगाना सम्मिलित है। विशिष्ट सांख्यिकीय मान्यताओं के तहत, माध्य या औसत स्थान का अनुमान लगाने के लिए आँकड़ा है जो कम से कम वर्गों के तहत अनुभवी हानिको कम करता है। चुकता-त्रुटि हानि फलन, जबकि माध्य अनुमानक है जो निरपेक्ष-अंतर हानि फलन के तहत अनुभव किए गए अपेक्षित हानिको कम करता है। . अभी भी अलग-अलग अनुमानक अन्य, कम सामान्य परिस्थितियों में इष्टतम होंगे। | ||
[[अर्थ]]शास्त्र में, जब एक एजेंट जोखिम तटस्थ होता है, तो उद्देश्य कार्य को केवल मौद्रिक मात्रा के अपेक्षित मूल्य के रूप में व्यक्त किया जाता है, जैसे कि लाभ, आय या अंत-अवधि का धन। [[जोखिम से बचने]] के लिए | जोखिम से बचने वाले या जोखिम-प्रेमी एजेंटों के लिए, | [[अर्थ]]शास्त्र में, जब एक एजेंट जोखिम तटस्थ होता है, तो उद्देश्य कार्य को केवल मौद्रिक मात्रा के अपेक्षित मूल्य के रूप में व्यक्त किया जाता है, जैसे कि लाभ, आय या अंत-अवधि का धन। [[जोखिम से बचने]] के लिए | जोखिम से बचने वाले या जोखिम-प्रेमी एजेंटों के लिए, हानिको उपयोगिता के नकारात्मक के रूप में मापा जाता है, और अनुकूलित किए जाने वाले उद्देश्य कार्य उपयोगिता का अपेक्षित मूल्य है। | ||
लागत के अन्य उपाय संभव हैं, उदाहरण के लिए [[सार्वजनिक स्वास्थ्य]] या [[सुरक्षा इंजीनियरिंग]] के क्षेत्र में [[मृत्यु दर]] या रुग्णता। | लागत के अन्य उपाय संभव हैं, उदाहरण के लिए [[सार्वजनिक स्वास्थ्य]] या [[सुरक्षा इंजीनियरिंग]] के क्षेत्र में [[मृत्यु दर]] या रुग्णता। | ||
Line 110: | Line 110: | ||
अधिकांश अनुकूलन एल्गोरिदम के लिए, एक हानि फलन होना वांछनीय है जो विश्व स्तर पर [[निरंतर कार्य]] और अलग-अलग फलन है। | अधिकांश अनुकूलन एल्गोरिदम के लिए, एक हानि फलन होना वांछनीय है जो विश्व स्तर पर [[निरंतर कार्य]] और अलग-अलग फलन है। | ||
दो बहुत ही सामान्य रूप से उपयोग किए जाने वाले हानि कार्य औसत चुकता त्रुटि हैं, <math>L(a) = a^2</math>, और [[पूर्ण विचलन]], <math>L(a)=|a|</math>. हालाँकि पूर्ण | दो बहुत ही सामान्य रूप से उपयोग किए जाने वाले हानि कार्य औसत चुकता त्रुटि हैं, <math>L(a) = a^2</math>, और [[पूर्ण विचलन]], <math>L(a)=|a|</math>. हालाँकि पूर्ण हानिका हानियह है कि यह अलग-अलग नहीं है <math>a=0</math>. चुकता हानिका हानियह है कि इसमें [[ग़ैर]] का वर्चस्व होने की प्रवृत्ति होती है - जब एक सेट पर योग किया जाता है <math>a</math>है (जैसा कि <math display="inline">\sum_{i=1}^n L(a_i) </math>), अंतिम योग औसत a-मान की अभिव्यक्ति के बजाय कुछ विशेष रूप से बड़े a-मानों का परिणाम होता है। | ||
हानि फलन का चुनाव मनमाना नहीं है। यह बहुत ही प्रतिबंधात्मक है और कभी-कभी हानि समारोह को इसके वांछनीय गुणों से चिह्नित किया जा सकता है।<ref>Detailed information on mathematical principles of the loss function choice is given in Chapter 2 of the book {{cite book|title=Robust and Non-Robust Models in Statistics|first1=B.|last1=Klebanov|first2=Svetlozat T.|last2=Rachev|first3=Frank J.|last3=Fabozzi|publisher=Nova Scientific Publishers, Inc.|location=New York|year=2009}} (and references there).</ref> पसंद के सिद्धांतों में, उदाहरण के लिए, i.i.d के मामले में सममित आंकड़ों के वर्ग की पूर्णता की आवश्यकता है। अवलोकन, पूर्ण सूचना का सिद्धांत और कुछ अन्य। | हानि फलन का चुनाव मनमाना नहीं है। यह बहुत ही प्रतिबंधात्मक है और कभी-कभी हानि समारोह को इसके वांछनीय गुणों से चिह्नित किया जा सकता है।<ref>Detailed information on mathematical principles of the loss function choice is given in Chapter 2 of the book {{cite book|title=Robust and Non-Robust Models in Statistics|first1=B.|last1=Klebanov|first2=Svetlozat T.|last2=Rachev|first3=Frank J.|last3=Fabozzi|publisher=Nova Scientific Publishers, Inc.|location=New York|year=2009}} (and references there).</ref> पसंद के सिद्धांतों में, उदाहरण के लिए, i.i.d के मामले में सममित आंकड़ों के वर्ग की पूर्णता की आवश्यकता है। अवलोकन, पूर्ण सूचना का सिद्धांत और कुछ अन्य। | ||
डब्ल्यू एडवर्ड्स डेमिंग और [[नसीम निकोलस तालेब]] का तर्क है कि अनुभवजन्य वास्तविकता, अच्छे गणितीय गुण नहीं, | डब्ल्यू एडवर्ड्स डेमिंग और [[नसीम निकोलस तालेब]] का तर्क है कि अनुभवजन्य वास्तविकता, अच्छे गणितीय गुण नहीं, हानिके कार्यों का चयन करने का एकमात्र आधार होना चाहिए, और वास्तविक हानिअक्सर गणितीय रूप से अच्छे नहीं होते हैं और अलग-अलग, निरंतर, सममित आदि नहीं होते हैं। उदाहरण के लिए, एक व्यक्ति जो हवाई जहाज़ के गेट के बंद होने से पहले आता है वह अभी भी विमान बना सकता है, लेकिन एक व्यक्ति जो बाद में आता है वह नहीं कर सकता है, एक अंतराल और विषमता जो थोड़ा जल्दी पहुंचने की तुलना में थोड़ा देर से पहुंचना अधिक महंगा बना देता है। दवा की खुराक में, बहुत कम दवा की लागत प्रभावकारिता की कमी हो सकती है, जबकि बहुत अधिक लागत सहनीय विषाक्तता हो सकती है, विषमता का एक और उदाहरण। ट्रैफ़िक, पाइप, बीम, पारिस्थितिकी, जलवायु, आदि एक बिंदु तक थोड़े ध्यान देने योग्य परिवर्तन के साथ बढ़े हुए भार या तनाव को सहन कर सकते हैं, फिर बैक अप हो सकते हैं या भयावह रूप से टूट सकते हैं। डेमिंग और तालेब तर्क देते हैं कि ये स्थितियाँ, वास्तविक जीवन की समस्याओं में आम हैं, शायद शास्त्रीय चिकनी, निरंतर, सममित, विभेदक मामलों की तुलना में अधिक सामान्य हैं।<ref>{{Cite book|title=Out of the Crisis|last=Deming|first=W. Edwards|publisher=The MIT Press|year=2000|isbn=9780262541152}}</ref> | ||
Revision as of 12:25, 16 February 2023
गणितीय अनुकूलन और निर्णय सिद्धांत में, एक हानि फलन या लागत फलन (कभी-कभी त्रुटि फलन भी कहा जाता है) [1] एक ऐसा कार्य है जो एक घटना (संभाव्यता सिद्धांत) या एक या एक से अधिक चर के मूल्यों को एक वास्तविक संख्या पर मानचित्रित करता है जो घटना से जुड़ी कुछ लागतों का प्रतिनिधित्व करता है। एक अनुकूलन समस्या हानि फलन को कम करने का प्रयास करती है। एक उद्देश्य फलन या तो हानि फलन है या इसका विपरीत (विशिष्ट डोमेन में, विभिन्न रूप से पुरस्कार फलन, लाभ फलन, उपयोगिता फलन, फिटनेस कार्य, आदि) कहा जाता है, जिस स्थिति में इसे अधिकतम किया जाना है। हानिसमारोह में पदानुक्रम के कई स्तरों से शब्द सम्मिलित हो सकते हैं।
आँकड़ों में,सामान्यतः पैरामीटर अनुमान के लिए एक हानिसमारोह का उपयोग किया जाता है, और प्रश्न में घटना डेटा के उदाहरण के लिए अनुमानित और वास्तविक मूल्यों के बीच अंतर का कुछ कार्य है। पियरे-साइमन लाप्लास जितनी पुरानी अवधारणा को 20वीं शताब्दी के मध्य में अब्राहम का जन्म हुआ द्वारा आंकड़ों में फिर से प्रस्तुत किया गया था।[2] अर्थशास्त्र के संदर्भ में, उदाहरण के लिए, यह आम तौर पर आर्थिक लागत या पछतावा (निर्णय सिद्धांत) है। सांख्यिकीय वर्गीकरण में, यह एक उदाहरण के गलत वर्गीकरण के लिए दंड है। जिवानांकिकी में, इसका उपयोग बीमा संदर्भ में प्रीमियम पर भुगतान किए गए मॉडल लाभों के लिए किया जाता है, खासकर 1920 के दशक में हेराल्ड क्रैमर के कार्यों के बाद से।[3] इष्टतम नियंत्रण में, वांछित मूल्य प्राप्त करने में विफल रहने के लिए हानिका दंड है। वित्तीय जोखिम प्रबंधन में, फलन को मौद्रिक हानि के लिए मैप किया जाता है।
उदाहरण
खेद
लियोनार्ड जे। सैवेज ने तर्क दिया कि गैर-बायेसियन विधियों जैसे अल्पमहिष्ठ का उपयोग करते हुए, हानिका कार्य अफसोस (निर्णय सिद्धांत) के विचार पर आधारित होना चाहिए, अर्थात, किसी निर्णय से जुड़ा हानिसबसे अच्छे निर्णय के परिणामों के बीच का अंतर होना चाहिए। यह किया जा सकता था यदि अंतर्निहित परिस्थितियों की जानकारी हो और निर्णय जो वास्तव में उनके ज्ञात होने से पहले लिया गया हो।
द्विघात हानि समारोह
एक द्विघात फलन हानि फलन का उपयोग आम है, उदाहरण के लिए कम से कम वर्ग तकनीकों का उपयोग करते समय। भिन्नता के गुणों के साथ-साथ सममित होने के कारण यह अक्सर अन्य हानि कार्यों की तुलना में अधिक गणितीय रूप से ट्रैक्टेबल होता है: लक्ष्य के ऊपर एक त्रुटि लक्ष्य के नीचे त्रुटि के समान परिमाण के समान हानि का कारण बनती है। यदि लक्ष्य t है, तो एक द्विघात हानि फलन है
कुछ स्थिर सी के लिए; स्थिरांक के मान से किसी निर्णय पर कोई फर्क नहीं पड़ता है, और इसे 1 के बराबर सेट करके अनदेखा किया जा सकता है। इसे 'चुकता त्रुटि हानि' ('SEL') के रूप में भी जाना जाता है। [1]
t- परीक्षण, प्रतिगमन विश्लेषण मॉडल, प्रयोगों के डिजाइन, और बहुत कुछ सहित कई सामान्य आँकड़े, रैखिक प्रतिगमन सिद्धांत का उपयोग करके कम से कम वर्ग विधियों का उपयोग करते हैं, जो द्विघात हानि फलन पर आधारित है।
द्विघात हानि समारोह का उपयोग रैखिक-द्विघात नियामक | रैखिक-द्विघात इष्टतम नियंत्रण समस्याओं में भी किया जाता है। इन समस्याओं में, अनिश्चितता के अभाव में भी, सभी लक्ष्य चरों के वांछित मूल्यों को प्राप्त करना संभव नहीं हो सकता है। अक्सर हानिको उनके वांछित मूल्यों से ब्याज के चर के विचलन में द्विघात रूप में व्यक्त किया जाता है; यह दृष्टिकोण बंद-रूप अभिव्यक्ति है क्योंकि इसका परिणाम रैखिक प्रथम-क्रम स्थितियों में होता है। स्टोकेस्टिक नियंत्रण के संदर्भ में, द्विघात रूप के अपेक्षित मूल्य का उपयोग किया जाता है।
0-1 हानि फलन
सांख्यिकी और निर्णय सिद्धांत में, अक्सर उपयोग किया जाने वाला हानि फलन 0-1 हानि फलन होता है
कहाँ सूचक कार्य है। मतलब अगर इनपुट का मूल्यांकन सही है, तो आउटपुट 1 है। अन्यथा, अगर इनपुट का मूल्यांकन गलत है, तो आउटपुट 0 होगा।
हानि और उद्देश्य कार्यों का निर्माण
कई अनुप्रयोगों में, एक विशेष मामले के रूप में हानि कार्यों सहित वस्तुनिष्ठ कार्य, समस्या निर्माण द्वारा निर्धारित किए जाते हैं। अन्य स्थितियों में, निर्णय निर्माता की वरीयता को अनुकूलन के लिए उपयुक्त रूप में एक स्केलर-वैल्यूड फलन (जिसे उपयोगिता फलन भी कहा जाता है) द्वारा प्राप्त और प्रतिनिधित्व किया जाना चाहिए - रैगनार फ्रेश ने अपने नोबेल पुरस्कार व्याख्यान में जिस समस्या पर प्रकाश डाला है।[4] उद्देश्य कार्यों के निर्माण के लिए मौजूदा तरीकों को दो समर्पित सम्मेलनों की कार्यवाही में एकत्रित किया जाता है।[5][6] विशेष रूप से, Andranik Tangian ने दिखाया कि सबसे उपयोगी उद्देश्य कार्य - द्विघात और योज्य - कुछ उदासीनता बिंदुओं द्वारा निर्धारित किए जाते हैं। उन्होंने इस संपत्ति का उपयोग इन वस्तुनिष्ठ कार्यों के निर्माण के लिए मॉडल में या तो क्रमिक उपयोगिता या कार्डिनल उपयोगिता डेटा से किया था, जो निर्णय निर्माताओं के साथ कंप्यूटर-सहायता प्राप्त साक्षात्कारों के माध्यम से प्राप्त हुए थे।[7][8] अन्य बातों के अलावा, उन्होंने 16 वेस्टफेलियन विश्वविद्यालयों के लिए बजट को इष्टतम रूप से वितरित करने के लिए वस्तुनिष्ठ कार्यों का निर्माण किया[9] और 271 जर्मन क्षेत्रों के बीच बेरोजगारी दर को बराबर करने के लिए यूरोपीय सब्सिडी।[10]
अपेक्षित नुकसान
कुछ संदर्भों में, हानि फलन का मान ही एक यादृच्छिक मात्रा है क्योंकि यह एक यादृच्छिक चर X के परिणाम पर निर्भर करता है।
सांख्यिकी
फ़्रीक्वेंटिस्ट और बायेसियन संभाव्यता सांख्यिकीय सिद्धांत दोनों में हानि फलन के अपेक्षित मूल्य के आधार पर निर्णय लेना सम्मिलित है; हालाँकि, इस मात्रा को दो प्रतिमानों के तहत अलग-अलग परिभाषित किया गया है।
फ़्रीक्वेंटिस्ट अपेक्षित नुकसान
हम पहले बार-बार होने वाले संदर्भ में अपेक्षित हानिको परिभाषित करते हैं। इसे प्रायिकता वितरण, P के संबंध में अपेक्षित मान लेकर प्राप्त किया जाता हैθप्रेक्षित डेटा का, X. इसे 'जोखिम कार्य' के रूप में भी जाना जाता है[11][12][13][14] निर्णय नियम δ और पैरामीटर θ का। यहाँ निर्णय नियम X के परिणाम पर निर्भर करता है। जोखिम फलन निम्न द्वारा दिया गया है:
यहाँ, θ प्रकृति की एक निश्चित लेकिन संभवतः अज्ञात अवस्था है, X एक सांख्यिकीय आबादी से स्टोकेस्टिक रूप से खींची गई टिप्पणियों का एक सदिश है, X, dP के सभी जनसंख्या मूल्यों पर अपेक्षा हैθ एक्स के घटना स्थान पर एक संभावना माप है (θ द्वारा पैरामीट्रिज्ड) और इंटीग्रल का मूल्यांकन एक्स के पूरे समर्थन (माप सिद्धांत) पर किया जाता है।
बायेसियन अपेक्षित नुकसान
बायेसियन दृष्टिकोण में, पश्च वितरण का उपयोग करके अपेक्षा की गणना की जाती है π* पैरामीटर का θ:
एक को फिर कार्रवाई का चयन करना चाहिए* जो अपेक्षित हानिको कम करता है। हालांकि इसका परिणाम उसी क्रिया को चुनने में होगा जैसा कि फ़्रीक्वेंटिस्ट जोखिम का उपयोग करके चुना जाएगा, बायेसियन दृष्टिकोण का जोर यह है कि कोई केवल वास्तविक देखे गए डेटा के तहत इष्टतम कार्रवाई को चुनने में रुचि रखता है, जबकि वास्तविक फ़्रीक्वेंटिस्ट इष्टतम निर्णय नियम का चयन करता है। जो सभी संभव प्रेक्षणों का फलन है, एक अधिक कठिन समस्या है।
सांख्यिकी में उदाहरण
- एक स्केलर पैरामीटर θ के लिए, एक निर्णय फलन जिसका आउटपुट θ का एक अनुमान है, और एक द्विघात हानि फलन (चुकता त्रुटि हानि) जोखिम कार्य अनुमान की औसत चुकता त्रुटि बन जाता है,माध्य चुकता त्रुटि को कम करके पाया गया एक अनुमानक पश्च वितरण के माध्य का अनुमान लगाता है।
- घनत्व के अनुमान में, अज्ञात पैरामीटर संभाव्यता घनत्व कार्य ही है। हानिफलन कोसामान्यतः उपयुक्त समारोह स्थान में नॉर्म (गणित) के रूप में चुना जाता है। उदाहरण के लिए, L2 मानदंड|L के लिए2</सुप> मानक, जोखिम कार्य माध्य एकीकृत चुकता त्रुटि बन जाता है
अनिश्चितता के तहत आर्थिक विकल्प
अर्थशास्त्र में, अनिश्चितता के तहत निर्णय लेने को अक्सर ब्याज के अनिश्चित चर के वॉन न्यूमैन-मॉर्गेनस्टर्न यूटिलिटी फलन का उपयोग करके तैयार किया जाता है, जैसे कि अवधि के अंत में संपत्ति। चूँकि इस चर का मान अनिश्चित है, इसलिए उपयोगिता फलन का मान अनिश्चित है; यह उपयोगिता का अपेक्षित मूल्य है जिसे अधिकतम किया जाता है।
निर्णय नियम
एक निर्णय नियम इष्टतमता मानदंड का उपयोग करके एक विकल्प बनाता है। कुछसामान्यतः इस्तेमाल किए जाने वाले मानदंड हैं:
- Minimax: सबसे खराब हानिके साथ निर्णय नियम चुनें - यानी, सबसे खराब स्थिति (अधिकतम संभव) हानिको कम करें:
- अपरिवर्तनीय अनुमानक: निर्णय नियम चुनें जो एक अपरिवर्तनीय आवश्यकता को पूरा करता है।
- न्यूनतम औसत हानिके साथ निर्णय नियम चुनें (यानी हानिसमारोह के अपेक्षित मूल्य को कम करें):
हानि समारोह का चयन
ध्वनि सांख्यिकीय अभ्यास के लिए किसी विशेष लागू समस्या के संदर्भ में अनुभव किए गए वास्तविक स्वीकार्य भिन्नता के अनुरूप अनुमानक का चयन करने की आवश्यकता होती है। इस प्रकार, हानिकार्यों के लागू उपयोग में, एक लागू समस्या को मॉडल करने के लिए किस सांख्यिकीय पद्धति का उपयोग करना है, यह उस हानिको जानने पर निर्भर करता है जो समस्या की विशेष परिस्थितियों में गलत होने से अनुभव किया जाएगा।[15] एक सामान्य उदाहरण में स्थान पैरामीटर का अनुमान लगाना सम्मिलित है। विशिष्ट सांख्यिकीय मान्यताओं के तहत, माध्य या औसत स्थान का अनुमान लगाने के लिए आँकड़ा है जो कम से कम वर्गों के तहत अनुभवी हानिको कम करता है। चुकता-त्रुटि हानि फलन, जबकि माध्य अनुमानक है जो निरपेक्ष-अंतर हानि फलन के तहत अनुभव किए गए अपेक्षित हानिको कम करता है। . अभी भी अलग-अलग अनुमानक अन्य, कम सामान्य परिस्थितियों में इष्टतम होंगे।
अर्थशास्त्र में, जब एक एजेंट जोखिम तटस्थ होता है, तो उद्देश्य कार्य को केवल मौद्रिक मात्रा के अपेक्षित मूल्य के रूप में व्यक्त किया जाता है, जैसे कि लाभ, आय या अंत-अवधि का धन। जोखिम से बचने के लिए | जोखिम से बचने वाले या जोखिम-प्रेमी एजेंटों के लिए, हानिको उपयोगिता के नकारात्मक के रूप में मापा जाता है, और अनुकूलित किए जाने वाले उद्देश्य कार्य उपयोगिता का अपेक्षित मूल्य है।
लागत के अन्य उपाय संभव हैं, उदाहरण के लिए सार्वजनिक स्वास्थ्य या सुरक्षा इंजीनियरिंग के क्षेत्र में मृत्यु दर या रुग्णता।
अधिकांश अनुकूलन एल्गोरिदम के लिए, एक हानि फलन होना वांछनीय है जो विश्व स्तर पर निरंतर कार्य और अलग-अलग फलन है।
दो बहुत ही सामान्य रूप से उपयोग किए जाने वाले हानि कार्य औसत चुकता त्रुटि हैं, , और पूर्ण विचलन, . हालाँकि पूर्ण हानिका हानियह है कि यह अलग-अलग नहीं है . चुकता हानिका हानियह है कि इसमें ग़ैर का वर्चस्व होने की प्रवृत्ति होती है - जब एक सेट पर योग किया जाता है है (जैसा कि ), अंतिम योग औसत a-मान की अभिव्यक्ति के बजाय कुछ विशेष रूप से बड़े a-मानों का परिणाम होता है।
हानि फलन का चुनाव मनमाना नहीं है। यह बहुत ही प्रतिबंधात्मक है और कभी-कभी हानि समारोह को इसके वांछनीय गुणों से चिह्नित किया जा सकता है।[16] पसंद के सिद्धांतों में, उदाहरण के लिए, i.i.d के मामले में सममित आंकड़ों के वर्ग की पूर्णता की आवश्यकता है। अवलोकन, पूर्ण सूचना का सिद्धांत और कुछ अन्य।
डब्ल्यू एडवर्ड्स डेमिंग और नसीम निकोलस तालेब का तर्क है कि अनुभवजन्य वास्तविकता, अच्छे गणितीय गुण नहीं, हानिके कार्यों का चयन करने का एकमात्र आधार होना चाहिए, और वास्तविक हानिअक्सर गणितीय रूप से अच्छे नहीं होते हैं और अलग-अलग, निरंतर, सममित आदि नहीं होते हैं। उदाहरण के लिए, एक व्यक्ति जो हवाई जहाज़ के गेट के बंद होने से पहले आता है वह अभी भी विमान बना सकता है, लेकिन एक व्यक्ति जो बाद में आता है वह नहीं कर सकता है, एक अंतराल और विषमता जो थोड़ा जल्दी पहुंचने की तुलना में थोड़ा देर से पहुंचना अधिक महंगा बना देता है। दवा की खुराक में, बहुत कम दवा की लागत प्रभावकारिता की कमी हो सकती है, जबकि बहुत अधिक लागत सहनीय विषाक्तता हो सकती है, विषमता का एक और उदाहरण। ट्रैफ़िक, पाइप, बीम, पारिस्थितिकी, जलवायु, आदि एक बिंदु तक थोड़े ध्यान देने योग्य परिवर्तन के साथ बढ़े हुए भार या तनाव को सहन कर सकते हैं, फिर बैक अप हो सकते हैं या भयावह रूप से टूट सकते हैं। डेमिंग और तालेब तर्क देते हैं कि ये स्थितियाँ, वास्तविक जीवन की समस्याओं में आम हैं, शायद शास्त्रीय चिकनी, निरंतर, सममित, विभेदक मामलों की तुलना में अधिक सामान्य हैं।[17]
यह भी देखें
- बायेसियन पछतावा
- वर्गीकरण के लिए हानि कार्य
- छूट अधिकतम नुकसान
- काज हानि
- स्कोरिंग नियम
- सांख्यिकीय जोखिम
संदर्भ
- ↑ 1.0 1.1 Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome H. (2001). The Elements of Statistical Learning. Springer. p. 18. ISBN 0-387-95284-5.
- ↑ Wald, A. (1950). Statistical Decision Functions. Wiley.
- ↑ Cramér, H. (1930). On the mathematical theory of risk.
{{cite book}}
:|work=
ignored (help) - ↑ Frisch, Ragnar (1969). "From utopian theory to practical applications: the case of econometrics". The Nobel Prize–Prize Lecture. Retrieved 15 February 2021.
- ↑ Tangian, Andranik; Gruber, Josef (1997). Constructing Scalar-Valued Objective Functions. Proceedings of the Third International Conference on Econometric Decision Models: Constructing Scalar-Valued Objective Functions, University of Hagen, held in Katholische Akademie Schwerte September 5–8, 1995. Lecture Notes in Economics and Mathematical Systems. Vol. 453. Berlin: Springer. doi:10.1007/978-3-642-48773-6. ISBN 978-3-540-63061-6.
- ↑ Tangian, Andranik; Gruber, Josef (2002). Constructing and Applying Objective Functions. Proceedings of the Fourth International Conference on Econometric Decision Models Constructing and Applying Objective Functions, University of Hagen, held in Haus Nordhelle, August, 28 — 31, 2000. Lecture Notes in Economics and Mathematical Systems. Vol. 510. Berlin: Springer. doi:10.1007/978-3-642-56038-5. ISBN 978-3-540-42669-1.
- ↑ Tangian, Andranik (2002). "Constructing a quasi-concave quadratic objective function from interviewing a decision maker". European Journal of Operational Research. 141 (3): 608–640. doi:10.1016/S0377-2217(01)00185-0. S2CID 39623350.
- ↑ Tangian, Andranik (2004). "A model for ordinally constructing additive objective functions". European Journal of Operational Research. 159 (2): 476–512. doi:10.1016/S0377-2217(03)00413-2. S2CID 31019036.
- ↑ Tangian, Andranik (2004). "Redistribution of university budgets with respect to the status quo". European Journal of Operational Research. 157 (2): 409–428. doi:10.1016/S0377-2217(03)00271-6.
- ↑ Tangian, Andranik (2008). "Multi-criteria optimization of regional employment policy: A simulation analysis for Germany". Review of Urban and Regional Development. 20 (2): 103–122. doi:10.1111/j.1467-940X.2008.00144.x.
- ↑ Nikulin, M.S. (2001) [1994], "Risk of a statistical procedure", Encyclopedia of Mathematics, EMS Press
- ↑ Berger, James O. (1985). Statistical decision theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. Bibcode:1985sdtb.book.....B. ISBN 978-0-387-96098-2. MR 0804611.
- ↑ DeGroot, Morris (2004) [1970]. Optimal Statistical Decisions. Wiley Classics Library. ISBN 978-0-471-68029-1. MR 2288194.
- ↑ Robert, Christian P. (2007). The Bayesian Choice. Springer Texts in Statistics (2nd ed.). New York: Springer. doi:10.1007/0-387-71599-1. ISBN 978-0-387-95231-4. MR 1835885.
- ↑ Pfanzagl, J. (1994). Parametric Statistical Theory. Berlin: Walter de Gruyter. ISBN 978-3-11-013863-4.
- ↑ Detailed information on mathematical principles of the loss function choice is given in Chapter 2 of the book Klebanov, B.; Rachev, Svetlozat T.; Fabozzi, Frank J. (2009). Robust and Non-Robust Models in Statistics. New York: Nova Scientific Publishers, Inc. (and references there).
- ↑ Deming, W. Edwards (2000). Out of the Crisis. The MIT Press. ISBN 9780262541152.
अग्रिम पठन
- Aretz, Kevin; Bartram, Söhnke M.; Pope, Peter F. (April–June 2011). "Asymmetric Loss Functions and the Rationality of Expected Stock Returns" (PDF). International Journal of Forecasting. 27 (2): 413–437. doi:10.1016/j.ijforecast.2009.10.008. SSRN 889323.
- Berger, James O. (1985). Statistical decision theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. Bibcode:1985sdtb.book.....B. ISBN 978-0-387-96098-2. MR 0804611.
- Cecchetti, S. (2000). "Making monetary policy: Objectives and rules". Oxford Review of Economic Policy. 16 (4): 43–59. doi:10.1093/oxrep/16.4.43.
- Horowitz, Ann R. (1987). "Loss functions and public policy". Journal of Macroeconomics. 9 (4): 489–504. doi:10.1016/0164-0704(87)90016-4.
- Waud, Roger N. (1976). "Asymmetric Policymaker Utility Functions and Optimal Policy under Uncertainty". Econometrica. 44 (1): 53–66. doi:10.2307/1911380. JSTOR 1911380.